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Glossary

Alfvén wave A wave that propagates along magnetic lines
of force because of the tension of the field lines; also
called a hydromagnetic wave.

Ampere’s law The law that, in pre-Maxwell theory,
determines the magnetic field created when electric
current flows.

beta The name given to the ratio of the gas pressure to the
magnetic pressure in a conducting fluid; plasma f is one
of the figures of merit awarded to a magnetostatic
equilibrium.

dynamo The process whereby a magnetofluid self-excites
and amplifies a magnetic field.

electromotive force The electric field created by a changing
magnetic field. Motive refers to its ability to move
charge in a conductor (i.e., generate current).

Faraday’s law The law that determines the electromotive
force created by a changing magnetic field.

field line A curve that is everywhere parallel to the
direction of the prevailing magnetic field; also called a
line of (magnetic) force, it is part of a family of such
lines, one of which passes through each point of space.

field line tension Part of the stress that a magnetic field B
exerts on a medium and interpreted as a tension in a
flux tube of B/, per unit cross-sectional area of the
tube; yo is the permeability of the medium.

figure of merit A number that quantifies the susceptibility
of a plasma equilibrium to a certain type of magneto-
hydrodynamics instability.

flux tube See magnetic flux surface.
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force-free field The field in a particular type of magneto-
static equilibrium in which the Lorentz force vanishes
and in which field and current are parallel.

gradient A term used to indicate how rapidly a scalar or
vector field changes with position. In the case of a scalar
field, @, it is used to describe the vector field that is
parallel to the direction in which @ increases most
rapidly; it is equal to the spatial rate of change of the
scalar in that direction and is denoted by V.

interchange-ballooning mode An instability driven by the
combined effects of pressure gradient and average, or
locally, unfavorable curvature of the field lines.

International Thermonuclear Experimental Reactor
(ITER) a large-scale experiment, run by an interna-
tional consortium, designed to study the physics of
burning plasma.

kink safety factor A figure of merit quantifying the
susceptibility of a plasma equilibrium to kink instability.

kink-tearing mode An instability driven by current gradi-
ents.

line of force A curve that is everywhere parallel to the
direction of the prevailing magnetic field; also called a
(magnetic) field line, it is part of a family of such lines,
one of which passes through each point of space.

Lorentz force The force per unit volume on a fluid
conductor that carries an electric current (density J)
and lying in a magnetic field B; mathematically, it is the
vector product of J and B and can also be represented by
magnetic stresses.

magnetic helicity A property of a magnetic field that is
preserved in the motion of a fluid that is a perfect
electrical conductor.

magnetic pressure Part of the stress that a magnetic field B
exerts on a medium and interpreted as an isotropic pressure
B*210, where o 1s the permeability of the medium.

magnetic reconnection The process by which a magneto-
fluid forms thin current layers that change the field line
topology and dissipate magnetic energy.

magnetic relaxation The process by which a magnetofluid
relaxes to its minimum energy state subject to certain
constraints.
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magnetic shear The rate at which the direction of a
magnetic field changes with position x; a special case
is used in plasma physics as a figure of merit.

magnetic stresses Stresses that are equivalent in their
dynamical effect to the Lorentz force.

magnetic surface, also called a flux tube or a magnetic flux
surface A surface composed of field lines so that the
magnetic field, B, is everywhere tangential to it. The
flux of B contained within the surface is the same
everywhere along its length.

Ohm’s law The law that states that the electric current
density, J, produced in a motionless conducting medium
by an electric field E is proportional to E. The constant
of proportionality is the electrical conductivity of the
medium.

pre-Maxwell theory The approximate form of electro-
magnetic theory thar existed prior to Maxwell’s
discovery of displacement currents.

scalar product A convenient mathematical abbreviation
used to describe a quantity derived from two vectors, F
and G, and in magnitude is equal to the product of their
magnitudes, |Fl and IGl, and the cosine of the angle
between them; it is written as F- G.

Taylor relaxation The process proposed by J. B. Taylor
whereby a magnetofluid relaxes to its minimum energy
state subject to the constraint of constant global
magnetic helicity.

toroidal Alfvén eigenmode (TAE) A particular type of
Alfvén wave appropriate to toroidal geometry.

vector product A convenient mathematical abbreviation
used to describe a vector that is perpendicular to two
other vectors, F and G, and that in magnitude is equal to
the product of their magnitudes, |Fl and |Gl and the sine
of the angle between them; it is written F x G, where F,

G, and F x G form a right-handed triad.

Magnetohydrodynamics (MHD) is the study of the
movement of electrically conducting fluids in the
presence of magnetic fields. The magnetic field
influences the fluid motion through the Lorentz
force, which is proportional and perpendicular to
the magnetic field and the electric current flowing
through the conductor: The magnetic field is affected
by the electric current created by an electromotive
force which is proportional and perpendicular to the
magnetic field and the fluid velocity. It is this duality
between magnetic field and fluid flow that defines the
subject of MHD and explains much of its fascination
(and complexity).

1. INTRODUCTION

Magnetohydrodynamics (MHD) is the marriage of
hydrodynamics to electromagnetism. Its most

famous offspring is the Alfvén wave, a phenomenon
absent from the two subjects separately. In fact,
many consider the discovery of this wave by Alfvén
in 1942 to mark the birth of MHD. Initially, MHD
was often known as hydromagnetics, but this term
has largely fallen into disuse. Like MHD, it conveys
the unfortunate impression that the working fluid is
water. In reality, the electrical conductivity of water
is so small that MHD effects are essentially absent.
Moreover, many fluids used in MHD experiments are
antipathetical to water. Even as fluid mechanics is
now more widely employed than hydrodynamics the
terms magnetofluid mechanics or magnetofluid dy-
namics, which are already sometimes employed, may
ultimately displace MHD. Magnetofluid is already
widely used in MHD contexts.

Since electric and magnetic fields are on an equal
footing in electromagnetism (EM), it may seem
strange that the acronym EMHD was not preferred
over MHD. There are two reasons for this. First, to
invoke EM theory in its full, unapproximated form
would, in most contexts, add complexity without
compensating enlightenment. It usually suffices to
apply the form of EM theory that existed in the 19th
century before Maxwell, by introducing displace-
ment currents, cast the theory into its present-day
form. In this pre-Maxwell theory of EM, there are no
displacement currents and the electric and magnetic
fields are not on an equal footing; the magnetic field
is the master and the electric field the slave.
Consequentlyy, MHD is an appropriate acronym,
but EMHD is not. Situations in which this is untrue
and in which full EM theory is needed involve
relativistically moving fluids and are too seldom
encountered to be described here; in this article, the
pre-Maxwell approximation is used throughout. The
second reason why EMHD cannot be used is that the
acronym is generally understood to mean electron
MHD, which studies the MHD of the electron fluid
in a two-fluid description of a plasma, the ions
forming the other fluid. This topic is also outside the
scope of this article.

A significant branch of MHD is the study of
Magnetostatic equilibria (MSE). This subject is the
MHD analogue of hydrostatics, the branch of fluid
mechanics that deals with fluids at rest, with the
pressure gradient in the fluid balancing external
forces such as gravity. Similarly, in MSE the fluid is
motionless and the pressure gradient balances the
Lorentz force (and any other forces present).

The two main applications of MHD are techno-
logical—to liquid metals and to plasmas. There is
little doubt that the former has had the greater



impact on society. It includes the casting and stirring
of liquid metals, levitation melting, vacuum-arc
remelting, induction furnaces, electromagnetic
valves, and aluminum reduction cells. Another
application, the flow of a liquid metal in the blanket
surrounding a thermonuclear reaction chamber,
touches on the other main area: plasma MHD. The
reactor contains a rarefied plasma of deuterium/
tritium (DT) that is raised to a high enough
temperature for these nuclei to fuse and release
energy. The economic promise of such a device in
generating magnetic fusion energy (MFE) has pro-
vided a powerful incentive for studying plasma
MHD and has led to significant new insights,
particularly into the structure and stability of MSE.
In addition to these practical applications, the
elucidation of a wide variety of magnetic phenomena
in nature depends on an understanding of MHD.
Astrophysics and geophysics provide abundant ex-
amples, including the magnetism of the earth,
planets, and satellites, that of the sun and other
stars, and that of galaxies.

This article describes the simplest form of MHD
theory, in which the working fluid is a homo-
geneous, continuous medium. This may or may not
(depending on context) be a satisfactory description
of a plasma. In general, a plasma and its dynamics
are described by kinetic equations that govern
distribution functions for electrons, ions, and (if
the plasma is incompletely ionized) neutral atoms.
The distribution function, f(x, v, ), of any of these
species is proportional to the probablility that a
particle of that species at position x is moving with
velocity v at time ¢ In certain cases, such a
description can be greatly simplified by replacing
the kinetic equations for the functions f by a closed
set of fluid equations. This happens when the
dependence of each f on v is close to whart it would
be if the plasma were in local thermodynamic
equilbrium, as seen by an observer moving with the
mean velocity, V(x, ), of the species at x and ¢. Such
a distribution is termed Maxwellian. The distribu-
tion functions are then replaced by ion, electron,
and neutral densities, n;, 1., and 7, respectively,
that give the total numbers of each species per unit
volume at x and ¢, with each fluid having its own
(mean) velocity. Although this may seem (and is)
very complicated, it is far less forbidding than the
alternative (i.e., solving for the evolution of the
distribution functions).

The method of closure described previously
necessarily involves an approximation of restricted
validity. Single-fluid MHD also assumes that the
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characteristic length scale, ¢, is large compared
with the Debye length, % y.,y.. This length quanti-
fies the distance over which 7, and #»; can differ
substantially from one another. When & > & gepyes
these densities are closely equal and the plasma is
very nearly electrically neutral. A second require-
ment for simple one-fluid MHD to hold is that % be
large compared with the mean free path between
particle collisions in the plasma and in comparison
with the gyroradii. (A charged particle in a
magnetic field would, in the absence of collisions
with other particles, orbit about a field line in a
spiral having a certain gyroradius that depends on
its mass and charge and on the field strength.) These
demands are more easily satisfied in many astro-
physical contexts than in a thermonuclear reactor
chamber. Nevertheless, one-fluid MHD can provide
useful qualitative insights into the structure and
stability of plasmas relevant to MFE.

To simplify the following discussion, the abbre-
viations shown in Table I will usually be employed.
In particular, velocity means fluid velocity, density
stands for the mass density of the fluid, field means
magnetic field, current is short for electric current
density, conductor means conductor of electricity,
and potential means electric potential. Script let-
ters—%, 7,1, B, §, &, etc—are used to indicate
typical magnitudes of length, time, velocity, field,
current, electric field, etc.

The aim of this article is to provide as simple an
account of MHD as possible—one that is slanted
toward the MFE field but one that involves a
minimum of mathematics. Some familiarity with
vector fields is necessary, however.

TABLE 1

Abbreviations

Quantity Symbol  Magnitude SI unit

Time t T Seconds (s)

Position X 2 Meters (m)

Velocity \Y v m/s

Density P — Kilogram/m® (kg/m?)
Pressure p — Newton/m? (N/m?)
Temperature T — Kelvin (K)

Field B 3 Tesla (T)

Current J R Amp/mz (A/m?)
Charge density v — Coulomb/m® (C/m?)
Potential [ -— Volt (V)

Electric field E é V/m

Conductivity c — Siemens/m (S/m)
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2. PRE-MAXWELL APPROXIMATION

Some readers may value a brief review of the relevant
concepts in EM theory that underpin MHD; others
may prefer to skim this section and move ahead to
Section 3.

Under discussion are systems having characteristic
length, time, and velocity scales, %, 7, and 7,
respectively, for which ¥ «¢7 and 7" «¢, where c is
the speed of light. In these circumstances, EM
phenomena are well described by an approximation
that was in use before Maxwell introduced displace-
ment currents and his famous equations into EM
theory. This approximation, which is also called the
nonrelativistic approximation (since it implies that ¢
is infinite), is summarized.

