Lectures 19: Markov Chain Monte Carlo II.



probability distribution and Markov chain

from Lecture 18
Monte Carlo importance sampling and Markov chain

If a configuration in phase space is denoted by X, the probability for configuration

according to Boltzman is

p(X) e PEX) g — % (1)

How to sample over the whole phase space for a general problem? How to generate

configurations?

e Brute force: generate a truly random configuration X and accept it with probability
e~ PE(X) where all E > 0. Successive X are statistically independent. VERY

INEFFICIENT

e Markov chain: Successive configurations X;, X ;1 are NOT statistically independent
but are distributed according to Boltzman distribution.

What is the difference between Markov chain and uncorrelated sequence?

e Truly random or uncorrelated sequence of configurations satisfies the identity

P(Xq,X5,---,Px,) = P (X1)P1(X3) - P (XN)



probability distribution and Markov chain
from Lecture 18

® Markov chain satisfies the equation
P(Xl,XQ, Tty PXN) — Pl(Xl)T(Xl — X2)T(X2 — X3) . °T(XN_1 — XN)

where the transition probabilities 7'(X — X) are normalized

Y T(X—-X)=1

We want to generate Markov chain where distribution of states is proportional to e BE(X)
and this distribution should be independent of the position within the chain and independent
of the initial configuration.

The necessary conditions for generating such Markov chain is that every configuration in
phase space should be accesible from any other configuration within finite number of steps
(connectedness or irreducibility) - (Be careful to check this condition when choosing Monte
Carlo step!)

We need to find transition probability 7'(X — X) which leads to a given stationary
distribution p(X) (in this case p(X) oc e BEX)),



Markov chain detailed balance
from Lecture 18

The probability for X decreases, if system goes from X to any other X':
— > 5 p(X)T(X — X') and increases if X configuration is visited from any other
state X': Y+, p(X")T(X" — X). The change of probability for X is therefore

p(X,t+1) —p(X,t) ==Y p(X)T(X = X )+ > p(X"T(X' - X) @

We look for stationary solution, i.e., p(X,t + 1) — p(X,t) = 0 and therefore
Y p(XN)T(X - X')=> p(X"T(X'— X) 3)
X/ X’
General solution of this equation is not accesible, but a particular solution is obvious
p(X)T(X — X') = p(X")T(X' — X) (4)

This solution is called DETAIL BALANCE solution.



Metropolis update
from Lecture 18
To construct algorithm, we devide transition prob. T'(X — X') = wxx/ Axx:

e {rial step probability w x x+ which is symmetric, i.e., wx xr = wxx (for example spin
flip inising: wx x is 1/ L? if X and X" differ for a single spin flip and zero otherwise )

and

e acceptance probability A x x (for example accepting of rejecting new configuration
with probability proportional to min (1, exp(—8(E(X') — E(X))))).

Detail balance condition becomes

p(X') _ Axx
p(X) Axx
Metropolis chooses
Axxr =1 if p(X') > p(X) )
P

Axxr = p<(§)> if p(X') < p(X).

Obviously, this acceptance probability satisfies detail balance condition and therefore leads
to desired Markov chain with stationary probability for any configuration X o p(X ) for

long times.



Metropolis update
from Lecture 18

To summarize Metropolis algorithm
o T(X — X’) = wXX/AXX/

o ) wxx = lLwxx =wxx

e wxx > 0forall X, X' after finite number of steps

o Axx = min(l, ’;((—))(()))

How to accept a step with probability A x x» < 1? One can generate a random number
r € [0, 1] and accept the stepif r < Axx.

Keep in mind:

e Configurations that are generated by Markov chain are correlated. The theory

guarantees that we arrive at invariant distribution p for long times.

e Two configurations are statistically independent only if they are far apart in the Markov
chain. This distance is called correlation time (Be careful: To meassure distance in
Markov chain, every step counts, not only successful.)



Monte Carlo averages

The average of any quantity can be calculated as usual
A=—— %4
n —no ’

where N steps are used to "warm-up”.

The error of the quantity, however, is much bigger than the following quantity

n

LY (4 - A

n—n
O’I:>'n0

Imagine the extreme limit of correlations when all values A; are the same. We would

estimate that standard deviation is zero regardless of the actual error!

To compute standard deviation, we need to group meassurements within the correlation

time into bins and than estimate the standard deviation of the bins:
1<N;+Ng

1
B = — A; 6
1= ;v (6)



Monte Carlo averages

M-1

1 _
(B; — A)? (7)
0

2—_
O-_M.

J:

where we took into account that A = B. The correlation time (here denoted by [Ny) is not
very easy to estimate. Maybe the best algorithm is to compute o for few different Ny and

2

as long as o2 is increasing with N, the correlation time is still larger than N. When o2

stops changing with increasing /N, we reached correlation time and o’ is a good
estimation of standard deviation.



Metropolis-Hastings

Metropolis-Hastings algorithm:
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953), Hastings (1970)

Pick more or less any “proposal distribution” ¢(X2|X1)
(A multivariate normal centered on x, is a typical example.)

Then the algorithm is:

1. Generate a candidate point x,. by drawing from the proposal distribution
around X,

Notice that the g's

2. Calculate an “acceptance probability” by / cancel out if symmetric
on arguments, asS IS a
multivariate Gaussian

T (Xo) C/(X1|X2('))

®(X1.X2,) = mIN (l.
T(X1)q(Xa0]X1)

3. Choose x, = X, with probability o, X, = x, with probability (1-a)

So, pX2|x1)=¢qg(xXz2|x)x(Xx1.X2), (X2 # X1)



Metropolis-Hastings

Proof:

T (X20) q(X |X2c))

®(X1.Xr,) = miIn (l.
T(X1)q(Xac|X1)

So,

T(X1) g(X2|Xp) @(X1.X2) = min[m(X1) ¢(X2]X1). T(X2)q(X1|x2)]
= min|7(X2) ¢(X1]X2). 7(X1)qg(X2|X1)]
= (X2) g(X1|X2) ¥(X2.X7)

But

p(X2]X1) = q(X2]X1) (X 1.X2). (X2 # X1)

and also the other way around

So,

T(X1)p(X2|X1) = 7(X2) p(X1|X2)

which is just detailed balance, g.e.d.



Gibbs sampling

The Gibbs Sampler is an interesting special case of Metropolis-Hasting:

A “full conditional distribution” of 7(x) is the normalized distribution
obtained by sampling along one coordinate direction (i.e. “drilling throug
the full distribution. We write itas 7 (x | xi).\

“given all coordinate
values except one”

Theorem: A multivariate distribution is uniquely determined by all of its full
conditional distributions.

Proof (sort-of): It's a hugely overdetermined set of linear equations, so any
degeneracy is infinitely unlikely!

Metropolis-Hastings along one direction looks like this:

(X1, X2.|X") = min (1.

7 (X2¢|X7) g(x1[x26,X7) )
m(x1]X7) g(x2¢|x1,X7)

Choose the proposal distribution ¢(x2[x1.x7) = 7(x2[x7)
Then we always accept the step!

But a proposal distribution must be normalized, so we actually do

need to be able to calculate _
m(x|x")dx butonly along one “drill hole™ at

a time!



Gibbs sampling

So, Gibbs sampling looks like this:

Cycle through the coordinate
directions of x

Hold the values of all the other
coordinates fixed

“Drill”, i.e., sample from the one
dimensional distribution along the
non-fixed coordinate.
— this requires knowing the
normalization, if necessary by

doing an integral or sum along
the line

Now fix the coordinate at the
sampled value and go on to the
next coordinate direction.






