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E 
2 2

2m

n1

Lx
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n2

Ly
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n3

Lz







2














 

   Lx  L , 
    
Ly  Lz  2L . Let 

    

2 2

8mL2 E0 . Then 
  
E  E0 4n1

2  n2
2  n3

2 . Choose the quantum 

numbers as follows: 
 

    n1      n2      n3  
    

E

E0
 

  

1 1 1 6  ground state 
1 2 1 9 * first two excited states 
1 1 2 9 *  
2 1 1 18   
1 2 2 12 * next excited state 
2 1 2 21   
2 2 1 21   
2 2 2 24   
1 1 3 14 * next two excited states 
1 3 1 14 *  

 
 Therefore the first 6 states are   111 ,   121 ,   112 ,   122 ,   113 , and   131  with relative energies 

    

E

E0
6 , 9, 9, 12, 14, 14. First and third excited states are doubly degenerate. 

 
8-2 (a)     n1 1 ,     n2 1 ,     n3 1   

 

    

E0 
322

2mL2 
3h2

8mL2 
3 6.626  1034  Js 2

8 9.11 1031  kg 2 1010  m 2
 4.52  1018  J  28.2 eV  

 
(b)     n1  2 ,     n2 1 ,     n3 1  or 
     n1 1 ,     n2 2 ,     n3 1  or 
     n1 1 ,     n2  1 ,     n3 2  

 E1 
6h2

8mL2  2E0  56.4 eV  

8-3     n
2  11  

 

(a) 
    
E 

2 2

2mL2







n2 

11

2

2 2

mL2







 

 
(b)     n1      n2      n3   
 1 1 3  
 1 3 1 3-fold degenerate 
 3 1 1  
 

(c) 
    
 113  A sin

 x

L







sin
 y

L







sin
3 z

L







 



 

    

 131  A sin
 x

L







sin
3 y

L







sin
 z

L







 311  A sin
3 x

L







sin
 y

L







sin
 z

L







 

 
8-4 (a)      x, y  1 x  2 y . In the two-dimensional case,     A sin k1 x  sin k2 y  where 

    
k1 

n1
L

 and 
    
k2 

n2
L

. 

 

(b) 
    
E 

2 2 n1
2  n2

2 
2mL2  

 If we let 
    
E0 

22

mL2 , then the energy levels are: 

 
     n1      n2  

    

E

E0
 

  

 1 1 1    11  
 1 2 

  

5

2
    12  

           doubly degenerate 
 2 1 

  

5

2
    21  

 2 2 4    22  
 
8-5 (a)     n1  n2  n3 1  and 

    

E111 
3h2

8mL2 
3 6.63  1034 2

8 1.67  1027 4 1028  2.47  1013  J  1.54 MeV  

 

(b) States 211, 121, 112 have the same energy and 
  
E 

22 12  12 h2

8mL2  2E111  3.08 MeV  

and states 221, 122, 212 have the energy 
  
E 

22  22  12 h2

8mL2  3E111  4.63 MeV . 

 
(c) Both states are threefold degenerate. 

 
8-6 There is no force on a free particle, so that  U r  is a constant which, for simplicity, we take to 

be zero. Substituting  r, t  1 x  2 y  3 z  t  into Schrödinger’s equation with     U r   0  

gives 
      

2

2m

2

x2 
2

y 2 
2

z 2







 r, t  i


t

 r, t . Upon dividing through by 

     1 x  2 y  3 z  t  we obtain 
  

2

2m

1 x 
 1 x  

2 y 
 2 y 

3 z 
 3 z 














i  t 
 t  . Each term in this 

equation is a function of one variable only. Since the variables x, y, z, t are all independent, 
each term, by itself, must be constant, an observation leads to the four separate equations 

 



124 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS 

 with =
=

2 2
2 2

2mEk  and =
=

2 3
3 2

2mEk . The equation for φ  can be integrated once to get 

( ) ωφ γ −= i tt e  with ω =
=
E  and γ  another indeterminate coefficient. Since the energy operator 

is [ ]
∂

=
∂
=E i

t
 and ( )φ φ∂

=
∂

=i E
t

 energy is sharp at the value E in this state. Also, since 

 ∂
  = −    ∂ 

=
2

2 2
2xp

x
 and ( )ψ ψ

 ∂
− = ∂ 
= =

2
22

1 1 12 k
x

 the magnitude of momentum in the x 

direction is sharp at the value = 1k . Similarly, the magnitude of momentum in the y and z 
directions are sharp at the values = 2k  and = 3k , respectively. (The sign of momentum also 

will be sharp here if the mixing coefficients are chosen in the ratios α
β

=1

1
i , and so on). 