Electrostatics is the study of static electricity. Each
positive (negative) electric charge experiences an
attraction toward every negative (positive) charge
and a repulsion from every other positive (negative)
charge. The sum, f, of all these forces on a charge e is
proportional to e and is conveniently represented by
an electric field, E=f/e. Suppose that, in steady
conditions, a test charge is carried around a closed
curve I', where by test charge is meant a charge so
small that it does not have any effect on the other
charges. As the charge describes I'y the agency that
moves it will sometimes do work against the force
f = ¢E and will sometimes receive energy from it but,
when the circuit is complete the net gain or loss of
energy is zero. Such forces are termed conservative
and this fact is expressed mathematically by the
statement that E=—V®, where ® is the electric
potential. (Here, V@ denotes the gradient of ®, a
vector that has Cartesian components d®/dx, dD/dy,
0®/dz.) If positive, ®;—P, is the energy received
from the electric field when a unit positive charge
moves from a location where the potential is @, to
one where the potential is ®,; if negative, it is the
work that must be done to move the charge from the
first location to the second. The force f=—eV® acts
to move a positive charge in the direction of E from a
region of higher potential to one of lower potential.

If a conductor carries a net charge, the mutual
repulsion between charges quickly drives them to the
surface of the conductor, where they arrange
themselves with a surface charge density such that
the surface is at a uniform potential ®. The electric
field is then normal to the surface and cannot move
charges along the surface. The charge distribution is
therefore static. Beneath the surface charge layer, E is
identically zero, as is the volumetric charge density 9.
If different areas of the surface are held at different

potentials, as at the two ends of a straight wire, E is
no longer zero in the conductor and a charge e
experiences the force f=¢E. If e>0 (<0) this moves
it from (to) the area at the higher potential to (from)
the area at the lower potential. The resulting flow of
charge is called an electric current. Its density, ], is
proportional to the force f and, according to Ohm’s
law, it is given by J=0E, where o is the electrical
conductivity of the conductor in siemens/meter
(S/m). To relate this to the more familiar form of
Ohm’s law, consider again the example of the
straight wire. If its length is L meters, a potential
difference of ® volts between its ends creates an
electric field of strength ®/L (V/m) and therefore a
current of density J=o®/L A/m® If the cross-
sectional area of the wire is A, the total current is
[=]JA=0A®/L=®/R, where R=L/6A is the elec-
trical resistance of the wire in ohms (). This result,
I=®/R, is the form of Ohm’s law encountered in
elementary texts on electricity and magnetism.

In pre-Maxwell theory, the flow of charge
resembles the flow of a constant density fluid, for
which mass conservation requires that the net flow of
mass into any closed volume is equal to the net flow
out of that volume. In the same way, charge
conservation requires that the inward flow of electric
current into the volume balances its outward flow.

Whenever current flows, a magnetic field, B,
attends it. This is shown in Fig. 1, again for a
straight wire C having a circular cross section of
radius a. In this case, B is in the 0 direction, where 0
is the azimuthal angle around the wire. Some lines of
(magnetic) force are shown. A line of force, also
called a field line, is actually not a line but a
continuous curve whose tangent is everywhere

FIGURE 1 Lines of force created by a current-carrying wire C.



parallel to B. Although lines of force pass through
every point in space, sketches such as Fig. 1 can only
show a finite number. The density of lines indicates
the strength of the field. Where lines bunch together
(spread apart) the field is stronger (weaker). Mag-
netic charges, analogous to electric charges, do not
exist. This means that a line of force may close on
itself or cover a magnetic surface ergodically (i.e.,
without closing; Fig.2), or it may continue to
infinity, but it cannot terminate. It also means that
(as for J) the net flow of B into any closed volume is
equal to the net flow of B emerging from the volume.
A bundle of lines of force contained in a magnetic
surface form a flux tube (Fig. 3). The net flow of B
into one end of a volume of the tube bounded by two
of its cross sections is the same as the net flow that
emerges from the other end. This is called the
strength of the tube.

To determine B from J in a situation such as that
sketched in Fig. 1, Ampére’s law is required. This
states that the component of B along any closed
curve I' is, when integrated around that curve,
proportional to the net flux, I, of current through
I'. In a uniform medium, the constant of proportion-
ality is its permeability, which in this article is always
assumed to be the permeability of free space,
fto=4nx 1077 H/m. (The fact that this value is
exact is a quirk of the SI system of units, which
makes use of one more quantity than is strictly
necessary.) Taking the closed curve to be the
(circular) line of force of radius r surrounding the
wire, the required integral is 2n7By, which by
Ampére’s law is also pol, so that By= uol/2nr; the
field decreases with distance 7 from the wire as 1/r.
The field outside the wire does not depend on
whether the current is uniform across the cross
section of the wire (] = I/na®) or whether, as in a case

A

FIGURE 2 An axisymmetric magnetic surface filled ergodically
by one line of force that does not close. The dashed line is the
symmetry axis of the “donut™; it is also called the magnetic axis.
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considered in Section 3, it flows only along the
surface of the wire with density 1/27a.

Faraday’s law provides the final link between B
and the electric field. This law applies to any closed
curve I" that is the periphery of a surface S. It states
that the component of E along I, when integrated
around I, is equal to the rate of decrease of the flux
of B through S. This statement depends on a sign
convention that can be understood from Fig. 4. If E is
integrated around I' in the direction of the arrows,
then the flux of B through S is taken into the plane of
the paper. (This right-handed rule also applies to
Ampére’s law; see Fig. 1.) Faraday’s law shows that
in unsteady EM states, E is not conservative (i.e., it
cannot be expressed as —V®).

Faraday’s law applies even when I" is moving and
changing shape, but in such cases E must be
reinterpreted. To see why this is necessary, consider
again Fig. 4. Suppose that E is zero and that B is
uniform, constant in time and directed out of the
plane of the paper. Now suppose that the sides ad
and bc start to lengthen at speed U so that the area

FIGURE 3 A straight flux tube. Its surface is composed of field
lines.

AP r - (o L

T. . S —>U vy

"""" b; k& e L'x
- Ly >

FIGURE 4  Application of Faraday’s law to a growing rectangle
S with periphery I'. The sides da, ab, and bc are fixed. The side cd
moves with speed U in the x direction. The sides ad and be
lengthen at the same rate.
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S of the rectangle increases at the rate UL,. The flux
of B out of the plane of the paper increases at the rate
BUL,; in the positive sense defined previously, it
decreases at the rate BUL,. By Faraday’s law, this
must also be the integral of the component of the
electric field along the sides of the integral. However,
E is clearly zero on all sides of I', particularly on the
stationary sides da, ab, and bc. One must conclude
that when integrating the electric field around T, one
is not integrating E, on the moving side ¢d but some
other electric field, E,". The required integral is then
E,'L, and Faraday’s law gives E,’ = —UB.

This argument has uncovered a very significant fact:
Although B (and J) are the same in all reference
frames, the electric field is not. In the current example,
E,/ = —UB in the reference frame moving with speed U
in the x direction. It is convenient here to make use of a
shorthand notation: U x B is called the vector product
of U and B. It is proportional and perpendicular to U
and B; its Cartesian components are U,B.—U.B,,
U.B.—U.B,, and U.B,~U,B,. In this notation, the
electric field in the frame moving with the side ¢d is
E’=U x B. More generally, when the electric field in
one reference frame 7 is E, thenitis EE=E+U x B in
the reference frame .’ moving with velocity U relative
to Z. Returning to Faraday’s law in the case in which
I moves or changes shape, it is E' and not E that is
integrated around T', where E’ is evaluated at each
point P of T" using the velocity U at P.

The force on a charge e that is stationary in Z' is
f=~¢eE', which in # is more conveniently written as
f=e(E+U x B). Analogously, Ohm’s law in a solid
conductor moving with  velocity U s
J=0(E+U x B). To illustrate this modification of
Ohm’s law, suppose that the rectangle sketched in
Fig. 4 is electrically conducting, with ad and bc being
parallel rails along which cd slides, the electrical
contact between cd and the rails being perfect. In
general, a current I will flow around T in the
direction indicated by the arrows. This current is
driven through ¢b + ba + ad by a potential difference
® created by charges that accumulate at the sliding
contacts ¢ and d. At one extreme, when the resistance
R, of ¢b+ba+ad is large, I=®/R; is small. By
charge conservation, I is also the current flowing in ¢d
and it is small because the electric field E, = (®.—®,)/
L, in cd created by the charges at ¢ and d cancels out
almost completely the electric field —UB induced by
the motion of cd; i.e., IE)/| is small. At the other
extreme, when R; is small, the path cd—»ba—ad is
almost a short-circuit, the contact charges at ¢ and d
are small, and these points are at nearly the same
potential; E, is small, E,/ ~ —UB, and the current [ =

UBL,/R; flows around T in the direction indicated,
where R; is the resistance of cd. In the general case
between these two extremes, I=UBL,/R, where
R =R, + R, is the total resistance of I’

The modified Ohm’s law also applies when the
conductor is a fluid, but now U is replaced by the
fluid velocity V, which is usually not the same
everywhere. At a point at which the fluid velocity is
V, the current density is J=0¢(E+V x B). By Am-
pére’s law, this current will influence B. This fact
exposes one half of the relationship between Vand B,
alluded to in Section 1, that characterizes the subject
of MHD: Flow alters field in a fluid conductor. The
other half of the relationship is a consequence of a
force that a conductor experiences when J and B are
nonzero. The force is proportional to, and perpendi-
cular to, both J and B. This is the Lorentz force, | x B
per unit volume. Through this force, field alters the
flow of a fluid conductor.

To illustrate the action of the Lorentz force,
consider the conducting rectangle I' sketched in
Fig. 4. The sides ab and cd experience equal and
opposite forces in the x direction, IBL, and —IBL,
respectively. These oppose the continual expansion
of the rectangle (an example of Lenz’s law). To
maintain the expansion, forces must be applied to the
sides ab and cd, and these do work at the rate
UIBL, = (UBL,)*/R =I*/R, which is precisely the
rate at which electrical energy is converted into heat
in the circuit I' by its electrical resistance R. In this
way, mechanical energy is converted into electrical
energy and then “ohmically” into heat.

To state this result more generally, it is convenient
to introduce a second shorthand notation: F- G is the
scalar product of two vectors F and G. In terms of
their Cartesian components, it is F.G,+F,G,+
F.G,. If —=V-(] xB) is positive at a point P, it
quantifies the rate at which fluid loses its kinetic
energy at P. This energy goes partially to increasing
the magnetic energy density at P but some is radiated
away from P through a “Poynting” energy flux
E x B/uo. The remainder offsets the ohmic losses, [*/o
per unit volume, at P. When —V - (J x B)>0 at P, the
loss of kinetic energy provides a brake on the motion,
which would cease even in the absence of viscous
friction, unless maintained by some other force.
When —V - (J x B) <0 at P, the reverse process occurs;
field passes energy to motion, as in an electric motor.

The volumetric charge density § in a moving fluid
conductor is generally nonzero so that the fluid
experiences a body force 9E per unit volume. In
the pre-Maxwell approximation, this is negligible
in comparison with JxB. These forces can be



reinterpreted in terms of stresses on the fluid and, not
surprisingly, the electric stresses are negligible in
comparison with the magnetic stresses. It is also found
that the energy density of the electric field is
insignificant compared with the energy density,
B?2py, of the magnetic field. This highlights the
unimportance of E relative to B in pre-Maxwell theory.

The magnetic stresses alluded to previously have
two parts. One is an Isotropic magnetic pressure,
pMszlz,uo; the other is nonisotropic and can be
interpreted as a field line tension of B*/u, per unit
area, or AB*/y for a flux tube of cross-sectional area
A. Both parts increase quadratically with B. The
magnetic pressure, which is already approximately
4 atm for a field of 1 T, is 10,000 times greater for
B=100T.

The action of the field on the flow is recognized by
including the Lorentz force J x B in the equation of
motion that governs the fluid velocity V. The
remaining forces affecting the motion include the
gradient of the (kinetic) pressure p and a term,
proportional to the (kinematic) viscosity v, that
describes frictional effects. When the Lorentz force
is equivalently represented by magnetic stresses, the
magnetic pressure Py joins p in a “total” pressure
P=p+pm. The ratio f=p/ppy=2uep/B* is usually
called beta. It is a significant quantity in plasma
physics, where it is a figure of merit—one of several
used to quantify the excellence or otherwise of a
plasma containment device.

3. IDEAL
MAGNETOHYDRODYNAMICS
AND MAGNETOSTATICS

A fluid is termed ideal if it has zero viscosity and zero
thermal conductivity but infinite electrical conduc-
tivity. Since ] must be finite even though o= o,
Ohm’s law ] =o(E + V x B) implies that E= -V x B.
Consequently, Alfvén’s theorem holds: Lines of force
move with the fluid as though frozen to it.

