
PHYSICS 220 : GROUP THEORY

FINAL EXAMINATION SOLUTIONS

This exam is due in my office, 5438 Mayer Hall, at 9 am, Monday, June 6. You are allowed
to use the course lecture notes, the Lax text, and the character tables (link from lecture
notes web page), but no other sources, and please do not discuss the exam with anyone
other than me, other than to reassure your classmates that indeed this is a most fair and
excellent exam.

[1] C20 is the smallest fullerene. It has the structure of a dodecahedron, i.e. a threefold
coordinated cage with 20 sites arranged in 12 pentagonal faces and 30 edges. Its
symmetry group is Ih.

(a) Similar story to C60 : The sp2 hybridized orbitals account for three of the four
electrons in the 2s and 2p shells. (The 1s shell is completely inert.) The remaining
orbital is the π orbital, oriented along a line from each carbon atom to the center of
the molecule. Such orbitals transform trivially under Ih. Consider a tight-binding
Hamiltonian

Ĥ = −t
∑

〈ij〉

(

| i 〉〈 j |+ | j 〉〈 i |
)

,

where | i 〉 and | j 〉 are π-orbitals for neighboring carbon atoms i and j. Classify
the multiplets in the tight binding eigenspectrum according to irreps of Ih. For

extra credit, write a computer program which diagonalizes Ĥ for t = 1 and plot the
spectrum, labeling each multiplet accordingly.

Solution : We have χper(E) = 20, χper(20C3) = 2, and χper(15σ) = 4. All other classes
have χper(C) = 0. Thus, with NI

h

= 120,

nΓ (Γ
per) =

1

6

(

χΓ (E) + 2χΓ (20C3) + 3χΓ (15σ)
)

,

and using the decomposition formula we obtain

Γ elec = Γ orb × Γ per = Ag ⊕Gg ⊕Hg ⊕ T1u ⊕ T2u ⊕Gu

the total dimension of which is 20.

(b) If pressure is applied to opposite pentagonal faces, the symmetry is broken from
Ih down to D

5d . Find how the tight-binding multiplets from part (a) split into D
5d

irreps.

Solution : For D
5d, we lose the C3 (and S6) operations. The order of the group is

ND
5d

= 20, and we have the decomposition

nΓ (Γ
per) =

1

20

(

20χΓ (E) + 4 · 5χΓ (5σ)
)

= χΓ (E) + χΓ (5σ) .
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Decomposing in D
5d using the character table,

Γ elec = 2A1g ⊕ 2E1g ⊕ 2E2g ⊕ 2A2u ⊕ 2E1u ⊕ 2E2u

whose total dimension is again 20. Decomposing relevant the Ih irreps in D
5d , we

find

A1g = A1g T1u = A2u ⊕ E1u

Gg = E1g ⊕ E2g T2u = A2u ⊕ E2u

Hg = A1g ⊕ E1g ⊕ E2g Gu = E1u ⊕ E2u ,

and the decompositions agree.

(c) Classify all vibrational modes of C20 according to irreps of Ih. Indicate whether
each multiplet is IR active, Raman active, or Raman silent. If you really want to
impress me, find the normal modes numerically for a ball and spring model, where
all masses and spring constants are the same.

Solution : We first construct Ψ = Γ vec × Γ per, for which χΨ (E) = 3 × 20 = 60,
χΨ (15σ) = 1 × 4 = 4. The decomposition formula for Ψ is thus nΓ (Ψ ) =

1

2
χΓ (E) +

1

2
χΓ (15σ). Appealing to the character table for Ih we find

Ψ = Ag ⊕ T1g ⊕ T2g ⊕ 2Gg ⊕ 3Hg ⊕ 2T1u ⊕ 2T2u ⊕ 2Gu ⊕ 2Hu .

To obtain Γ vib, we must subtract from Ψ the zero modes from Γ vec = T1u (translations)
and Γ rot = T1g (rotations). Thus,

Γ vib = Ag ⊕ T
2g ⊕ 2Gg ⊕ 3Hg ⊕ T1u ⊕ 2T2u ⊕ 2Gu ⊕ 2Hu

Only the T1u (blue) multiplet is IR active. To check Raman activity, we need Γ sym

from the symmetrized product of vector representations. It is an easy matter to
decompose Γ vec × Γ vec = Ag ⊕ T1g ⊕Hg . The total dimension is nine, corresponding
to a real 3 × 3 matrix. We only need the symmetric part, which is of dimension
six, so clearly T1g, which is of dimension three, corresponds to Γ asy and therefore
Γ sym = Ag ⊕Hg . The four ungerade multiplets are Raman inactive (blue/red), and
among the gerade multiplets, only Ag and Hg are active (bold black); the others are
silent (bold gray).