 
8-7 The stationary states for a particle in a cubic box are, from Equation 8.10 
 

( ) ( ) ( ) ( ) −Ψ = ≤ ≤
=

=
1 2 3, , , sin sin sin 0 , ,

0 elsewhere

iEtx y z t A k x k y k z e x y x L  

 

 where π
= 1

1
nk

L
, etc. Since Ψ  is nonzero only for < <0 x L , and so on, the normalization 

condition reduces to an integral over the volume of a cube with one corner at the origin: 
 

( ) ( ) ( ) ( ) 
= Ψ =  

 
∫ ∫ ∫ ∫ ∫ ∫

2 2 2 2 2
1 2 3

0 0 0
1 , sin sin sin

L L L
dx dy dz t A k x dx k y dy k z dzr  

 

 Using θ θ= −22sin 1 cos 2  gives ( ) ( )= −∫ 2
1 1

10 0

1sin sin 2
2 4

LL Lk x dx k x
k

. But π=1 1k L n , so the last 

term on the right is zero. The same result is obtained for the integrations over y and z. Thus, 

normalization requires ( )=
3

21
2
LA  or ( )=

3 22A
L

 for any of the stationary states. Allowing 

the edge lengths to be different at 1L , 2L , and 3L  requires only that 3L  be replaced by the 

box volume 1 2 3L L L  in the final result: ( )      = = =      
      

1 2 1 2 1 2

1 2 3 1 2 3

2 2 2 8 8A
L L L L L L V

 where 

= 1 2 3V L L L  is the volume of the box. This follows because it is still true that the wave must 
vanish at the walls of the box, so that π=1 1 1k L n , and so on. 

 
8-8 Inside the box the electron is free, and so has momentum and energy given by the de Broglie 

relations = =p k  and ω= =E  with ( )= +
1 222 2 4E c m cp  for this, the relativistic case. Here 

( )= 1 2 3, ,k k kk  is the wave vector whose components 1k , 2k , and 3k  are wavenumbers 
along each of three mutually perpendicular axes. In order for the wave to vanish at the walls, 
the box must contain an integral number of half-wavelengths in each direction. Since 

πλ =1
1

2
k

 and so on, this gives 
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λ π

λ π

λ π

 = = 
 
 = = 
 
 = = 
 

1 1
1 1

2 2
2 2

3 3
3 3

or
2

or
2

or
2

nL n k
L

nL n k
L

nL n k
L

 

 

 Thus, { } { }π = = + + = + + 
 
=

= =
2

2 2 2 2 2 2 2 2 2
1 2 3 1 2 3k k k n n n

L
p k  and the allowed energies are 

{ } ( )π  = + + +    

= 1 22 22 2 2 2
1 2 3

c
n n n mc

L
. For the ground state = = =1 2 3 1n n n . For an electron 

confined to = 10 fmL , we use = 20.511 MeVm c  and == 197.3 MeV fmc  to get 

( )( )
( )

π  = + =    

1 22
2197.3 MeV fm3 0.511 MeV 107 MeV

10 fm
E . 

 
8-9 ( )[ ]= + =1 21L l l  

 

( )[ ]

( )
( ) ( )

( )
( )

π

π

−
−

−

−

 ×
× = +  

 

×
+ = = × ≈ = +

×

34
34 1 2

234 2
1

234

6.63 10  Js4.714 10  Js 1
2

4.714 10 2
1 1.996 10 20 4 4 1

6.63 10

l l

l l
 

 so = 4l . 
 
8-10 = 4n , = 3l , and = 3lm . 
 

(a) ( )[ ] ( )[ ] −= + = + = = ×= = = 341 2 1 21 3 3 1 2 3 3.65 10  JsL l l  
 
(b) −= = = ×= = 343 3.16 10  Jsz lL m  

 
8-11 (a) ( )[ ]= + =1 21L l l ; ( )[ ]× = + =31 1 24.83 10  Js 1l l , so 

 

( )
( )

( )
−

×
+ = ≈ × ≈

×

≈ ×

231
22 65 2

234

65

4.83 10  Js
4.58 10

1.055 10  Js

4.58 10

l l l

l

 

 

(b) With ≈ =L l  we get ∆ ≈ =L  and −∆
≈ = × 661 2.18 10L

L l
 

 



  


2

2m

1 x 
 1 x 






 E1


2

2m

2 x 
 2 x 






E2


2

2m

3 x 
 3 x 






E3

i
 t 
 t 












 E

 

 
 This is subject to the condition that   E1 E2  E3  E . The equation for    1  can be rearranged 

as 
    

d2 1

dx2  
2mE1

2





 1 x , whereupon it is evident the solutions are sinusoidal 

     1 x  1 sin k1 x  1 cos k1 x  with 
  
k1

2 
2mE1

2 . However, the mixing coefficients   1  and  1  

are indeterminate from this analysis. Similarly, we find 
 

    

 2 y 2 sin k2 y  2 cos k2 y 
 3 z  3 sin k3 z  3 cos k3z   

 

 with 
    
k2

2 
2mE2

2  and 
    
k3

2 
2mE3

2 . The equation for   can be integrated once to get 

   t    ei t  with 
  
 

E


 and   another indeterminate coefficient. Since the energy operator 

is 
  
E  i


t

 and 
  
i


t





 E  energy is sharp at the value E in this state. Also, since 

    
px

2  2 2

x2







 and 

    
2 2

x2







 1  k1 2 1  the magnitude of momentum in the x direction 

is sharp at the value     k1 . Similarly, the magnitude of momentum in the y and z directions are 
sharp at the values     k2  and   k3 , respectively. (The sign of momentum also will be sharp here 

if the mixing coefficients are chosen in the ratios 
  

1

1
 i , and so on). 

