Lecture 1: probability concepts I.



Bayesian probabilities in your non-academic life:

Example: The Monty Hall or
Let’'s Make a Deal Problem

* Three doors
* Car (prize) behind one door
* You pick a door, but don’t open it yet

* Monty then opens one of the other doors, always
revealing no car (he knows where it is)

* You now get to switch doors if you want
* Should you?

* Most people reason: Two remaining doors were
equiprobable before, and nothing has changed. So
doesn’t matter whether you switch or not.




Laws of Probability

“T'here 1s this thing called probability. It obeys the laws of an

axiomatic system. When identified with the real world, 1t gives
(partial) information about the future.”

 What axiomatic system?

 How to identify to real world?

— Bayesian or frequentist viewpoints are somewhat different
“mappings” from axiomatic probability theory to the real world

— yet both are useful

“And, it gives a consistent and complete calculus of inference.”

First, warmup exercise about frequentist notion of probabilities *



Proba bility Theo ry XandY random variables

Apples and Oranges

p(B=r)
p(B =b)

joint probabillities
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joint probabillities

Proba bility Theo ry XandY random variables

p(F=alB=1) =

Apples and Oranges p(B=r) = 4/10 p(F=0oB=1) =
p(B=b) = 6/10 p(F=a|B=0b) =

p(F=0|B=0b) =

what is the probability to pick apple?

if orange, what is the probability that it came from blue box?

two elementary rules in probability theory help: sum rule and product rule
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o joint probabilities
Probablllty Theory X and Y random variables

Marginal Probability
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Conditional Probability
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joint probabillities

Probability Theory XandY random variables

Sum Rule

Product Rule

p(X =z;,Y = y;)




The Rules of Probability _joint probabilties

X and Y random variables

Sum Rule p(X) =) p(X,Y)
=

Product Rule p(X,Y) = p(Y|X)p(X)




Bayes’ Theorem

p(X]Y)p(Y)
p(X)

p(YX) =

p(X) = Z p(X|Y)p(Y)  normalization
Y

posterior o likelihood x prior




tool: histogram of 60 events — joint probability distribution
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return to the problem of two boxes with fruits

p(B=b) = 6/10

p(F=alB=r) = 1/4

F=a|B= F=oB=r)=1
p(F=o|B=r) = 3/4 conditional pF=a T)H?( . o|B =)
p(F=a|B=b) = 3/4 normalization
p(F=0|B=0b) = 1/4 p(F=a|B=b)+p(F=0B=0b)=1

p(F=a) = p(F=a|B=r)p(B=r)+p(F =a|B=b)p(B=>h)
1 4 3 6 11

15170727510~ 20 picking apple
p(F=0)=1-11/20=9/20 picking orange




return to the problem of two boxes with fruits

If orange was picked, what was the probability of the box color ?

using Bayes’ theorem, we can reverse the conditional probabilities:

F=oB=rp(B=r) 3 4
p(F = o) 10

and from the sum rule:

p(B=bF=0)=1-2/3=1/3

X

> o

p(B=r|F =0) =



return to the problem of two boxes with fruits

If orange was picked, what was the probability of the box ?

using Bayes’ theorem, we can reverse the conditional probabilities:

p(F=o0|B=r)p(B=r) 4
p(F = o) B 10

p(B=bF=0)=1-2/3=1/3

p(B=r|F =0) =

X

> o

interpretation of Bayes’ theorem:

p(B) prior probability, if we are told that blue box was chosen
available before we observe the fruit

Once we are told it was orange, we can use Bayes’ theorem to
calculate p(BIF) which is the posterior probability