To establish this important result, let I be the
periphery of a surface element S that moves with the
fluid. Since E’ vanishes everywhere on I', Faraday’s
law shows that the flux of B through S is unchanging.
Suppose S is part of the curved surface C of a flux
tube (Fig. SA). The flux of B through S is zero
because B is tangential to it; by Faraday’s law, it
remains zero as the contents of the flux tube are
carried to a new location by the fluid motion V. Since
this applies to every such § drawn on C, B remains
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tangential to C everywhere. Thus, it is still a flux tube
at its new location. On shrinking the cross section of
the tube to a single line of force, it is seen that this
line of force moves with the fluid, as though frozen to
it. A stronger statement can be made. Let I encircle
the tube so that § becomes a cross section of the tube
(Fig. SB). The flux of B through § is the strength of
the tube, as defined in Section 2. By Faraday’s law, it
is the same at its new location. This applies to every
cross section. The fluid motion therefore preserves
the strength of flux tubes and the integrity of the
magnetic surfaces that contain them.

Alfvén’s theorem provides a useful way of
envisioning MHD processes in highly conducting
fluids. For example, consider the eruption of a flux
tube from the relatively dense region below the solar
photosphere and into the more tenuous solar atmo-
sphere (Fig. 6). Gravity drains the material in the
ejected flux loop back to the solar surface, leaving the
flux loop at low density and pressure, where it is in
approximate equilibrium with its new surroundings.
Such processes are responsible for expelling from the
sun the field created within it.

Next, consider the way in which fluid motions can
exchange energy with the field. Imagine a straight
flux tube, initially of cross-sectional area Ay, lying in

A

FIGURE 5 (A) An element S of surface area lying on the surface
of a flux tube with periphery I'. (B) A cross-section S of the flux
tube with periphery T

FIGURE 6 Fluid pulled by gravity down a flux tube that has
erupted from the surface of the sun. Field directions are indicated
by single arrows and fluid motion by arrowheads.
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a compressible fluid. Suppose a motion compresses
the tube uniformly so that, while remaining straight,
its cross-sectional area is reduced to A(<Ag). The
density of the fluid it contains increases from its
initial value of pg to p = po(Ag/A). Since (by assump-
tion) the fluid does not conduct heat, the tube
compresses adiabatically, and its internal energy (i.e.,
the energy of the random molecular motions within
it) increases so that its temperature rises. Because the
strength of the tube cannot change, the field By
initially within the tube increases to B = ByA/A (i.e.,
by the same factor as pg); thus, B/p remains at its
initial value, Bo/po. The magnetic energy per unit
length contained by the tube, however, increases
from Ao(B3/2uy) to A(B*/2u) = [Ao(B3/2u)]
(Ag/A). In short, the kinetic energy of the compres-
sing motion has been transformed into internal
energy and magnetic energy. The reverse happens if
A>Ap; the flux trapped in an intense tube tends to
expand into surroundings where the field is weaker.
For these reasons, sound traveling across a field moves
faster (and much faster when f is small) than it would
in the absence of the field; the magnetic pressure
created by the field intensifies the restoring force in
the compressions and rarefactions of the wave.

The transformation of kinetic energy into magnetic
energy also occurs in an incompressible fluid when
motions stretch field lines against their tension. The
process may be likened to the storing of elastic energy
in a stretched rubber band or to the energy transmitted
to a violin string by plucking it. If the flux tube of
cross-sectional area A containing field B, considered
previously is lengthened from L to L, its cross section
will decrease by the same factor (A = AgLy/L) and the
field within it will increase by the same amount
(B=BoL/Ly). The magnetic energy it contains,
which is proportional to B, is enhanced by a factor
of (L/Lo)* from (B3/2ug)LoAo to (B?/2uy)LA =
(B%/210)LoAo = [(B3/2ug)LoAo)(L/Lo)*. 1 L=
Lo+ 9, where d <« L, the increase in magnetic energy
is (B2/uy)Agd. This is the work that the applied force
had to do against the magnetic tension (B3 /uy)Aq of
the field lines in stretching the tube by 4.

Tension has other important effects. Consider
again the system shown in Fig. 1, but suppose now
that the cylinder C is a compressible fluid or plasma
surrounded by a vacuum. Suppose that the current I
flows along the surface of C so that I/27a is the
surface current density. The current I produces a field
of strength By=puol/2na on C. Because of their
curvature, the field lines exert a “hoop stress” on C of
B2/2u per unit area and directed radially inward.
This compresses the fluid in C. Since B is zero in C,

only (kinetic) pressure p can oppose the hoop stress.
If p = BZ/2u,, the forces are in balance, and the
configuration is in MSE.

One may imagine that this MSE is brought about
in the following way. Initially, A is large and p is
small. After the current I and its associated field B
have been set up, the forces on C are not in balance
and the hoop stresses exerted by the field lines
encircling C pinch the plasma column in much the
same way as a stretched elastic band squeezes what it
encircles. As these lines of force shorten and A
becomes smaller, magnetic energy is converted into
internal energy. The interior of C becomes hotter and
its pressure p increases to oppose the further
contraction of the field lines. Plausibly, the final
result is an MSE of the kind envisaged previously, in
which a plasma column has been strongly heated and
prevented from expanding by the encircling field.
Hot plasma is then confined within a magnetic bottle
and away from solid walls. The possibility of this
kind of magnetic confinement is of considerable
interest in the MFE field. A hot reacting plasma must
be prevented from leaching impurities from the solid
walls of the reactor because these would greatly
enhance the radiative losses, cooling the plasma and
quenching the reactions.

In an MSE, the Lorentz force J x B balances the
pressure gradient Vp. This means that B, being
perpendicular to Vp, is tangential to the constant—p
surfaces, which are therefore magnetic surfaces, as
defined in Section 2, and can be labeled by their value
of p. Current lines (curves drawn parallel to ]) also lie
on these surfaces and, like the field lines, they may
close or traverse the surfaces ergodically. The total
pressure P is continuous across the special magnetic
surface that is the boundary of a plasma; if the
exterior is a vacuum, P must balance the magnetic
pressure, B*/2u,, in the vacuum.

If a region exists in which J x B=0, the field
within it is termed force-free. Since Vp =0, the
pressure p is constant in the region, and p is no
longer available to label surfaces on which the field
and current lines are constrained to lie. Since J and
B are parallel in a force-free field, ] = /B, where /4 is
constant on each field line, this being the compo-
nent J;=]-B/B of ] parallel to B on that line. The
parameter 4 may act as a surrogate for p in labeling
the magnetic surfaces and constraining the field and
current lines. If, however, / is also constant, the
field and current lines become unconstrained. A
single field line and a single current line may fill the
region. These are termed stochastic lines. They
magnetically connect every part of the region to



every other part. Particular cases of this are
presented in Sections 4.6 and 5.3.2.

The MSE just described is called the Z pinch
because the current flows parallel to the axis of C, a
direction usually labeled by z. The Z pinch is shown
in Fig. 7A, together with two other MSEs. In Fig. 7B,
the @ pinch, the current flows around the plasma
column, a direction often denoted by 6. Between
these extremes is the screw pinch (Fig. 7C). Here, the
current flows in helices around C. The pitch g;=]./Jo
of the helices depends on 7, the radius of the
cylindrical magnetic surface on which they lie. The
field lines are also helices with a different pitch, q.
The way that g varies with  is a significant factor for
the stability of the equilibrium, and dq/dr is another
figure of merit, called magnetic shear (see Section
5.3). It quantifies how rapidly the direction of the
magnetic field changes as a function of .

As applied to plasma devices, an obvious short-
coming of the linear or one-dimensional pinches
shown in Fig. 7 is that, in practice, they must have
ends, and these are sources of contamination.
Greater interest therefore centers on toroidal or
two-dimensional pinches. One may visualize a
toroidal MSE as a linear pinch whose ends are
joined together by bending it around on itself to form
a donut of radius Ry, similar to that sketched in
Fig. 2; Ry is called the major radius and a the minor
radius of the torus. The axis of symmetry is called the
magnetic axis and distance from it is denoted by R.
The z coordinate of the linear pinch is replaced by
the angle ¢ around the magnetic axis, and increasing
¢ is called the toroidal direction. The coordinates r
and 0 of the linear pinch are approximately the same
for both the linear and toroidal systems, » now being
the distance from the axis running through the center
of the donut and 0 being the angle around that axis.
Increasing 0 is now called the poloidal direction.
There is no toroidal MSE analogous to the 0 pinch; in
the absence of current flow in the toroidal direction,
the Lorentz force cannot be balanced by a pressure
gradient. Main interest centers on the toroidal screw

FIGURE 7 (A) Z pinch; (B) 6 pinch; (C) screw pinch.
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pinch. The quantity g =rB,/RoBj is another figure of
merit called the kink safety factor (see Section §.3.2).

In addition to the one- and two-dimensional
MSEs, there are also interesting three-dimensional
configurations, so-called because they have no
symmetry. Of fundamental concern in all these MSEs
is the stability of the equilibria. This topic is
discussed in Section 3.

Alfvén’s theorem leads to a new phenomenon, the
Alfvén wave. Consider again the straight flux tube of
cross-sectional area A. Suppose first that the fluid is
incompressible, and imagine that a transverse dis-
placement bends the tube, carrying its contents with
it, in obedience to the theorem (Fig. 8). The tension
7= AB?/pg of the tube acts, as in a stretched string, to
shorten the tube. A wave results that moves in each
direction along the tube with speed V4 = /(7/Z),
where £=pA is the mass per unit length of the
string, with p being the fluid density. The wave
velocity is therefore V4 = B/(1op) %, which is usually
called the Alfvén velocity. It is also the velocity with
which energy can be transmitted along the field lines.
In a compressible fluid, the situation is more complex
because the presence of the field and its associated
Lorentz force make sound propagation anisotropic.
For example, the speed s of sound waves traveling
parallel or antiparallel to the field B is unaffected
by it: s = \/yp/p, where 7 is the ratio of specific
heats. For sound traveling perpendicular to the field,
s=/(yp + B%/uy)/p. For small B this is approxi-
mately V.

The MHD or Alfvénic timescale, 14 = %/Vy, is
very significant in many MHD contexts. It provides
an estimate of how quickly a system responds to
changes in its state. Such changes generate acoustic
and Alfvén waves, the former crossing the system in a
time of order t,=%/s, which for f«1 is indis-
tinguishable from t4. Thus, 74 is the time required
for the initial change to permeate the system. In
particular, it is the dynamic timescale on which an
MSE responds to a perturbation, and it is usually the
timescale on which that equilibrium will, if unstable,
be disrupted. It should be noted, however, that even
if an equilibrium is stable according to ideal MHD, it

FIGURE 8 Alfvén wave propagation down a straight flux tube.
The arrows indicate the directions of wave propagation.
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may be unstable through diffusive effects ignored in
ideal MHD. Such resistive instabilities are discussed
in Section 5.

4. NONIDEAL
MAGNETOHYDRODYNAMICS

4.1 Quantifying Deviations from the
Frozen in Law

Alfvén’s theorem poses a paradox: If field and fluid
are inseparable, how did the fluid acquire its field in
the first place? The answer is by diffusion, by which
is meant, by diffusion of magnetic field. This happens
because every real fluid has a finite conductivity.

In the reference frame %' moving with a
particular point P of the fluid, Ohm’s law is ¢ =
a&’, in order of magnitude. Ampére’s law shows that
J =B/, whereas Faraday’s law implies that
&' =BL1T . The timescale 7 on which B at P can
change as P moves around is therefore the magnetic
diffusion time, defined as 1, = o0 Z* = £*/n, where
n=1/poo is the magnetic diffusivity. On timescales
7 short compared with ,, the field is frozen to the
fluid; for 7 > 1,, it is not. Unless a field of scale . at
P is maintained in some way, its lifetime is 7,; also, a
field of this scale cannot be implanted at P in a lesser
time. One may consider these phenomenon as a type
of EM memory that sets a minimum timescale for
change, in the frame moving with the conductor.

Consider again the Z pinch described previously.
After the potential difference has been applied
between the ends of C at time =0, the current it
creates initially flows only over the surface of C
because, over short times, the plasma behaves as an
ideal conductor in which B in the bulk of C cannot
change from its initial zero value. Thereafter, the
current sheet penetrates into C by diffusion, its
thickness being of order d, = /(nt) at time ¢. After a
magnetic diffusion time of t, = a*/1, the current will
be distributed almost uniformly across the cross
section of the column. As a digression, in practice the
process may take rather longer since the diffusion of
field into C is hampered by the increasing conductiv-
ity of the plasma as its temperature T rises through its
adiabatic compression or heating. Similarly, the
z—directed field initially trapped in a screw pinch
grows as the column C collapses, whereas B, in the
surrounding vacuum does not. The tendency for the
flux in C to diffuse out of the column is hampered by
the diminishment of # that accompanies the com-
pressional increase in T.