 
8-10     n  4 ,     l  3 , and     ml 3 . 
 

(a)     L  l l  1  1 2
  3 3  1  1 2

  2 3  3.65  1034  Js  
 
(b)     Lz  ml 3  3.16  1034  Js  

 



8-12 
    
 r   1








1 2
1

a0







3 2

er a0  

 
 (a) 

r

(r)

 
 

(b) The probability of finding the electron in a volume element dV is given by     
2

dV . 
Since the wave function has spherical symmetry, the volume element dV is identified 
here with the volume of a spherical shell of radius r,   dV  4 r 2dr . The probability of 
finding the electron between r and  r  dr  (that is, within the spherical shell) is 

    P  2
dV  4 r2 2

dr . 
 

 (c) 

r

P

r = a0  
 

(d) 
    
 2

dV  4  2
r2 dr  4

1








1

a0
3







e2r a 0r 2dr

0



 
4

a0
3







e2r a0 r2 dr

0



  

 
 Integrating by parts, or using a table of integrals, gives  
 

    

 2
dV 

4

a0
3







2

a0

2







3
2

a0







3











 1 . 

 

(e) 
    
P  4  2

r2 dr
r1

r2

  where 
  
r1 

a0

2
 and 

  
r2 

3a0

2
 

 



    

P  4

a0
3







r2e2r a 0 dr

r1

r2

 let z  2r

a0


1

2
z2ez dz

1

3



  1

2
z 2  2z  2 ez

1

3
integrating by parts 

  17

2
e3  5

2
e1 0.496

 

 
8-13     Z 2  for   He   

 
(a) For     n  3 , l can have the values of 0, 1, 2 
 

  

l  0  ml  0

l 1  ml  1, 0, 1

l  2  ml  2, 1, 0,  1,  2

 

 

(b) All states have energy 
  
E3 

Z 2

32 13.6 eV  

 

  E3  6.04 eV . 
 
8-14     Z 3  for   Li2  

 
(a)     n 1  l  0 ml 0  
     n  2  l  0  ml 0  
 and     l 1  ml  1, 0, 1  

(b) For     n 1 , 
    
E1  

32

12







13.6   122.4 eV  

 For     n  2 , 
    
E2  

32

22







13.6   30.6 eV  

 
8-16 For a d state,   l  2 . Thus,   ml  can take on values –2, –1, 0, 1, 2. Since  Lz  ml ,   Lz  can be 

  2 ,   , and zero. 
 
8-17 (a) For a d state,     l  2  

 

    
L  l l 1  1 2

  6 1 2
1.0551034  Js 2.58 1034  Js  

 
(b) For an f state,     l  3  
 

    
L  l l  1  1 2

  12 1 2
1.055  1034  Js  3.65  1034  Js  

 
8-18 The state is 6g 

 
(a)     n  6  
 



(b) 
    
En  

13.6 eV

n2    
  
E6 

13.6

62  eV  0.378 eV  

 
(c) For a g-state,     l  4  
 

    L  l l 1  1 2
  4  5 1 2

  20  4.47  
 
(d)   ml  can be –4, –3, –2, –1, 0, 1, 2, 3, or 4 

   Lz  ml ; 
    

cos  
Lz

L


ml

l l 1  1 2  
ml

20
  

 

    

ml 4 3 2 1 0 1 2 3 4

Lz 4 3 2  0  2 3 4

 153.4 132.1 116.6 102.9 90 77.1 63.4 47.9 26.6
 

 

8-21 (a) 
    

 2 s r   1

4 2 1 2

1

a0







3 2

2 
r

a0






er 2a0 . At   r  a0  0.529 1010  m  we find 

 

    

 2 s a0  1

4 2 1 2

1

a0








3 2

2 1 e1 2  0.380  1

a0








3 2

 0.380  1

0.529  1010  m







3 2

9.88 1014  m 3 2

 

 

(b) 
    
 2s a0 2  9.88 1014  m 3 2 2 9.75 1029  m 3  

 

(c) Using the result to part (b), we get   P2 s a0  4a0
2 2 s a0 2 3.43 1010  m 1 . 

 

8-22 
    
R2p r   Are r 2a 0  where 

    

A 
1

2 6 1 2
a0

5 2  

 

    

P r   r2 R2 p
2 r   A2r 4er a0

r  rP r dr
0



  A2 r 5er a0 dr
0



  A2 a0
6 5! 5a0 2.645 Å

 

 




