
PHYS 273, Winter 2016, Homework 4

Due date: Thursday, February 18th, 2016

1. Information capacity of genetic regulatory elements. A gene regulatory module
can be viewed as a device that computes an output, given an input that depends on
the internal or external environment of the cell. For instance, the input could be the
physical concentration c of a transcription factor (TF) that regulates the expression
g(c) of a gene. The intrinsic noise in gene expression imposes fundamental limits on the
number of distinct environmental states that the cell can distinguish. In this problem,
we will compute the information capacity of a regulatory module by treating it as a
noisy, memoryless communication channel.

Experiments yield the noisy input-output relation p(g|c), typically in the form of
mean gene expression levels ḡ(c) =

∫
gp(g|c)dg and the noise σ2

g(c) =
∫

(g− ḡ)2p(g|c)dg.
The distribution of input concentrations pTF(c) is unknown; to compute the capacity, we
require the optimal input distribution p∗TF(c) that maximizes the mutual information:

I(c; g) =

∫
dc pTF(c)

∫
dg p(g|c) log2 p(g|c)︸ ︷︷ ︸

=I

(1)

−
∫
dc pTF(c)

∫
dg p(g|c) log2 pexp(g)︸ ︷︷ ︸

=II

,

where pexp(g) =
∫
dg p(g|c)pTF(c). We will assume that the input-output relation is a

Gaussian distribution,

p(g|c) =
1√

2πσ2
g(c)

exp

(
− [g − ḡ(c)]2

2σ2
g(c)

)
, (2)

and calculate the capacity in the small-noise approximation σg(c) � ḡ(c). You may
proceed as follows:

a. Calculate the integral I explicity. To compute integral II, the log2 pexp(g) term can be
approximated for small noise by expanding it about the mean ḡ and retaining terms
to the zeroth order i.e., show that 〈log2 pexp(g)〉p(g|c) ≈ log2 pexp(ḡ). (Optional:
show that the first order term is zero and the second order term is 1

2
σ2
gf
′′(ḡ), where

f(g) = log2 pexp(g).)

b. The integral over the input distribution pTF(c) can be rewritten in terms of the
distribution of mean expression levels p̂exp(ḡ) using pTF(c)dc = p̂exp(ḡ)dḡ. Assume
that for small noise, pexp(ḡ) = p̂exp(ḡ), and verify that you are left with

I(c; g) =−
∫
dḡ p̂exp(ḡ) log2[

√
2πeσg(c)p̂exp(ḡ)] (3)
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c. Set up a variational principle to maximize I(c; g) with respect to p̂exp(ḡ) while en-
suring its normalization. Compute the optimal solution p̂∗exp(ḡ) and get an explicit
result for the capacity.

2. Information rate of a grid cell. Grid cells in the rat medial entorhinal cortex fire
rapidly whenever the rat is at particular locations in its environment. In typical labora-
tory settings, the firing field of each grid cell is a collection of localized regions forming
a grid-like structure. We will calculate the information that the firing pattern of a grid
cell yields about its location in a very simplified, idealized setting.

We shall assume a simple Poisson process as a model for the spiking activity of the
grid cells. Let the firing rate of a grid cell when the rat is inside and outside the firing
field be rf and r0 respectively. We will ignore the grid-like pattern of the firing field
and simply assume that the firing field of the grid cell covers a fraction p of the full
environment. Thus, the probability that the rat is on the firing field of a particular
grid cell at any moment is p. Calculate the rate of information gain İ(x; s) that the
spiking activity s yields about the rat’s location x. In the limit of rf � r0, show that
the information gain is maximized when p ≈ 1/e. (Hint: To calculate the rate of
information gain, calculate the mutual information between x and s in a small time
interval dt and divide this quantity by dt).

3. Second law of thermodynamics. In statistical mechanics, we define the thermody-
namic entropy as the logarithm of the number of microstates, corresponding exactly
to the case of a uniform distribution for Shannon entropy. Is there an analog for the
second law of thermodynamics in information theory?

Consider an isolated system modeled as a Markov chain with transitions obeying the
physical laws that govern the system. We will show that the entropy of any distribution
on the states of the Markov chain increases monotonically if the stationary distribution
of the process is uniform. Let p(xn) and q(xn) be any two distributions on the state
space of the Markov chain and T (xn+1|xn) be the probability transition function. We
have p(xn, xn+1) = p(xn)T (xn+1|xn) and q(xn, xn+1) = q(xn)T (xn+1|xn). (a) Show that

D(p(xn, xn+1)||q(xn, xn+1)) = D(p(xn)||q(xn)) +D(p(xn+1|xn)||q(xn+1|xn)) (4)

= D(p(xn+1)||q(xn+1)) +D(p(xn|xn+1)||q(xn|xn+1)) (5)

where D(p||q) is the Kullback-Leibler divergence or relative entropy between distribu-
tions p and q. Recall that the relative entropy is a measure of the distance between two
distributions. (b) Using p(xn+1|xn) = q(xn+1|xn) = T (xn+1|xn) and the non-negativity
of the relative entropy function conclude that

D(p(xn)||q(xn)) ≥ D(p(xn+1)||q(xn+1)) (6)

The above inequality shows that the distance between any two distributions is non-
increasing with time for any Markov chain. Now suppose that the stationary distribu-
tion µ(x) of the Markov chain (if it exists) is uniform. (c) Set q(xn) = µ(x) and use
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D(p(xn)||µ) = log Ω −H(p(xn)) (where Ω is the total number of states) to show that
the entropy is always a non-decreasing quantity with time for any initial distribution.
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