Nota bene : Sami Ortoleva astutely discovered several errors in the Atkins, Child,
and Phillips character table for Ih (their I table is OK). I have corrected the error in
the linked file on the Physics 220 Lecture Notes web page. Original version at

http://www3.uji.es/~planelle/APUNTS/TGS/taules_TG_oxford.pdf
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[2] Consider the structure in Fig. 2, which is the Shastry-Sutherland lattice with
nonsymmorphic wallpaper group p4g (from Fig. 5.11 of the notes).

(a) Let the length of each bond be a. Choose as the origin the center of the figure,
and find expressions for the four basis vectors δ1,2,3,4 corresponding to the red, yellow,
grey, and blue sites in the first Wigner-Seitz cell (counterclockwise starting from the
right, for the color blind among you). You may assume that the smaller of the two
internal angles of each rhombus is α.

Solution : We have

δ1,3 = ±a sin(1
2
α) x̂ , δ2,4 = ±a cos(1

2
α) ŷ

(b) Find two elementary direct lattice vectors a1,2. Find the corresponding reciprocal
lattice vectors b1,2.

Solution : The primitive direct lattice vectors are chosen to be

a1 =
a0√
2
(x̂+ ŷ) , a2 =

a0√
2
(−x̂+ ŷ)

with a0 =
√
2 a

(

cos(1
2
α) + sin(1

2
α)

)

. The elementary reciprocal lattice vectors are
then

b1 =

√
2π

a0
(x̂+ ŷ) , b2 =

√
2π

a0
(−x̂+ ŷ)

(c) Find the scattering form factor F (K) defined in Eqn. 5.16 of the notes and show
there are extinctions in the Bragg pattern.

Solution : The form factor is

F (K) =

∣

∣

∣

∣

4
∑

i=1

e−iK·δ
i

∣

∣

∣

∣

2

.

We write K = n1b1 + n2b2 . Now

b1·δ1,3 = ± πs

s + c
, b1·δ2,4 = ± πc

s + c
, b2·δ1,3 = ∓ πs

s+ c
, b2·δ2,4 = ± πc

s + c
.

It is convenient to define

θ =
πs

s+ c
, π − θ =

πc

s+ c
,
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Figure 1: A lattice with p4g symmetry.

where s = sin(1
2
α) and c = cos(1

2
α). Thus,

K · δ1,3 = ±(n1 − n2) θ , K · δ2,4 = ±(n1 + n2)(π − θ) ,

and therefore

F (K) = 4
[

cos
[

(n1 − n2) θ
]

+ (−1)n1
+n

2 cos
[

(n1 + n2) θ
]

]2

So for generic θ there will be extinctions in the Bragg pattern under two circum-
stances:

(i) n1 = 0 and n2 odd , (ii) n1 odd and n2 = 0

This is all consistent with the discussion in §5.4.2 of the Lecture Notes. If K lies
along the invariant line of a mirror m for a two-dimensional point group, then if
K = nβ, where β is a basis vector for the one-dimensional subset of the reciprocal
lattice within that invariant line, we have extinctions whenever n is odd. In our
problem, there are glide mirror lines along a1 and a2. In the former case, n2 = 0 and
odd n1 are extinguished. In the latter case, n1 = 0 and odd n2 are extinguished.

(d) When α = 1

2
π, the lattice becomes square. Explain the Bragg extinctions in this

case.

When α = 1

2
π we have θ = 1

2
π and F (K) = 16 cos2(1

2
πn1) cos

2(1
2
πn2). There are

then extinctions whenever either n1 or n2 is odd, i.e. only the (even , even) Bragg
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points survive, which are one quarter of all the Bragg points. The reason is that
the Shastry-Sutherland lattice (SSL) for α = 1

2
π becomes a square lattice rotated by

1

4
π, i.e. a Bravais lattice with a four element basis. The only Bragg peaks are those

corresponding to the small square lattice, and these are the surviving ones from the
SSL structure.

Bragg peaks with n1 odd or n2 odd extinguished due to quadrupled unit cell

(e) How do the basis points transform under the glide mirror? I.e. what basis color
does yellow get mapped to, etc.? Also indicate which glide mirror you have chosen.

