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MORE CHAPTER 7, #1

Multielectron Atoms

The energy levels and optical spectra are much more complicated for atoms with 
more than one electron in the outer shell. In this section we will discuss qualitatively 
the energy levels for helium and the alkali earths, atoms in the second column of the 
periodic table. These atoms all consist of a core of electrons plus two electrons in an 
outer s shell. Most of the observed spectra can be understood in terms of energy levels 
corresponding to the raising of one of these electrons to a shell or subshell of higher 
energy. These are called normal levels. Energy levels involving excitation of both 
outer electrons are called anomalous and will be discussed only briefly here.

The model used to calculate the energy levels for these atoms consists of two 
identical electrons moving in a potential due to the nucleus and the core electrons. 
The simplest such atom is helium, but beryllium, magnesium, calcium, strontium, 
barium, and radium are all very similar. Let us consider magnesium (Z � 12) as a 

specific example. The ground-state elec-
tron configuration is (1s2 2s2 2p6)3s2. In 
the ground state both outer electrons 
have the same space quantum numbers 1n = 3, / = 0, m/ = 02, so the resul-
tant spin must be zero. When one of the 
electrons is excited to a higher energy 
state such as 3p, the spatial quantum 
numbers are no longer the same, so the 
resultant total spin need not be zero. For 
example, the resultant spin S for two 
particles with spin s = 1

2 can be either 
S � 0 (antiparallel spins) or S � 1 (par-
allel spins). If S � 0, the total angular 
momentum of the atom is due entirely to 
the orbital angular momentum of the 
excited electron, so j = /. The S � 0 
states are called singlet states. If S � 1, 
there are three possible values for the 
total angular momentum number j cor-
responding to the three possible orienta-
tions of S relative to L: j = / + 1, 
j = /, or j = / - 1 (except if / = 0, 
in which case j = / is the only possibil-
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FIGURE 7-24 Singlet and triplet levels for helium. The splitting of the triplet 
levels is too small to show on the scale of this diagram. Notice that no 
transitions are shown between the two sets of levels, corresponding to a 
selection rule �S = 0.
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ity). Because of the spin-orbit effect, these three states have slightly different ener-
gies; that is, there is fine-structure splitting. The states with S � 1 are therefore called 
triplet states. Thus, there are two sets of energy levels and two sets of spectral lines. A 
few of the lowest energy levels and allowed transitions in each set for helium are 
shown in Figure 7-24.

Figure 7-25 is an energy-level diagram for magnesium with observed transitions 
indicated. On the scale of this diagram, as in Figure 7-24, the fine-structure splitting 
of the triplet states is not evident. Note that all but one of the transitions shown for 
magnesium follow the selection rule �S � 0; that is, the triplet and singlet states don’t 
mix. The one transition indicated (from the triplet state 3s3p to the ground state) that 
does not obey this selection rule is called an intercombination line. Note that in the 
absence of intercombination lines, there exist certain excited states from which the 
atom cannot readily decay. The 21S0 and 23S1 states of helium in Figure 7-24 are two 
examples. Such states are called metastable states. Their existence is critical to the 
operation of lasers, as we will discuss further in Chapter 9. We will return to the mat-
ter of intercombination lines in a moment after first considering the energy difference 
between the singlet and triplet states.

If you examine Figure 7-25 closely, you will see that the singlet energy levels 
are higher than the triplet energy levels with the same electron configuration. For 
example, consider the states that have one electron in the 3p state. If it were not for 
the electrostatic interaction of the two electrons, the singlet state 1P1 (j � 1 since 
S � 0 and / = 1) and the triplet states 3Pj (with J � 2, 1, or 0 for / = 1 and S � 1) 
would have the same energy, except for the small fine-structure splitting. Evidently 
the electrostatic interaction energy of the two electrons is considerably greater in the 
singlet states than in the triplet states.

The cause of this energy difference is a rather subtle quantum-mechanical effect 
that has to do with the symmetry requirements on the total wave function for two 
identical particles. In Section 4-7 we wrote the wave function for two particles in one 
dimension, with one in state n and the other in state m, as

FIGURE 7-25 Energy-level 
diagram for the two-electron atom 
magnesium. On this scale the fine-
structure separation of the triplet 
levels is not evident. Note that the 
energy of each singlet level is 
greater than that of the 
corresponding triplet levels. This is 
because the average separation of 
the outer electrons is greater in the 
triplet states than in the singlet 
states, as indicated in Figure 7-26.
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 �1x1, x22 = C3�n1x12�m1x22 { �n1x22�m1x12 4  7-66

where the plus sign gives a function that is symmetric 
on exchange of the particles and the minus sign one that 
is antisymmetric. We stated earlier the exclusion-princi-
ple requirement that electrons have antisymmetric wave 
functions, so we must now include spin in the wave 
function. The total wave function for two particles can 
be written as a product of an ordinary space part �(x) 
given by Equation 7-66 and a part that describes the 
spin �. The total wave function including spin is then 
equal to ��. The spin part � of the wave function turns 
out to be symmetric for the S � 1 triplet state and anti-
symmetric for the S � 0 singlet state. The space part � 
of the wave function must therefore be antisymmetric in 
the triplet state and symmetric in the singlet state so that 
the total wave function is antisymmetric. We note from 
Equation 7-66 that if x1 � x2, the antisymmetric space 
wave function is identically zero. This is an example of 
a general result illustrated in Figure 7-26 that, in an 
antisymmetric space state, the particles tend to be far-
ther apart than in a symmetric space state. Since the 
interaction energy due to the electrostatic repulsion is 
positive and varies inversely as the separation distance, 
the energy is greater when the electrons are close 

together in the space-symmetric singlet state S � 0 than it is when the electrons are 
relatively far apart in the space-antisymmetric triplet state. The energy difference is of 
the order of 1 eV, which is much greater than for the fine-structure splitting.16