As another example, suppose that a plasma
column C, such as the screw pinch shown in Fig. 7C,
is contained within, but is not in contact with, a
surrounding metallic wall. The field created outside C
after the pinch has been initiated at time ¢ =0 cannot
at first penetrate the walls because, over short times,
they behave as perfect conductors in which B cannot
change. The field is excluded from the walls by
currents that flow in a thin skin on their surfaces, and
these create their own field, which (when the walls
are planar) is the mirror image of that of the plasma
column (Fig. 9). The plasma column is repelled by its
image (another example of Lenz’s law), thus,
preventing it from striking the wall. This stabilizing
effect weakens in time because the thickness d, =
v/ (nt) of the skin increases with ¢ until ultimately the
field completely penetrates the walls.

In a moving fluid, the advective timescale, 7, =
21V, quantifies the time taken (according to Alfvén’s
theorem) for a field of scale . to be carried over that
distance. However, electrical resistance diffuses the
field on a timescale of 7,. If the magnetic Reynolds
number, Rm=1,/t,= %V Iy, is large, advection is
more rapid than diffusion and Alfvén’s theorem is
useful in visualizing MHD processes. When Rm <« 1,
as is usually the case in technological applications of
MHD involving liquid metals, the concept of frozen
fields is not very useful. The prevailing field then
provides an anisotropic friction that attempts to
damp out motions perpendicular to itself on a
timescale of 13 = p/an\ =n/V3, often called the
magnetic damping time or the Joule damping time.

Energy can also be transmitted in a fluid by waves,
and particularly significant for MHD systems is

Image of
pinch

Pinch

FIGURE 9 Image of a screw pinch in a conducting wall.



Alfvén radiation. This introduces a second way of
quantifying diffusive effects: the Lundquist number,
Lu. Alfvén waves are damped both by electrical
conduction and by the viscosity v of the fluid. The
timescale over which this occurs is a combination
T,= ffll(n+ v) of 7, and the viscous diffusion time,
7,= Z*Iv. For a liquid metal (v«n), 7.~1,, and we
shall now use 7, in place of 7. During a time t,, the
Alfvén waves travel a distance, V,1,,. If the Lundquist
number, Lu = Vy1,/.% = V4%, is large, this distance
greatly exceeds the characteristic length scale ¢, and
Alfvén radiation is significant. If Lu <« 1, this is not
the case since the time 74(= 7/V3) taken for the
wave to damp out is small compared with the time
ta( = Z/V,) that the Alfvén wave requires to traverse
the distance .. The Lundquist number can be
thought of as a magnetic Reynolds number, with
the wave speed V, replacing the advection speed 7.

4.2 Magnetic Reconnection

According to Alfvén’s theorem, the topology of field
lines cannot change in ideal MHD, but in a finitely
conducting fluid (7>0), field lines can sever and
reconnect. This can happen fastest where scales are
smallest (i.e., where the gradients of B are greatest).
Magnetic reconnection is the process that forms thin
current layers that change field topology and
dissipate magnetic energy, even though the resistivity
is modest and smoothly varying. Indeed, it is very
important to distinguish magnetic reconnection, a
process in which very thin (nearly singular) current
sheets form in otherwise smoothly varying systems,
from simple diffusive dissipation of magnetic energy
when sharp profiles are built in ab initio. In magnetic
reconnection, resistive diffusion and the magneto-
fluid dynamics combine to release energy stored in
the magneric fields and to reconfigure the magnetic
topology of the system. Reconnection phenomena
are usually subdivided into two classes, namely
driven magnetic reconnection (discussed here) and
spontaneous magnetic reconnection (described in
Section 5 in the context of the tearing instability).
Perhaps the simplest and most fundamental
model of magnetic reconnection is that of
Sweet and Parker, hereafter referred to as the
Sweet-Parker reconnection (SPR) model. This is a
two-dimensional machine that steadily reconnects
field lines. A cross section is sketched at successive
times in Fig. 10. Resistivity acts everywhere but is
most effective near a segment of the x axis. To
simplify the argument, it is supposed that n=0
everywhere except in reconnection region (shown
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FIGURE 10 The Sweet-Parker reconnection mechanism. (A)
Reconnection occurs when fluid motion brings slabs of oppositely
directed magnetic fields together. The slabs have length % and
velocity V,. Pushing the slabs of field together creates a current
sheet of thickness 7 and ejects fluid at velocity V.. The field lines
labeled 1-3 approach the current sheet and field line 0 leaves it. (B)
Field lines 1 enter the current sheet. (C) Field lines 1 are
reconnected in the current sheet. (D) Field lines 1 leave the current
sheet and move away in the +x directions with velocity V.. The
configuration of field lines is now identical to that in A, but field
lines 7 take the place of ficld lines 7-1. Reconnection has changed
the field line topology and dissipated magnetic energy.

shaded) of x width % and y width /; it is assumed
that 7 is so much smaller than & that it is almost a
current sheet. A steady inflow, V;, in the +y
directions forces together two slabs of oppositely
directed field + B (Fig. 10A). The fluid is incompres-
sible so that fluid must be ejected, with velocity V, in
the +x directions. Figure 10B shows the field lines,
labeled 1, moving into the reconnection region, and
Fig. 10C shows them moving out after they have
been reconnected. Their curvature implies a tension
that assists the ejection of fluid in the +x directions.

The object now is to determine V;, V,, and 7,
assuming that the configuration is in a steady state
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and that the Lundquist number Lu = V,%/y is large.
The argument rests on three simple balance laws:

1. Balance of fluid mass flowing into the reconnec-
tion layer with that flowing out: This gives
V¥ =V,..

2. Balance of fluid momentum in the reconnection
layer. Since the flow in the reconnection layer is
approximately one dimensional, it is governed by
Bernoulli’s law, which states that the sum of the toral
pressure P and the dynamic pressure 1p V2 is
constant. Furthermore, the total pressure P is, in
turn, the sum of the thermal pressure p and the
magnetic pressure py = BZ/Z/,lO. The sum, S=p +
B* /241y + 1p V2, is therefore constant throughout the
layer. By symmetry, the center of the configuration is
a stagnation point (V=0), and at the midpoints on
the long sides of the reconnection layer V is
negligibly small so that S~ p + B*/2us. Outside the
layer (i.e., for lx|>> %), the magnetic field is small so
that at the ends of the layer where fluid is ejected in
the +x directions, S~ p + 1p V2. Equating these two
expressions for S shows that the ejection velocity is
simply the Alfvén velocity: V, = V.

3. Balance of magnetic energy: In the steady state,
the influx of magnetic energy to the layer must equal
the rate of ohmic dissigation in the layer. The influx
rate is simply (2V.%)B“/2u, since the efflux from the
narrow side edges of the reconnection region is
negligible. The rate of ohmic dissipation is (£7)]*/s,
where by Ampére’s law, = B/uo/. Since = 1/uq0,
the inflow velocity is related to the layer thickness by
V= 11//.

Taken together, these three demands imply that

1. Since Lu>1, the reconnection velocity, V =
Va/VLu, is much smaller than V. It is proportional
to a fractional power of the resistivity of the system;
the growth rate of the tearing mode (discussed in
Section 5) shows a similar fractional dependence.

2. The aspect ratio, //.%, of the reconnection
region is small, of order Lu~"?« 1. The direction of
the merging fields imposes this anisotropy. It is
consistent with the idea that magnetic energy is
dissipated in a thin current sheet. Of course, the
simultaneous smallness of V/V, and the aspect ratio
¢1Z is a consequence of their equality, by the balance
law, and of the assumption Lu> 1.

Although conceptually simple and plausible, SPR
tells a rather pessimistic story, namely that reconnec-
tion is a relatively slow process (ie., V=
Va/VLu<« V4, where Lu>1 in cases of greatest
interest). Many physical phenomena appear to

require, for their explanation, fast reconnection (i.c.,
reconnection on ideal timescales or, equivalently, at
Alfvénic velocities V~ V). This is especially true of
many solar and astrophysical phenomena, such as
solar flares. The physics of fast reconnection is an
active area of research in MHD and plasma physics.

Two main routes to fast reconnection have been
proposed. Within the framework of MHD, one
originally proposed by Petschek suggests that shock
waves carry energy away from the reconnection
layer. This rapid process of energy removal is thought
to increase both the aspect ratio of the reconnection
region and the reconnection rate. The Petschek
mechanism predicts a reconnection velocity of order
Va4, with only a weak logarithmic dependence on Lu
[i.e., V~Vi/In(Lu)]. The alternate route to fast
reconnection appeals to small-scale, non ideal, or
kinetic processes that cannot be studied using the
one-fluid model of MHD. All models of fast
reconnection are controversial and they will evolve
considerably in the years ahead.

4.3 MHD Turbulence

Many fluid systems are turbulent. This fact presents
formidable obstacles to theorists and is likely to
embarrass them for the foreseeable future. The
motions and fields of a turbulent fluid have many
length and timescales. In the classical picture of
turbulence, these range from macroscales, %, .cr0
and 7 3¢, corresponding to scales on which the
fluid is stirred, to dissipation scales, % g;, and 7 g,
which are dominated by viscosity. It is argued that
L macro/ Ldiss ™ (Re)3l4, where Re = ¥ macroZ macro/V 18
the Reynolds number. This is typically greater than
10%, so the range of scales spans many decades and
cannot be adequately resolved even by modern, high-
speed computers.

In classic turbulence, interscale interaction occurs
via a process of cascade in which larger eddies (i.e.,
fluctuations that have the appearance of vortical
whorls) fragment into smaller eddies, thus producing
a range of fluctuations on scales from %,,..., to
Z giss- This process is encapsulated by a well-known
parody by Louis Fry Richardson of a verse of
Jonathan Swift:

Big whorls have little whorls, that feed on their velocity.
And little whorls have lesser whorls, and so on to viscosity.

In contrast to ordinary fluid turbulence, which can
be thought of as a soup of eddies, MHD turbulence
consists of a mixture of eddies and small-scale Alfvén



waves and is controlled by viscosity and resistivity.
Thus, although the idea of a cascade remains useful
for describing MHD turbulence, the interaction
processes in MHD are considerably more complex
than in nonmagnetic fluids. Perhaps the most
important difference is that, since MHD turbulence
involves Alfvén waves, it necessarily retains an
element of memory or reversibility. Here, Alfvénic
memory refers to the tendency of even small-scale
magnetic fields (which are always present when Rm
is large) to convert the energy in eddies (which
cascades irreversibly) to reversible nondiffusive
Alfvén wave motion. This is a consequence of the
fact that wave motion is necessarily periodic and
involves a restoring force.

Despite the difficulties discussed previously, there
is considerable effort in the research community
directed at numerical simulation of MHD turbu-
lence. The large scales can be resolved numerically in
so-called large eddy simulations (LES), but only if the
effects of the unresolvable or subgrid scales (SGS) on
the large scales are parameterized in some way. One
popular, although controversial, expedient originated
from an idea by Osborne Reynolds in the 19th
century. He drew an analogy between the diffusive
effects of the small-scale eddies and collisional
diffusion processes at the molecular level. This
suggested that the SGS similarly spread out the
large-scale motions and fields diffusively, but on
timescales  Tyrurh = L *Veury and Tofturb = L Mewrd
determined by turbulent diffusivities, Vit and b,
of order Z.qay? cady that might be very large
compared with the corresponding molecular values,
Vol and Nmol-

Reynolds’s idea is not totally satisfactory but is
qualitatively useful. For example, the fact that
Neurb > lmol 1IN the solar convection zone explains, in
a rough and ready way, why the timescale 7 of
magnetic activity on the sun, as estimated by the
period of the solar cycle, is on the order of a decade,
even though 7,/ exceeds the age of the sun: 7 is
determined by 7y, and not 1,01 s0 that 7 2 7, cuch-

Reynolds’s idea also correctly implies that turbu-
lence enhances viscous and ohmic dissipation.
Although the magnetic Reynolds number Rm may
be large when defined from % ucr0 and 7 macros it
may be small when 44y and ¥ cqqy are used instead.
Even if the characteristic macroscale field, Z,,.cr0 15
large compared with the typical eddy field, Z.44y 50
that the magnetic energy resides mostly in the
macroscales, the magnetic energy may be dissipated
mainly by the eddies. This is because Zcqdy < L macro
50 that 7 nacro = O(Zmacro/ 0L macro) Mmay be smaller
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than #eqdy = O(Beddy/ 0L cddy) even though Begqy <
PBmacro- 1IN many situations however, Zegqy >
Bonacro SO that the eddies contain most of the
magnetic energy and are mainly responsible for its
dissipation. Similarly, they may contain the majority
of the kinetic energy and be the main cause of its
viscous dissipation. The reader is cautioned, however,
that the expressions for Ve, and 7., given here are
estimates only. In particular, it has been appreciated
that the Alfvénic memory intrinsic to MHD turbu-
lence may cause significant reductions in v, and
Heurb in comparison with the estimates given here. The
self-consistent calculations of vy, and 7y, are active
topics of current research in MHD.