Solution : There is a glide mirror parallel to a1 which intersects the link between the
red and blue basis elements at its midpoint. The glide operation has the effect of
exchanging blue and red, and exchanging yellow and grey:

mirror along a1 : B ↔ R , Y ↔ G

If you chose the other direction for the glide, you should find

mirror along a2 : Y ↔ R , B ↔ G

[3] Consider a V2+ ion in a D4 environment.

(a) The electronic configuration is [Ar] 4s0 3d3. Hund’s first two rules say S = 3

2
and

L = 3 (F). What is the ground state term according to Hund’s third rule?

Solution : Hund’s third rule says J = L− S if an incomplete shell is not more than
half filled, hence the ground state term for the isolated ion is

2S+1LJ = 4F3/2

(b) Using the notation of Atkins, Child, and Phillips, the double group D′
4 has two

spin representations, E
1/2 and E

3/2 , both of which are two-dimensional. Ignoring

spin-orbit, decompose F into irreps of D4 (the decomposition will be the same in
D′

4). You may find some of the results in Tab. 6.5 of the notes useful (e.g. for the
characters of certain rotations in the l = 3 representation of O(3)). Then decompose
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D4 E 2C4 C2 2C ′
2 2C ′′

2

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 −1 1 1 −1

B2 1 −1 1 −1 1

E 2 0 −2 0 0

P 3 1 −1 −1 −1 A2 ⊕ E

D 5 −1 1 1 1 A1 ⊕B1 ⊕B2 ⊕ E

F 7 −1 −1 −1 −1 A2 ⊕B1 ⊕B2 ⊕ 2E

Table 1: Character table of D4 and decomposition of L = 1, 2, and 3 multiplets in a D4

environment.

the Γ
3/2 representation for S = 3

2
in D′

4. (Hint: it can give only some combination

of the two spin irreps.) Finally, decompose the product Γ
3/2 × F = 4F and find the

irreps for all crystal field levels. Once again, your answer can only involve the E
1/2

and E
3/2 irreps, so in the end this isn’t so nasty. For a template of how to proceed,

see the section“Co++ in a cubic environment” in §6.2.6 of the notes. You may find
Tab. 6.10 helpful as well.

Solution : With the help of the aforementioned tables, we construct Tab. 1, which
we use to decompose F into D4 irreps. We also must decompose Γ

3/2 in terms of

the spin irreps of D′
4, using Tab. 2. Finally, we must multiply the spinless and spin

irreps, which we do in Tab. 3. We arrive at the result

Γ3/2 × F =
(

E1/2 ⊕ E3/2

)

×
(

A2 ⊕ B1 ⊕B2 ⊕ 2E
)

= 7E1/2 ⊕ 7E3/2

Note that the total dimension is 28, corresponding to the product of the four-dimensional
Γ
3/2 and the seven-dimensional F SO(3) irreps.

(c) Starting on the dominant LS coupling end, decompose 4F into irreps of O(3),
i.e. by good old addition of angular momentum. Then decompose into D′

4 irreps
and check that you get the same answer as in part (b).

Solution : Within SO(3), we have

Γ3/2 × F = Γ3/2 ⊕ Γ5/2 ⊕ Γ7/2 ⊕ Γ9/2

all of which are decomposed into D′
4 irreps in Tab. 2. Adding up all the decompo-
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D′
4 E Ē 2C4 2C̄4

C
2

C̄
2

C′

2

C̄′

2

C′′

2

C̄′′

2

E
1/2 2 −2

√
2 −

√
2 0 0 0

E
3/2 2 −2 −

√
2

√
2 0 0 0

Γ
3/2 4 −4 0 0 0 0 0 E

1/2 ⊕ E
3/2

Γ
5/2 6 −4 −

√
2

√
2 0 0 0 E

1/2 ⊕ 2E
3/2

Γ
7/2 8 −8 0 0 0 0 0 2E

1/2 ⊕ 2E
3/2

Γ
9/2 10 −10

√
2 −

√
2 0 0 0 3E

1/2 ⊕ 2E
3/2

Table 2: Spin irreps for D′
4 and decomposition of the S = 3

2
multiplet.

D′
4 A1 A2 B1 B2 E

E
1/2 E

1/2 E
1/2 E

3/2 E
3/2 2E

3/2

E
3/2 E

3/2 E
3/2 E

1/2 E
1/2 2E

1/2

Table 3: Products of spinless and spin irreps within D′
4.

sitions, we obtain once again

Γ3/2 × F = 7E1/2 ⊕ 7E3/2
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