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1 Derivations

The setup for the Rutherford scattering calculation is shown in Figure 1.

Figure 1: A diagram of the parame-

ters in the scattering experiment

We have an incoming particle, for example an α,

which is going to deflect off the nucleus of an atom in

the material. The impact parameter b is the perpen-

dicular distance from the nucleus, and the scattering

angle θ is the final angle at which the particle moves

away after ‘colliding’ with the nucleus. We are in-

terested in relating the scattering angle to the impact

parameter. We will use a simplifying assumption that

the nucleus is so heavy that it doesn’t move: we fix

it’s position to be at the origin.

We can calculate the change in the y momentum of

the incoming particle as

∆py =

∞∫
−∞

dt Fy(t) (1.1)

where Fy(t) is the force between the nucleus and the particle. In this case, the force is the

repulsive Coulomb force given by

~F (r) =
qQ

4πε0r2
r̂ ⇒ Fy(r) =

qQ

4πε0r2
sinφ (1.2)

where q and Q are the charges of the incoming particle and the nucleus respectively and φ

is the angular position of the particle. We can write also write these as q = ze and Q = Ze

since the charges must be multiples of the fundamental electron charge e. Therefore, we

have

py =

t=∞∫
t=−∞

dt
zZe2

4πε0r(t)2
sinφ(t) (1.3)
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where I emphasize that the distance and position are both functions of time. Lets invert

the relation φ = φ(t) so that we have t = t(φ). So, we are expressing the time as a function

of angular position, rather than expressing the angle as a function of time. Carry out this

change of variables in the integral: dt(φ) = dt
dφ
dφ so

py =

θ∫
π

zZe2

4πε0r(φ)2
sinφ

dt

dφ
dφ (1.4)

The new limits of integration reflect the fact that at time t = −∞, the angular position of

the particle was π, and at time t = +∞ the particle has left at an angle θ. The factor of r2

in the denominator is problematic since we can’t integrate an unknown function of φ. We

can eliminate it using conservation of angular momentum. The angular momentum is

I = mωr2 = mr2
dφ

dt
(1.5)

The statement that the angular momentum is conserved says the angular momentum at time

t is equal to the angular momentum at time −∞ which we can see is just −mv0b (the sign

just reflects that the ang. mom. is clockwise). Hence,

dt

dφ
=

(
dφ

dt

)−1
= −r2/v0b (1.6)

Plug this back into 1.4 to obtain an integral that we can do

py = −
θ∫

π

zZe2

4πε0v0b
sinφdφ

=
zZe2

4πε0v0b
cosφ

∣∣∣∣∞
π

p sin θ =
zZe2

4πε0v0b
(1 + cos θ)

(1.7)

Rearrange slightly to obtain:

b(θ) =
zZe2

4πε0mv20

1 + cos θ

sin θ
(1.8)

where we also used that |p| = mv0 which we can get from conservation of energy. If you type
1+cos θ
sin θ

into WolframAlpha, you will see that it is indeed equal to cot θ
2
. So our (intermediate)

final answer is:

b(θ) =
zZe2

4πε0mv20
cot

θ

2
(1.9)

Let’s define a quantity called the cross section dσ = 2πb db. Evidently, this is the differential

area element of a circular shell of radius b (hence, cross section). If we multiply by a flux
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Figure 2: The shape of the function b(θ) from θ = 0 to π.

of incoming particles I0 (flux = particles/area) then this gives the number of particles that

pass between radius b and b+ db. Schematically,

cross section =
number of scattered particles per unit area per time

incident flux
(1.10)

We can use our formula 1.9 to make this into a statement about the number of particles that

scatter through the range of angles θ to θ + dθ by using the chain rule: db = db
dθ
dθ. So we

need to take the derivative db/dθ, and multiply by 2πb. This, as well as some manipulations

involving trig id’s are left to the reader. The final result is

dσ =

(
zZe2

8πε0mv20

)2
1

sin4 θ
2

dΩ (1.11)

where dΩ is the differential solid angle 2π sin θ dθ. Now let’s try to understand what all of

this means.

2 What have we learned?

Now we need to interpret the information contained in these results. Equation 1.9 relates

the impact parameter to the scattering angle. However in an experiment, there is not really

a way to know what the impact parameter is going to be. So as it stands, the equation

doesn’t tell us a whole lot. However there is still something we can learn from it: by looking

at the behavior of the function (2) we see that a large scattering angle corresponds to a small

impact parameter, and vice versa. In fact to get to a scattering angle of zero requires that

the impact parameter b be infinity. This will help us interpret a puzzling issue we will soon

encounter.
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Figure 3: Illustration of the differential cross section

Moving on to the cross section: what is the quantity dσ/dΩ physically? It is the number of

particles scattered into direction (θ, φ) per unit time per unit solid angle divided by incident

flux. See Figure 3 for a helpful diagram which I stole from wikipedia [1]. Let’s try to break

this down step by step in terms of how we got there. We started from dσ = 2πb db which is

the area available to scatter at impact parameters between b and b+ db. We then expressed

it in terms of the scattering angle θ, which gave us the area available to scatter between

angles θ and θ + dθ. Finally we wrote it in terms of the differential solid angle dΩ. So if we

multiply by an incident flux I0, it gives us the number of particles that scatter through that

little solid angle. In other words, the number of scattered particles per solid angle per time

as a function of the scattering angle Is(θ) is given by I0dσ/dΩ.

Let’s confront an apparent issue in the equation we derived 1.11. As the angle becomes

small, the cross section blows up and tends toward infinity. However we can resolve this

paradox by appealing to the relation between scattering angle and impact parameter. In an

experimental setup, we might be shining alpha particles at a sheet of gold, for instance. In

that case, there is a maximum value that the impact parameter can take, which is half the

spacing between the nuclei of the atoms. So we are protected from the problem due to our

inability to look at very small angles. A more general resolution of this issue will require

significantly more complex physics, so we leave it for the future.

If you want to read more, another good discussion of scattering and cross section can be

found in the first several pages of http://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec20-21_

compressed.pdf
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