MHD propulsion and drag reduction are topics of
considerable interest and usually concern systems for
which Rm> 1 and in which MHD turbulence occurs.
An extensive discussion of these topics is beyond the
scope of this article.

4.4 Buoyancy in MHD

A real (nonideal) fluid has a nonzero thermal
conductivity, K. The appropriate measure of the
resulting conduction of heat is the thermal diffusivity,
k =KIpC,, where C,, is the specific heat at constant
pressure; the thermal diffusion time is 7, = P?Ix. The
finiteness of « gives rise to the magnetic buoyancy of
flux tubes. Such tubes are created by, for example,
the turbulent motions in a stellar convection zone,
such as that of the sun. These cause the prevailing
magnetic field to become intermittent, with regions
of strong field (i.e., flux ropes) being surrounded by
regions of comparatively weak field. During a time
t « 1, after its formation, flux loss from a tube can be
ignored. Radiative transport of heat, however, is very
effective in a star and t,<«7, Any difference in
temperature between the rope and its surroundings
diffuses away in a time of order 7,. It is reasonable to
suppose that in the time interval 7,«t«r1,, the
temperature of the rope is the same as its surround-
ings but that the field B in the interior of the rope
differs from the field Bo(< B) outside it. Magneto-
static balance requires that the total pressure exerted
by the rope on its surroundings is approximately the
same as the total pressure the surroundings exert on
it: p+ B*/2uy = po + B3 /21ty This means that the
kinetic pressure p of the gas in the tube is less than
that of its surroundings, po. However, since its
temperature is the same, its density must be less.
The tube is therefore buoyant and rises toward the
stellar surface.
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When the tube breaks through the stellar surface,
dark regions occur that are called starspots (or
sunspots in the case of the sun). That these spots are
dark is another illustration of the constraining effects
of the field. Near the stellar surface, heat is carried
outward mainly by convective overturning, which
within a tube is coupled to Alfvén waves that radiate
energy and therefore tend to suppress the convective
motions. The emerging heat therefore has to find a
route that goes around the spots rather than through
them. The spots are thus cooler and darker than their
surroundings.

4.5 Amplification of Magnetic Fields
in MHD

A magnetic field threading a sphere of solid iron of
radius 1m would disappear in approximately 1s
unless maintained by external current-carrying coils.
Since t,oc 72, larger bodies can retain their fields
longer, but many celestial bodies (planets, stars,
galaxies, etc.) are magnetic and are believed to have
been magnetic for times long compared with their
magnetic diffusion times. The age of the geomagnetic
field, for instance, exceeds 3 x 10° years, even though
7, is less than 10° years. A process must exist that
replenishes these fields as they diffuse from the
conductor. This process is the same as that operating
in commercial power stations: self-excited dynamo
action. From a field B, fluid motion creates the
electromotive force (emf) V x B that generates the
electric currents ] necessary to create, by Ampére’s
law, B.

Although it was stated previously that in turbulent
flow eddies may be responsible for greatly enhancing
diffusion of the large-scale part, Byacro, Of B, these
small-scale motions can, if they lack mirror symme-
try, also act to replace the lost flux. The simplest
manifestations of such symmetry breaking are helical
motions. Helicity is defined as V.o where o is the
vorticity of the flow, a vector that has Cartesi-
an components 9V, /dy—dV,/0z, OV./0z—dV /ox,
0V,/0x—dV,/dy and that is often written as curlV
or V x V. Helicity is a measure of how mirror
symmetric the flow is; like a common carpenter’s
screw, a helical flow does not look the same when
viewed in a mirror. Helicity is created naturally by
the rotation of large systems such as the solar
convection zone, where the rising and falling motions
created by buoyancy acquire vertical vorticity
through the action of the Coriolis force. Small-scale
helical motions create a large-scale emf that, in the

simplest case, is proportional to Bpaee and is
conventionally written oB 0. This o effect may
suffice to maintain B, and hence B, as well,
thus creating a turbulent dynamo. The « effect is the
cornerstone of a subject now called mean field
electrodynamics. (Confusingly, this is often known
by the acronym MFE, which we reserved as an
abbreviation for magnetic fusion energy.)

The o effect illustrates the danger, mentioned
previously, of adopting the Reynolds ansatz too
uncritically; through their anisotropy and lack of
mirror symmetry, small-scale motions can create
large-scale emfs that are not recognized when # is
merely replaced by #p. It should also be mentioned
that the issue of Alfvénic memory appears once again
in the context of the dynamo and the « effect. Recent
research has suggested that because of memory
effects and constraints on the rate of magnetic
reconnection, the o effect at large R# may be much
weaker than it would be were the dynamical effects
of the small-scale eddies ignored, as was done in the
early days of mean field theory. Further develop-
ments in this important research area may be
expected in the near future.

The interested reader can get an intuitive, hands-
on perspective on a particular type of dynamo
process by the following home demonstration, which
also illustrates several of the processes described in
this section and the last. Obtain an elastic (rubber)
band. This loosely corresponds to the flux tube in
Fig. 11A, its tension being the sum of the tensions in
the magnetic field lines it contains (i.e., it is
proportional to the energy of the field within it).

(A) Start (B) Stretch
(=’
(C) Twist (D) Fold

FIGURE 11 The stretch-twist—fold dynamo. (A) The initial
undeformed flux tube; (B) the result of stretching it to twice its
length; (C) the stretched tube is twisted into the shape of an infinity
sign =03 and (D) the result of folding one loop of the « over onto
the other. Reconnection in D can produce two loops of the same
size as the initial tube.



The tension in the band may be systematically
increased by a three-step, stretch-twist—fold process:

1. Stretch the rubber band to double its length.

2. Twist it into the shape of an infinity sign, 0.

3. Fold the loops on top of one another to form two
linked loops of the same size as the original band.

These steps are illustrated in Fig. 11B-D. In a similar
way to the rubber band, the energy within and the
tension of the flux tube are increased by a factor of 4.
This is the essence of a dynamo, the creation of
magnetic energy by helical motion.

In principle, these steps can be repeated over and
over again, with the sense of twist in step 2 being
always the same. This gives the band the sense of
handedness of a screw motion and the broken
reflection symmetry and helical motion that are
crucial to the success of the dynamo. The tension in
the band (analogous to the magnetic tension)
increases progressively as the steps are repeated,
and at some stage the reader’s hands will tire, making
it impossible to increase the tension further. This
illustrates the end of the kinematic regime (in which
fluid motion is prescribed a priori and the field
grows) and the beginning of the dynamic regime (in
which the field quenches its own further growth). If
the reader lets go of the band at any stage, it will
immediately relax back to its initial state. This
illustrates the crucial importance of magnetic recon-
nection as a means of locking in the amplified
magnetic field. In other words, magnetic reconnec-
tion provides the crucial element of irreversibility in
the dynamo. The analogue of magnetic reconnection
in the case of the rubber band could be achieved by
fusing the two loops together after the stretch-twist—
fold process.

In recent years, much effort has been expended on
the study of fast dynamos, which are defined as
processes of field amplification that operates on
timescales independent of 7, in systems with Rm > 1.
It should be apparent to the reader that a fast
dynamo necessarily requires fast reconnection in
order to lock in the dynamo-generated field. Thus,
the problems of fast reconnection and those of the
fast dynamo are intimately linked.

4.6 Magnetic Helicity and Relaxation
in MHD

No doubt the reader has noticed that the past three
sections, which discuss magnetic reconnection,
turbulent transport of magnetic fields, and the
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dynamo process, all concern the following broader
question: Given certain initial conditions, what
magnetic configuration does the magnetofluid ulti-
mately adopt? This question seeks to identify the
final state when some very complex dynamical
processes, involving the dissipative phenomena men-
tioned previously (as well others, some unknown),
are at work.

Apart from a very few simple, exactly soluble
cases (that nearly always have an unrealistically high
degree of symmetry built in), there are two main
ways of finding the final state.

The first is to integrate the MHD equations
directly using a computer. This approach forces the
researcher to confront all the thorny issues of MHD
turbulence, SGS modeling, etc. described previously.
Moreover, such brute force tactics are often expen-
sive and inefficient. One is naturally motivated to
seek other approaches that are bolder but simpler.
Foremost among these is constrained relaxation. This
variational method seeks to identify the final state as
one that minimizes the magnetic energy, subject to
certain constraints. The central issue then becomes
the identification and inclusion of the most impor-
tant constraint or constraints.

A natural candidate for consideration as a
constraint is the magnetic helicity. This is the
analogue of the (kinetic) helicity, which was pre-
viously defined as V - @ where @ = curlV. Conversely,
V can be derived from @ by integration in an
uncurling operation. Likewise, a vector A can be
obtained from B by a similar uncurling operation.
This defines a vector potential, A. The scalar product
K=A-B is the magnetic helicity. It is conserved in
the motion of an ideal fluid, and this is why it is
significant in MHD. Physically, magnetic helicity
quantifies the self-linkage or knottedness of the
magnetic field lines and is thus a measure of
the topological complexity of the field. Indeed, the
invariance of field line topology in ideal MHD
is the origin of the conservation of magnetic
helicity.

If an MSE is analyzed using ideal MHD, it is
found that magnetic helicity is conserved in detail in
the sense that if we regard the MSE as an assembly of
infinitesimally thin flux tubes of volume Av and
labeled by parameters « and f, their individual
magnetic helicities, K, s = (A - B), sAv, are conserved,
although they are not the same for each tube. If
instead nonideal MHD is used in analyzing the
MSE, the configuration will relax toward its final
state on a timescale determined by the resistivity and
other slow diffusion mechanisms. In this process,
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individual flux tubes lose their identity through
magnetic diffusion and turbulent cascade. Thus, the
local magnetic helicity, K, g, associated with a given
thin flux tube, is not conserved. However, J= B
Taylor made the insightful conjecture that the global
magnetic helicity (i.e., the sum of K,z over the
system) would be approximately conserved on the
timescale of the relaxation.

Global helicity is the integral of K over the entire
system. It 1s, in some sense, a coarse-grained
topological invariant that is also related to the self-
inductance of the plasma. Taylor relaxation theory
proposes to determine relaxed states by minimizing
magnetic energy subject to the constraint of constant
global magnetic helicity. The resulting Taylor states
have the property that the current is linearly
proportional to the field (i.e., J=/B, where / is a
constant). This, is a force-free field of the special type
described in Section 3 for which the component, J,
of ] parallel to B is everywhere the same. In Section
5.3.2, we discuss kink-tearing instabilities of toroidal
MSE. These instabilities are current driven (i.e., they
exist only because V] is nonzero). Since V/;=0 in
the Taylor relaxed state, it is stable to kink-tearing
modes.

Taylor relaxation theory has been very successful
in explaining the relaxed mean field profiles of low f
confined plasmas, especially the reversed field pinch
(RFP) and spheromak. Of particular note is Taylor’s
successful prediction of the F-® curve for the RFP.
The F-© curve relates the degree of field reversal to
the poloidal field at the edge of the RFP and is an
experimentally derived signature of the final RFP
state. In relation to Section 4.4, it is worth noting
that the relaxed state is maintained by a cyclic
dynamo process in which dissipative excursions from
the Taylor state trigger instabilities that drive the
plasma back to relaxed state.