The symmetry of the wave functions also explains the selection rule �S � 0 that 
forbids transitions between the singlet and triplet states. As described in the More sec-
tion Transitions Between Energy States on the home page for Chapter 6, an oscillat-
ing charge distribution is the origin of a transition between two states �m and �n. In 
the case of electric dipole radiation, the time-varying dipole moment of a single elec-
tron was given by

 q8x9 = 2qab cos �nm  t1�n  x�m  dx + stationary terms 

For two-electron states the matrix element 1�n  x �m dx becomes 1�n1x1 + x22 �m 

dx. As we concluded above, the space part of the total wave function is anti symmetric 
for the triplet states and symmetric for the singlet states. Thus, for a triplet-to-singlet 
transition, �m is an antisymmetric function �a and �n is a symmetric function �s and 
the time-varying part of the equation becomes

 q8x9 = 2qab cos �nm  t1�s1x1 + x22�a  dx 7-67

Now (read carefully: this is subtle!) if the two electrons are interchanged, the value of 
q8x9  cannot change since the electrons are identical; however, in such an interchange 
�a will change sign, but �s will not (see Section 6-7) and neither will 
(x1 � x2). Since the value of the integral cannot change due to the interchange of the 
two electrons, its value can only be zero. Thus, transitions between the singlet and 
triplet states are forbidden, or �S � 0. (This result can be generalized to other sets of 
states and other types, i.e., multipole orders, of radiation.)

⎪ψSχA⎪2

⎪ψAχS⎪2

(a)

(b)

FIGURE 7-26 Probability density versus separation for two 
electrons. (a) In the singlet state, the space part �S of the wave 
function is symmetric and the spin part �A is antisymmetric. 
The probability density is large at x � 0. (b) In the triplet 
state, the space part is antisymmetric and the spin part is 
symmetric. The probability density is zero at x � 0. Because 
the average separation in the triplet state is greater, the energy 
of the system is lower in this state.
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The question then arises as to why the intercombination lines or transitions, such 
as the 457.1 nm line of magnesium noted above and in Figure 7-25, exist at all. The 
answer lies in our assumption that the total wave function, which must be anti-
symmetric to the interchange of identical particles, can be written as a product �� of 
a space function and a spin function, which individually are either symmetric or 
 antisymmetric. When the spin-orbit coupling becomes appreciable, the separation of 
the space and spin coordinates implied by the product function is no longer strictly 
possible and there is no longer a separated function � whose matrix element can 
become zero. The spin-orbit coupling is  relatively weak for low-Z elements; hence 
the prohibition of intercombinations, �S � 0, holds almost absolutely for them, for 
example, He in Figure 7-24, but holds less rigorously with increasing Z, as for Mg in 
Figure 7-25.

Up to now we have been discussing the normal levels of multielectron atoms in 
which only one of the electrons outside of the completed shells changes its quantum 
level. It is also  possible for two or even more of the outer electrons to be simultane-
ously raised to excited states. We will close this section with a brief discussion of 
these so-called anomalous levels. Again using magnesium as the discussion example, 
we see that the first excited normal state is the 33P level (see Figure 7-25), for which 
the outer electron configuration is 3s3p. We would expect, and it is experimentally 
verified, that the lowest-lying anomalous level is that with both outer electrons raised 
to the 3p state, that is, with a 3p2 configuration. The excitation energy of the atom 
should then be approximately twice that of the normal 33P level, 2.4 eV in Figure 
7-25, or about 5 eV. This, too, is experimentally observed. The normal and anomalous 
33P levels, including the spin-orbit energy, are shown in Figure 7-27, along with a dia-
gram of the observed spectral lines emitted in transitions between them. The six tran-
sitions (called an anomalous triplet) that occur between 3P� S 3P levels in Figure 
7-27 all violate the�/ = {1 selection rule, Equation 7-28. That rule arose out of the 
solution of Schrödinger’s equation for a single electron. For transitions involving 
excited states of two or more electrons, �/ for the atom may be zero, provided that 
the electron making the transition still satisfies �/ = {1. Anomalous terms have 
been found for most atoms, although  relatively few occur for low Z elements since 
most would lie above the ionization energy. However, such levels are very numerous 
for heavier elements and account in part for the greater complexity of their spectra 
compared with that of the lighter elements.
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FIGURE 7-27 The normal 
and anomalous 33P states for 
magnesium. The upper states, 
labeled 3P�, are the 
anomalous states and lie 
approximately twice as far 
above the ground state (not 
shown) as do the normal 3P 
states. Notice that transitions 
between the levels, illustrated 
by the observed spectrum 
at the bottom, violate the 
�� ��1 selection rule.


