PHYSICS 152B/232 Spring 2017 Homework Assignment #2

[1] Consider a tight-binding model of monovalent atoms on a two-dimensional rectangular lattice with primitive direct lattice vectors $\mathbf{a}_1 = a_x \hat{\mathbf{x}}$ and $\mathbf{a}_2 = a_y \hat{\mathbf{y}}$ and hopping integrals $t_{x,y}$.

- (a) Assuming $a_x > a_y$, which of $t_{x,y}$ do you expect to be largest? Why?
- (b) Find the dispersion relation $E(\mathbf{k})$.
- (c) Sketch the Fermi surface within the Brillouin zone.

[2] Consider the one-dimensional Bloch oscillations discussed in §1.6.3 of the Lecture Notes. Setting k(0) = 0, show that a Taylor expansion of the motion x(t) agrees with the ballistic result to order t^2 , if the ballistic mass is taken to be the effective mass m^* at k = 0.

[3] Make a sketch of the extended Brillouin zones like in Fig. 2.2 of the Lecture Notes, but for the triangular lattice. Then make plots the free electron Fermi surface for valences Z = 2 and Z = 3, such as in Fig. 2.3.

[4] Suppose, in the vicinity of the Γ point for some material, the electron dispersion is of the form $E(\mathbf{k}) = \frac{1}{2} (m^*)^{-1}_{\mu\nu} k^{\mu} k^{\nu}$, where m^* is the effective mass tensor. Find an expression for the low-temperature molar heat capacity in terms of density n and temperature T. Your expression should involve the tensor m^* in some way.