The main mystery of Taylor relaxation theory is
why it works so well. In other words, why is the
global helicity the most important constraint on
turbulent relaxation? There are at least three
plausible answers:

1. Enhanced dissipation: Turbulence and dissipa-
tion drive magnetic reconnection, which destroys
domains of local magnetic helicity on all but the
largest scale. Thus, as the system evolves, the global
magnetic helicity is the only surviving topological
invariant.

2. Field line stochasticity: In the initial state of the
configuration, the field lines lie on magnetic surfaces,
each labeled by its hydrostatic pressure p. However,

as the configuration relaxes to the force-free state of
constant p, the identity of the surfaces evanesces, and
field lines become increasingly stochastic. Ultimately,
as the turbulent relaxation proceeds, the entire MSE
is threaded by a single field line. Since magnetic
helicity is calculated by volume integration over a
region enclosed by a magnetic surface, and all other
magnetic surfaces are destroyed, only global mag-
netic helicity is relevant to a stochastic state.

3. Selective decay: In three-dimensional MHD
turbulence, energy cascades to small scales. It can
be shown, however, that magnetic helicity cascades
inversely to large scales. As a result, magnetic helicity
accumulates on the largest scales of the system, with
minimal coupling to dissipation. Thus, magnetic
helicity is dynamically rugged, whereas energy
decays.

It should be noted that these are only plausibility
arguments, and that a rigorous justification of the
Taylor hypothesis remains an elusive goal of current
research.

5. STABILITY OF MAGNETICALLY
CONFINED PLASMAS

5.1 Generic Issues

Configurations of MHD fluids are analyzed using the
concepts of equilibrium and stability. These are used
to classify a variety of possible configurations
according to their intrinsic interest, potential utility,
importance for science and technology, and so forth.
They are vital in the context of magnetic plasma
confinement for the success of controlled fusion
(hereafter referred to as MFE). This is the only
application considered here, but there are many
others in astrophysics, geophysics, space plasma
dynamics, and MHD power generation.

MHD equilibria are configurations in which the
plasma pressure gradient, Vp, balances the ] xB
force (Lorentz force) and any other body forces
acting on the magnetofluid. An equilibrium in
which the balance is dominated by the pressure
gradient and the Lorentz force is referred to as a
MSE. All equilibria of interest in the context of
MFE are MSEs. In general, the magnetic fields in
MSEs are produced in part by external coils and in
part by plasma currents. They are characterized
by the pressure and current profiles p(r, 0, ¢) and
J(r, 0, ¢). In toroidal MSEs, these are independent of
¢, the angle around the torus in the toroidal



direction, but still depend on 0, the angle that
increases in the so-called poloidal direction.

Interesting MSEs almost always have closed
magnetic flux surfaces (i.c., surfaces that enclose a
specified amount of magnetic flux). These are labeled
by an effective radius 7, and because they are so
significant, we generally suppress the dependence of
p and J on 0 and ¢. Charged particles in a plasma
cannot readily cross a flux surface and are therefore
confined. For this reason, an MSE is sometimes
called a magnetic bottle.

MSEs have a high degree of symmetry, corre-
sponding to closed toroidal, spheroidal, or helical
configurations. Toroidal MSEs of interest in the
context of MFE include the tokamak (based on a
Russian acronym for maximum current) and the
RFP. Together, these two configurations are referred
to as toroidal pinches since plasma is confined by a
toroidal current that produces a magnetic field,
which in turn acts to pinch the plasma column. A
tokamak has a strong, externally applied toroidal
magnetic field, whereas a RFP plasma generates its
own toroidal field by a process of constrained
relaxation, whereby some of the toroidal current is
dynamically twisted into the poloidal direction. This
relaxation process is closely related to that of the
dynamo described previously. RFPs are intrinsically
dynamic (i.e., not quiescent) in nature. Spheroidal
MSEs include the spheromak and the spherical torus,
whereas helical MSEs include the heliac, a type of
stellarator. Stellarator MSEs do not rely on induc-
tively driven currents as do toroidal pinches, but they
sacrifice the virtues of toroidal symmetry. In this
section, the discussion is limited for reasons of
brevity and clarity to toroidal pinches in general,
and tokamaks in particular. The MSE of a tokamak
is particularly simple in that the pressure and
toroidal current profiles, p=p(R) and J4=J4(R),
can be parameterized by a single coordinate, R, that
may be thought of as a (generalized) distance from
the symmetry axis.

Once the existence of a closed MSE is established,
the next question is whether it is magnetohydrody-
namically stable—that is, whether initial, small
perturbations that break the symmetry of the
equilibrium tend to reinforce themselves and grow.
This growth is due to the release of potential energy
stored in the initial MSE and is accompanied by a
relaxation of the pressure and/or current profiles p(r)
and J,(r), which tends to lower the initial potential
energy and degrade the quality of the nascent MSE.
Instability is a linear concept and is relevant for only
a few growth times (at most), until the dynamics
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enter the nonlinear regime, characterized by finite
(i.e., not small) amplitude perturbations. Instabilities
saturate (i.e., cease growing) either when the plasma
arrives at a new secondary equilibrium, which is a
MSE with lower potential energy than the initial
equilibrium, in which the symmetry is usually broken
as well, or when the kinetic energy of the plasma
motion is lost through dissipation (e.g., through
viscosity). The latter often occurs as a consequence of
the cascade to small scales characteristic of MHD
turbulence.

MHD instabilities are usually classified as either
pressure driven [when they are associated with
relaxation of p(r)] or current driven [when associated
with relaxation of J,(r)]. They are either ideal or
resistive. Ideal instabilities occur without a violation
of Alfvén’s frozen flux constraint, whereas resistive
instabilities require some decoupling of field and
fluid, usually by collisional resistivity, to trigger the
energy-release process. MHD instabilities are of great
interest in the context of MFE, because they limit the
class of viable MSEs and thus severely constrain the
performance of magnetic fusion devices.

Entire books have been devoted to the MHD
stability of confinement devices for MFE. There is
space here to describe only a few of the basic
concepts and their application to MFE. One way of
investigating dynamical stability makes use of the
fact that ideal MHD conserves the total energy E of
the system. This is the sum of the kinetic energy Ek,
the magnetic energy Eyq, and the internal energy of
the plasma, E;- Before perturbation, V=0 and
therefore Ex =0 so that E = Ey + E;. The perturba-
tion creates a small initial Ex and this may grow at
the expense of Eyy+ Ej, indicating that the initial
state is unstable; if the initial state is linearly stable,
Ex remains small.

The situation may be described conceptually by
analogy with a ball rolling under gravity on a surface
S. Then Eg is the kinetic energy of the ball and its
height z above some reference level plays the role of
Em+ E;. A magnetostatic equilibrium is analogous
to the ball being at rest at some point P where the
surface is level (i.e., where the tangent plane at P to §
is horizontal, as at the points indicated in Fig. 12). In
Fig. 12A, the ball rests at a global minimum of z, and
the system is not only linearly stable but also globally
stable (i.e., stable to all perturbations no matter how
large they are or in which horizontal direction they
occur). In Fig. 12B, the ball is at an unstable
equilibrium that is destroyed if perturbed in any
horizontal direction. Figure 12C also illustrates an
unstable state; although it is true that some
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FIGURE 12 Equilibrium points (e) of a ball rolling on a
surface. (A) global stability; (B) instability at a maximum of z; (C)
instability at a saddle point of z; (D) stability for small
perturbations but not large.

perturbations increase z (suggesting stability), other
directions of perturbation exist that will cause the
ball to descend permanently from the saddle point. In
Fig. 12D, a sufficiently large perturbation will take
the ball over an adjacent hill, after which it descends
permanently to a state remote from its starting point
(i.e., the initial state is linearly stable but unstable to
finite amplitude perturbations).

Similarly, if En+ E; increases for every small
perturbation of a MSE, it is linearly stable, as in Figs
12A and 12D. The MSE is unstable if any perturba-
tion exists that reduces Eyg+ Ej, as in Figs 12B and
12C. Figure 12C is the better analogue for a MSE
since many directions of perturbation do not threaten
a MSE; perturbations that bend field lines increase
Enp and those that compress the plasma increase both
En and E;p. Other directions of perturbation, how-
ever, may exist that reduce Eyg + Ej, and these are the
perturbations that should be understood and, as far
as possible, eliminated. These directions are usually
associated with perturbations that relax the current
or pressure gradients.

5.2 Magnetically Confined Plasmas
and MFE

The hope of controlling the release of thermonuclear
energy by the fusion of light nuclei provides a very
powerful incentive for the study of plasma physics
and MHD. To make light nuclei react and release
energy, they must be forced together against their
mutual electrostatic repulsion. This happens natu-
rally at the enormous pressures characteristic of the
interiors of stars, such as the sun. The aim of MFE, of
course, is to create high plasma pressure MSEs using
magnetic fields. The efficiency of the MSE is
determined (in part) by the dimensionless parameter
B, (which is the ratio of the plasma pressure p to the
magnetic pressure B*/2u,. For fusion to occur, high
pressure must be sustained long enough for the
ignited plasma to replace its energy, via the fusion
burn, faster than it loses it through leakage of energy

across the confining fields. Thus, both high plasma
pressure and a sufficiently long plasma energy
confinement time, g, are necessary for the success
of MFE. The Lawson criteria for ignition of a fusion
burn are that the ion temperature T; exceeds
4.5% 107K and that the product of density and
energy confinement time ntg > 10%°m—3s. These two
conditions can be combined into a single criterion
often referred to as the Lawson triple product. This
requires that #nTtg>4.5 x 10>’ m > Ks. This product
is proportional to fB’zg, indicating that high beta
and large fields are desirable for fusion, assuming
that 1z does not degrade rapidly with either. In
addition, high f is intrinsically desirable for econom-
1c reasons.

The required Lawson number is lower for a DT
plasma than for a D plasma. Tritium, which is
virtually nonexistent in nature, may be bred in a
lithium blanket surrounding the ignited plasma in
which alpha particles escaping from the burning DT
plasma react to create T, which can subsequently be
extracted to fuel the fusion reactions. Of course, the
commercial viability of MFE demands even better
performance. The fusion reactions occurring during
confinement must recoup the cost of creating and
heating the plasma and all other overheads of the
system, such as collecting T from the lithium blanket
and extracting the spent fuel from the reaction
chamber. This necessarily raises the required Lawson
triple product in comparison with the value needed
for ignition. In practice, Lawson triple products in
excess of 2.4x10*m>Ks are thought to be
required for a fusion power plant producing 1 GW
of power.

The performance of a magnetic confinement
device is determined by

1. The magnetic configuration: the external mag-
netic fields and plasma currents that together define
the geometry of the MSE and the strength of the
magnetic bottle. Today’s tokamaks rely heavily on
optimization of the magnetic geometry by shaping of
the cross section to achieve peak performance.

2. Heating power and method: the means by
which the plasma is heated. These include ohmic
heating, neutral beam injection, radiofrequency
heating, and self-heating by the slowing down of
fusion-generated alpha particles. Most scenarios for
achieving ignition require auxiliary (i.e., non-ohmic)
heating, usually via injection of radiofrequency
waves that resonate with a characteristic frequency
(known as the cyclotron frequency) of a class of
plasma particles.



3. Fueling: the means by which fuel is injected.
These include gas-puffing, pellet injection, and beam
fueling.

4. Boundary control: the means by which the
deleterious effects of impurity accumulation and
other undesirable consequences of plasma-wall
interaction are minimized by control of the plasma
boundary. This is usually accomplished by a special
magnetic configuration called a divertor. This diverts
plasma outside the confinement region to a separate
chamber, where interaction with walls occurs.

5. Momentum input: the means, usually via
neutral beam injection, whereby plasma rotation is
generated. Toroidal rotation is desirable for optimiz-
ing energy confinement and controlling certain types
of MHD instabilities.

The principal limitations on fusion plasma per-
formance are

1. Collisional transport: There is an irreducible
minimum to the cross-field losses, that is, for a given
magnetic geometry, some losses through diffusion are
due to collisions between charged particles (analo-
gous to, but dynamically different from, molecular
diffusion in fluids) and these are unavoidable.

2. Radiative losses, especially due to impurities in
the plasma.

3. Macroscopic MHD instabilities: MHD instabil-
ities are large-scale perturbations that constrain
possible pressure and current profiles. Robust ideal
instabilities set hard limits on p(r), J(r), B, etc. that
place an upper bound on the possible Lawson
number. Resistive instabilities may set soft limits
(i.e., bounds that can be exceeded but only at
unacceptably high cost in, for example, heating
power). Both ideal and resistive instabilities can lead
to disruptions, which are catastrophic events that
result in termination of the plasma discharge and
may also damage the confinement vessel.

4. Microinstabilities: These are small-scale instabil-
ities, driven by local temperature and density gradi-
ents, leading to small-scale turbulence that degrades
energy and particle confinement through turbulent
transport. Microinstabilities typically require a de-
scription in terms of two (or more) fluids or one using
kinetic equations. Discussion of these is beyond the
scope of this article. Microinstabilities typically
produce cross-field leakage of energy and particles
that far exceeds that due to collisions. They essentially
control 7, which enters the Lawson triple product.

Instabilities are the key players that limit achiev-
able Lawson numbers. MHD phenomena typically
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determine f and the plasma pressure p, whereas
microinstabilities determine tg. Thus, the interplay of
macro- and microinstabilities is a recurring theme in
the design of MFE devices.

MHD instabilities have played a prominent role in
the history of MFE, especially in elucidating the
behavior of tokamaks. The early predictions of rapid
progress in MFE relied on naive expectations based
only on considerations of collisional and radiative
losses. Fusion researchers soon learned, however,
that an evil genie named instabilities lurked in the
magnetic bottle and was only too anxious to escape.
The instabilities it created were difficult to control.
Thus, the hopes of the MFE pioneers were dashed by
the struggle against unexpected, premature termina-
tion of discharges by disruptions created by MHD
instabilities. The genie had to be persuaded to remain
in the bottle. The instabilities had to be understood
and minimized or eliminated.

Much, indeed most, research on tokamaks in the
late 1960s and 1970s focused on current-driven
instabilities called kink-tearing modes, which can
disrupt the current profile and thus the discharge.
The output of this phase of fusion research was a
greatly improved understanding of the parameter
space of viable tokamak operations, particularly
with respect to current profile and magnetic field
configurations. The emphasis of tokamak research in
the 1980s and early to mid-1990s shifted to
microinstabilities and the turbulent transport asso-
ciated with them. The aim here, simply stated, was to
understand and predict the parameter scaling of 7p.
Great progress was made.

A watershed in this line of research was reached
with the discovery of spontaneously formed trans-
port barriers at the edge of, and within, the plasma.
A transport barrier is a localized region in which
turbulence due to microinstabilities is greatly re-
duced or extinguished so that cross-field leakage
declines to very low, collisional levels. This, in turn,
results in the formation of regions of steep pressure
gradient. Transport barriers usually form via a
spontaneous transition to a state of strongly sheared
poloidal and/or toroidal flow, which tears apart the
eddies driven by microinstabilites before they can
cause significant leakage. Present-day transport
barriers can sustain temperature gradients that seem
almost incredibly large, in excess of 1 million degrees
per inch. Profiles with and without transport barriers
are shown in Fig. 13.

The discovery and exploitation of transport
barriers stimulated a renewed interest in MHD
stability in the late 1990s, a trend that continues to
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FIGURE 13 Profiles with and without transport barrier. (A)
Normal profile; low confinement. (B) Profile with transport
barrier; high confinement. Particle density is denoted by ».

this day. In confining the plasma better, a transport
barrier also creates a larger pressure gradient in the
plasma column that brings it closer to the verge of
ideal MHD instability. In the jargon of MFE,
enhanced confinement is necessary to reach the S
limit. Thus, much of the current research on MFE is
devoted to avoiding or mitigating the effects of
pressure-driven ideal MHD instabilities via cross-
section shaping, active feedback techniques, and
profile control. Paradoxically, after 40 years of
research on how to exterminate microinstabilities,
effort is now being expended on finding ways to
stimulate them at opportune times. The aim is to
reap the full benefits of transport barriers by
avoiding disruptions while at the same time control-
ling impurity accumulation.

5.3 Examples of MHD Instabilities in
MFE Plasmas

As mentioned previously, the MHD instability of
MFE plasmas is an exceptionally complex topic
but is the subject of several excellent monographs.
Here, we give only an introduction to the major
pressure gradient and current gradient instability
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FIGURE 14 Development of Rayleigh-Taylor instability. (A)
Initial equilibrium, with heavy fluid (density py) on top of light
fluid (density py). (B) Ripples form on the interface. (C) Ripples are
amplified by Rayleigh-Taylor instability.

mechanisms; interchange-ballooning modes and
kink-tearing modes, respectively.

5.3.1 Interchange-Ballooning Modes
These modes, like all ideal MHD instabilities driven
by the pressure gradient, are related to Rayleigh—
Taylor instability, familiar from classical (nonmag-
netic) fluid dynamics. Rayleigh-Taylor instability
occurs when ripples are excited on the interface
between a heavy fluid (e.g., water) sitting atop a
lighter fluid (e.g., air) in a gravitational field, as
shown in Fig. 14. Everyone knows what happens:
The water falls out of the glass. What is not so
apparent is that the initial configuration of the water
and air is in equilibrium, but that the equilibrium is
unstable to the growth of ripple perturbations. The
experimentally inclined reader (with inexpensive
carpeting) may easily convince himself or herself of



this by filling a glass to the brim, placing a strong
piece of cardboard (preferably two-ply) over the
surface of the water and in contact with the rim of
the glass, and then inverting the glass. Because the
presence of the cardboard prevents the formation of
surface ripples, the water will not fall, so long as the
integrity of the cardboard is maintained. Of course,
the free energy source for this instability is simply the
gravitational potential energy stored in the initial
configuration (i.e., the elevated heavy fluid); the
gradient that relaxes is simply the density gradient.

The analogue of the Rayleigh-Taylor instability in
the MHD of magnetically confined plasmas is the
interchange instability. Interchange instability relaxes
the gradient in density, or more generally in the
pressure gradient, by lowering the effective gravita-
tional potential energy of the system. It does this by
interchanging a tube of high-pressure fluid with a
tube of low-pressure fluid, as shown in Fig. 15. In a
magnetically confined plasma, the role of gravity is
played by the centrifugal force exerted on the plasma
particles as they traverse curved field lines. This
results in a net body force that resembles a
gravitational force. Thus, if field lines curve or sag
away from regions of higher pressure, the system is
interchange unstable, whereas if they curve or sag
toward regions of higher pressure, the system is
interchange stable (Fig. 16). Equivalently, an inter-
change stable system is said to have favorable
curvature, whereas one that is unstable is said to
have unfavorable curvature. Also, it is important to
realize that the conceptual image of an interchange
of two plasma tubes is motivated by the fact that
potential energy release will be maximal when the
perturbation does not spend any portion of its energy
budget on bending field lines. In other words, a pure
interchange instability does not couple to Alfvén
waves. In reality, the physical appearance of an
interchange instability resembles that of a convection
roll (Fig. 17).

In magnetic confinement devices of practical
interest (including tokamaks), the magnetic curva-
ture is not constant but, rather, varies along the field
lines. Interchange stability is then determined by an
average of the magnetic curvature over the extent of
the field line. One key virtue of the tokamak is that
its configuration has favorable average curvature and
thus is interchange stable. However, as one follows a
field line around the tokamak, one traverses regions
of locally unfavorable curvature on the outboard side
of the torus and locally favorable curvature on the
inboard side. Thus, if perturbations are larger and
stronger in regions of locally unfavorable curvature
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FIGURE 15 Interchange instability. (A) Interchange instability
switches tubes of heavy and light fluid (densities py and py,
respectively. (B) Oblique view of tube interchange; note that tubes,
which are aligned with field lines, are not bent.

Increasing p
Increasing p
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FIGURE 16 Favorable and unfavorable curvature. (A) Un-
favorable curvature: Field lines sag away from the region of high
pressure p. (B) Favorable curvature: Field lines curve toward the
high-pressure region.
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FIGURE 17 Depiction of an interchange convection roll; see
legend to Fig. 15.

than they are in the locally favorable regions,
instability is possible. These are called ballooning
instabilities because the perturbation in the plasma
pressure balloons the plasma outward in regions of
unfavorable curvature. A physical picture of a
ballooning instability may be gained by thinking of
what happens when one overinflates a bicycle tire. Of
course, the tire eventually ruptures. If there is no flaw
in the tire material, the rupture will be likely to occur
on the outboard portion of the wheel because the
inboard portion is supported by the structural frame
of the wheel and is thus mechanically more resilient.
Indeed, sometimes an aneurysm will form in the tire.
Finite-amplitude ballooning may be thought of as a
kind of aneurysm in the magnetic surface that is
driven by high plasma pressure interior to that
surface. Finite-amplitude ballooning-kink instabil-
ities are shown in Figs 18 and 19. Figure 18 shows
development of the instability in a poloidal cross-
section. Notice how fingers form on the outboard
side of the torus. Figure 19 shows the magnetic flux
surfaces. Notice how the ballooning instability
produces crenelations in these.

Although ballooning instabilities are closely re-
lated to interchange instabilities, they differ crucially
in that the perturbations vary along the field lines
and therefore must bend the field lines. Thus,
ballooning instabilities couple localized interchange
motions to Alfvén waves. For ballooning instability
to occur, the energy released by interchange motions
in the unfavorable regions must exceed the energy
expended in bending the magnetic field lines. Thus,
there is a minimal or critical pressure gradient
required for ballooning instability to occur. This is
in sharp contrast to the interchange mode (in a
system with a curvature that is on average unfavor-
able), which, in ideal MHD, can occur for any
pressure gradient. The critical pressure gradient for
ballooning instability plays a central role in the
ultimate determination of the maximum achievable f
for a specific configuration (i.e., its beta limit). In
practice, the magnetic geometry and magnetic field
strength determine the critical pressure gradient for
ballooning instability. One important feature of
magnetic geometry is the magnetic shear, which
parameterizes how rapidly the direction of field lines
changes as a function of radius . Magnetic shear
plays an important and subtle role in the detailed
dynamics of ballooning instabilities. A complete
discussion of this is beyond the scope of this article.

5.3.2 Kink-Tearing Modes
Kink-tearing modes are all driven by the current
gradient, although the symptom of instability is often
related to the pitch of the magnetic field lines. The
physical nature of the modes is best illustrated by a
sequential discussion of sausage instabilities, kink
instabilities, and tearing instabilities.

Consider the Z pinch (Fig. 7A). Figure 20 illus-
trates a type of perturbation, sometimes called a
sausage mode, which is axisymmetric around the
axis of the pinch. The existence of the sausage mode
of instability can be explained rather simply. As
discussed in Section 2, the field B, outside the plasma
column, created by a current I flowing down it, is
azimuthal in direction and of strength uol/2nr. On
the surface of the column, the field strength is
therefore uol/2na, where a is the local radius of the
column, which varies when the tube is pinched. The
pinched column then resembles a tube of sausage
meat that has been compressed to create a chain of
links. The surface field and the associated field line
tension are greater where the column necks and
smaller where it bulges. This is the field that confines
the plasma column, and since I is constant, the
tension it exerts on the necks of the chain further
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FIGURE 18 Development of a ballooning mode as seen in a poloidal cross section of the torus. The magnetic axis is on the
left of each panel. The sequence of panels is as follows: top left, top right, bottom left, and bottom right. Note that
perturbations are larger on the outboard midplane regions (on the right). Also note that as the perturbation grows, it evolves to
form fingers or spikes. Courtesy of S. C. Jardin and the Center for Extended MHD Modeling, Princeton Plasma Physics

Laboratory.

FIGURE 19 Development of a ballooning-kink mode in a
torus. Note how a side view of the finger formation reveals the
tendency of the ballooning mode to crenelate the plasma and break
it into ribbons. Courtesy of S. C. Jardin and the Center for
Extended MHD Modeling, Princeton Plasma Physics Laboratory.

increases the initial deformation of the column. This
self-reinforcing, positive feedback loop is indicative
of an instability process that tends to break up the

FIGURE 20 The sausage mode of instability of a Z pinch; lines
of force encircling a current-carrying plasma column are shown. J,
indicates the cross section through which the current enters.

column into a chain of plasmoids (i.e., plasma
droplets). For obvious reasons, the instability is
called the sausage instability. The mechanism of
sausage instability is closely related to that causing a
thin stream of water from a faucet to break up into a
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line of spheroidal droplets. In this case, surface
tension plays the role of field line tension.

The sausage instability may be stabilized by an
axial field B, of sufficient strength within the column,
which provides a tension that opposes the formation
of necks. The critical strength of B, necessary for
stabilization can be estimated by comparing the field
energy released by necking of the column with the
energetic costs of deforming the axial field B..
Because necking motions must conserve axial mag-
netic flux, the change, A(B?/2u), in energy density
of the axial field is —B2Aa/pya, where Aala<0. The
corresponding change, A(B?/2), in the azimuthal
field energy density is B2Aa/2uga. It follows that the
net change in magnetic energy is positive if B2 >%B§.
This gives the required axial field strength necessary
to stabilize the instability, as depicted in Fig. 21.
Note that when the plasma tube is bent into a torus,
one arrives at a simple model of the tokamak
configuration.

The dual presence of both a poloidal field and a
strong, vacuum toroidal field greatly improves the
MHD stability of a toroidal pinch by eliminating
both the sausage instability and the related bending
instability shown in Fig.22 and by introducing
magnetic shear, which is useful in controlling
pressure-driven instabilities. Indeed, the tokamak

FIGURE 21 Stiffening of the Z pinch against sausage modes of
instability by the addition of a field B, along the plasma column
(creating a screw pinch).

J T

B
FIGURE 22 The bending mode of instability of the Z pinch.

Note how the lines of force are crowded together on the inside of
the bend and are moved apart on the outside of the bend; the
concomitant difference in magnetic pressure acts to reenforce the
displacement.

magnetic configuration is de facto defined by the
pitch of its magnetic field lines, which is given by
q(r) =rB4/RoBy. With the (possible) exception of a
finite region around the magnetic axis, the g(r) of
standard tokamaks exceeds 1 and increases with 7 so
that the magnetic shear is positive. The maximum
q(r) in most standard tokamaks is between 2 and 4.
The intrinsic dual periodicity of toroidal configura-
tions means that perturbations also have their own
effective pitch. This is a rational number, m1/n, where
m and n are positive integers, with m being the
number of times the perturbation circles the torus in
the poloidal direction while completing # turns in the
toroidal direction. Thus, it is possible for the field
line pitch g(r) to equal (or resonate with) the per-
turbation pitch m/n at certain radii, r,,,, where
q(rm) =min. These special radii define magnetic
surfaces that are called rational or resonant surfaces.

Resonant surfaces, and more generally field line
pitch, are crucial to an important class of instabilities
called kink-tearing instabilities. The onset of these
instabilities is determined by ¢q(r) and by the radial
gradient of the current profile. Since g(r) is deter-
mined primarily by By(r), kink-tearing instabilities
are also conveniently described as current-driven
instabilities. When the perturbation pitch m/n
exceeds g(a) for r<a, the instability does not involve
magnetic reconnection and is called an external kink.
It may then be described by ideal MHD. The effects
of boundaries, particularly conducting walls, are
vitally important to external kink dynamics and
stability (see Section 4 and Fig.9). When the
perturbation is resonant [i.e., when m/n=q(r) for
r<al), reconnection is usually involved and the
instability is called a tearing mode since magnetic
field lines tear and reconnect. Tearing modes involve
the formation of current filaments. In certain cases,
the instability dynamics of a resonant kink (usually
with m=1) can be described, at least in its initial
phases, by ideal MHD. Such instabilities are called
ideal internal kinks.

Ideal kink instabilities are current driven, but it is
really the pitch of the magnetic field lines that signals
the onset of the instability. Kink instabilities have
long wavelength in the toroidal direction and cause
the plasma column to snake helically around its
equilibrium position in the manner shown in Fig. 23.
Before the column is perturbed, the current flows
parallel to the magnetic field. After perturbation, it
follows the helical path shown and produces a
magnetic field resembling that shown in Fig. 23. This
is only part of the total field; to obtain the total field,
one must imagine augmenting the B shown in the



FIGURE 23 Kink instability of a toroidal equilibrium. In the
initial state, the current flows along field lines. In the perturbed
state (shown here), the current follows a helical path and creates a
field, B, of the type shown. The remainder of the field (not shown)
is along the helically distorted column. The net result is a field that
has a component perpendicular to J that creates a Lorentz force
enhancing the perturbation.

figure by the field along the column. The net result is
a field, B, that has a component orthogonal to J. This
creates a Jx B force that reenforces the initial
perturbation, thus promoting instability.

Kink instabilities are similar to the helical
deformations of an elastic tube or band that occur
when it is twisted beyond a critical value. An
example of such kinks is sometimes seen on a wire
connecting a telephone handset to its cradle. The
twist of the band is clearly analogous to the initial
pitch (or twist) of field lines, as given by ¢q(r). Kink
instabilities reflect the tendency of the plasma to
lower its energy by assuming a secondary, helical
equilibrium that replaces the initial configuration
with one of helical symmetry. The ultimate radial
extent of the helical deformation is determined by
several factors, including the amount of plasma
current, the toroidal field strength, and the size of
the gap between the plasma boundary and the
conducting walls of the containment vessel. Since
the plasma current channel expands during kink
instabilities, these constitute a simple but very direct
route to an undesirable disruption of the discharge,
should the current column come into contact with a
wall of the containment vessel.

In practice, external kink instabilities can be
avoided by not operating the discharge with g(a)
close to a low-order rational number, such as, % 2, or
3, and/or by having a conducting wall sufficiently
close to the plasma column. Kink instabilities are
also predicted to occur when g(r) < 1. For this reason,
internal kinks are ubiquitous in tokamaks and are
thought to be related to the sawtooth phenomenon.
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This refers to quasi-periodic relaxation oscillations
of the central temperature of the tokamak that, in
diagnostic recordings, produce a jagged trace remi-
niscent of the teeth on a saw.

Since internal kink perturbations usually do not
pierce the plasma boundary or bring the current
channel into contact with the vessel wall, they are
usually not directly associated with disruptions.
Internal kinks do, however, affect the performance
of tokamaks by limiting the central plasma pressure
that can be achieved.

The dynamics of energy release in resonant kinks
or tearing modes are determined by nonideal effects
(i.e., by effects that break the Alfvén frozen flux
constraint). Typical of such nonideal effects is plasma
resistivity 1. However, it is important to keep in mind
that the free energy source for tearing modes is the
same as that for kinks, namely the current gradient.
Nonideal effects, such as resistivity, are only the
triggers of the instability and are significant only in a
narrow diffusion layer, surrounding the resonant
surface, in which reconnection occurs. Just as kinks
tend to form helical secondary equilibria, so do
tearing modes. However, since tearing modes are
resonant, reconnection occurs, resulting in the
formation of magnetic islands in the region near
the resonant surface, as shown in Fig. 24. These
islands may be thought of as consequences of current
filamentation and concomitant reconnection. Mag-
netic islands are MHD analogues of Kelvin cat’s eyes
or nonlinear critical layers, which form as a
consequence of certain hydrodynamic shear flow
instabilities. When magnetic islands grow to a size at
which they touch the wall, or when magnetic islands
at neighboring resonant surfaces overlap (resulting in
stochastic field lines in a region that pierces the
surface of the plasma), MHD turbulence is gener-
ated, resulting in turbulent transport, rapid heat loss,
and a sudden expansion of the current channel.
When the current strikes the wall, a large impurity
influx commences, and this raises the effective

FIGURE 24 The formation of magnetic islands. (A) Initial
state; the neutral line is shown dashed. (B) Field configuration after
magnetic islands have formed around the neutral line.
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plasma resistivity, which in turn quenches the
current, creating a disruption. For this reason,
tearing mode dynamics and stability are of great
interest to MFE.

A final comment on tearing instabilities concerns
their rate of growth. Ideal MHD instabilities grow
exponentially, on Alfvénic (e.g., kink) or sonic (e.g.,
ballooning) timescales. Tearing modes initially grow
at a rate proportional to (r;lr,'3)1/5. where 74 and 7,
are the Alfvén and (global) resistive diffusion times
defined in Sections 3 and 4. Since 14 «71,, tearing
modes grow more slowly than ideal MHD modes.
However, linear growth rates are of little relevance
to the dynamics of the tearing mode since magnetic
islands rapidly enter a nonlinear phase of algebraic
growth. This occurs when the width of the magnetic
island exceeds the width of the (narrow) reconnec-
tion layer of the linear theory. A major current
research topic in tokamak MHD concerns the
nonlinear growth and saturation of magnetic
islands.

5.4 Interplay of MHD Instabilities and
Tokamak Operation

Considerations of turbulent transport and MHD
stability define the possible viable operating space of
present-day tokamaks. The MFE program has sought
to exploit understanding of MHD stability limits,
etc. in order to expand and optimize the tokamak
operating space. The tactics and tricks used include

1. Shaping the cross section to increase f limits:
The goal here is to design a shape that increases the
relative fraction of a magnetic field line that lies in
the region of favorable curvature.

2. Programming current and heating evolution in
order to avoid conditions that are prone to the onset
of disruptions (i.e., in order to improve ideal stability
limits).

3. Controlling current profiles by driving currents
locally through the injection of radiofrequency
waves.

4. Using active feedback, including current drive,
to mitigate or retard the growth of undesirable
perturbations.

5. Driving plasma rotation by neutral beam injec-
tion in order to stabilize certain MHD instabilities.

A recurrent theme in fusion research is the often
rather diabolical ways in which various instabilities
conspire to limit the operating space and tokamak
performance. As mentioned previously, eliminating

microinstabilities using transport barriers enhances
confinement times but opens the door to pressure-
driven instabilities (i.e., interchange ballooning
modes). Operating at high current is good for energy
confinement and helps limit pressure-driven balloon-
ing modes, but it increases the possibility of
disruption due to kink-tearing modes. Employing
low currents improves stability but often degrades
confinement and fails to achieve maximal machine
performance. The list is long and continues to grow.
These numerous and accumulating questions and
concerns ensure that both the theoretical and
experimental MHD of tokamaks and other MFE
devices will remain vital and vibrant research areas
well into the 21st century.

5.5 The Future of MHD in MFE

There is little doubt that in the near future the focus
of the world MFE program will be the International
Thermonuclear Experimental Reactor (ITER), a
tokamak shown schematically in Fig. 25. The ITER
program is an international project involving the
collaboration of many countries. Its primary mission
is to study plasma dynamics under conditions of a
fusion burn, in which the main source of plasma
heating is from collisional friction between the alpha
particles produced by the thermonuclear reactions
and the electrons.

A burning plasma is different from the standard
electron-ion plasma discussed so far in (at least) two
very important respects. First, a burning plasma
contains a very substantial population of high-energy
alpha particles. This situation is inconsistent with the
foundations of MHD, which treats both ions and
electrons together as a single fluid. The absolutely
minimal viable theory of the dynamics of a burning
plasma is a two-component description involving an
MHD-like model of the bulk plasma and a kinetic
equation for the energetic alphas; these have a
velocity distribution that is far from Maxwellian
and cannot therefore be adequately modeled by fluid
equations. The two components of the model couple
to each other electrodynamically.

The second important distinction between a
burning plasma and a standard plasma is that high-
energy alpha particles can resonate with plasma
waves of higher frequency than can bulk particles,
thus encouraging a new class of instabilities. Of
particular importance among these are toroidal
Alfvén eigenmodes (TAEs), which can be destabilized
by resonance with alphas and so relax the alpha
particle density and temperature gradients. TAEs are
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FIGURE 25 The tokamak ITER. To appreciate the scale of the device, see the figure of a person near the bottom.

critical to MFE since excessive instability-induced
alpha losses can prevent, or prematurely quench,
ignition. TAEs and other energetic particle-driven
instabilities have been a topic of great interest in
theoretical, computational, and experimental MFE
research, with beams of externally injected high-
energy particles used to simulate the effects of the
alphas. Clearly, research in alpha particle-driven
instabilities will be a major part of the ITER
program.

Traditional MHD problems will be major foci of
the ITER program as well. A key topic will certainly
be feedback stabilization of instabilities, with the aim
of avoiding or mitigating disruptions. Note that the
disruption of a burning plasma could cause very
significant damage to the ITER confinement vessel.
Also, any successful fusion power plant must be
effectively disruption free. Because the ITER plasma
will be very hot, with concomitantly infrequent
collisions between particles in the plasma, the

traditional MHD model will need extension in order
to include dynamical effects relevant to the ITER
plasma. Such effects include possible nonideal,
kinetic modifications to MHD as well as transport
coefficients that describe dissipation due to micro-
turbulence rather than collisions. Theoretical and
computational research on such extended MHD
models is being pursued vigorously throughout the
world today. In addition, it is anticipated that
subgrid scale models of turbulent transport will be
an integral component of extended MHD models in
the future.
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