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Problem I

(a) The retarded electrical potential is computed from
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where the retarded time is ¢, =t — |r — 7’| /c. The charges of this electric dipole are located at
r4+ = +32, so the corresponding retarded times are t;* = ¢ — |r — r4|/c. With the aid of the
three-dimensional Dirac delta function we can write the charge density as

p(r' 1) = Re {QUENO( — 1) — QU )& (' — 1)} )
with Q(t,) = Qme™!r. Plugging this charge density in (1) we obtain
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We now need to compute |r — r4| as these appear in the denominators and in the retarded
times in the expression for the potential. We then get
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Thus, the denominators can be approximated as
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while the exponents of the complex exponentials, using X = ¢/w, become
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With these results, the potential takes the form

Qme (t=2)
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V(r,t) =~ Re { Ireor [(1 + £ cosf)e’ 3% — (1 = 5= cosf)e 2 } } . (10)

Assuming s < X <= § <1, then eFiax 050 1 4 izx cos 0. Using this approximation for the
complex exponentials, after some straightforward algebra we finally arrive at

V(r,t) ~ Re { Qe s cosf P + z] } ~ Re {W [}‘ + Z] } , (11)
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where [p*] = $Qme™ %) is the magnitude of the complex electric dipole moment evaluated at
the retarded time ¢ — 7.



(b) The expression for the retarded vector potential is

ro = [T (12)

One can write the current density as

J(r 1) = { 21(t,)5(2)S(y) 2 E[_%’%]_

O , Z/ (13)

where I(t) = Re { £Q(t)} = Re { £Qe™'} = Re {iwQ,e™'}. Substituting in (12) yields

s/2 iw(t—|r—2'2|/c)
A(r,t) = Re {zi‘omm / ehdz'} . (14)
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Since 2’ € [-3, 3] = |#/| < 3, and recalling that s < r we conclude | 1« 1. So we can repeat

the approximations presented in part (a) to obtain

r—2'2] ~ r [1 — %cos@} , (15)
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Using these approximations we get the following vector potential
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A(r,t) ~ Re {zzw@me“"(t_) / ¢i cosd [1 + Z cos 0} dz'} . (18)
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The already shown result |2'| < § together with s < X imply 1] | < 1, hence ei% Ccost
1+ z%, cos 6. Thus the integral to be computed simplifies to
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But fi/g ?2 Z'dz’ = 0, so the integral can be simply approximated as s. Therefore, the retarded
vector potential is given by

A(r,t) = Re {4W600Ariste“"(t ) (cos 07 — sin 09)} Re {47:3;6])(7,(005 07 — sin Hé)} ,
X (20)
where we used that pow = eolc)i and 2 = cos 07 — sin 66.
(c) By direct differentiation—using %[p*] = iw[p*] and %[p*] = —%[p*}—one can readily
show ov wlp*] cosd [ 3
iw[p*] cos .
EOM0 (= 8‘[: _Re{élf]rq]czji’/“ |:T+’L:|}:—VA, (21)

hence eo,uo + V- A = 0. Therefore, the potentials computed in (a) and (b) do indeed satisfy
the Lorentz condltlon



Problem II

(a) The retarded vector potential generated by a current I(f) = Re {I,e™'} flowing in a
circular loop of radius a in the zy plane reads

2m iw(t—r'/c)
Ho Ie n
Afr.1) = Re {M / T,am} , (22)
where ¢ is the angle used to parameterize the loop and 7’ = |r'| = |r —ap(¢)|. For those inter-
ested, the above expression results from the current density J(r,t) = I(t)d(p — a)d(z)¢.

In spherical coordinates (r, 6, ), the point at which we are computing A(r,t) is
r = r[sinf cos & + sin O sin g + cos 2] = r[sindp(p) + cos HZ], (23)

so we have 7 - p(¢) = rsinf cos(¢ — ). Thus,

ro=[(r—ap(6)) - (r—ap(e)]"? (24)
= [r*—2ar- p(¢) +a?] 12 (25)
= [7"2 — 2arsin @ cos(¢p — @) + a2] 1z (26)
— [1 — 28 sin 0 cos(¢ — ) + (%)2} RN @ <1 (27)
~ r[l—%sinfcos(¢— )] . (28)
Using this approximate expression for 7 we obtain
% ~ % 1+ %sin@cos(qb - go)} and w (t - Z) R w (t - g) + %SiHQCOS((b —¢). (29)
The exponential in the integrand then becomes
ciw(t=r'/c) o piw(t—r/c) i% sinfcos(¢—p)  yiw(t—r/c) <1 n Z% sin @ cos(¢ — ¢)> (30)

where we used § < 1 to get the last expression. Plugging all these approximations in (22)
yields
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Recalling that q,?) = —sin ¢& + cos ¢ and cos(¢p — p) = cos ¢ cos ¢ + sin ¢ sin , one can com-
pute
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dds = 0, (32)
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where ¢ = —sin & + cos ¢g. Therefore, we get
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A(r,t) = Re{ o ¢ " +i|sinfp p . (34)



Introducing my, = 7a?I, [t] = t—L, m*] = mpye™t, and [m*] = [m*]£ we finally obtain

A(r,t) = Re {mew[t] [i + z] sin 0(,5} = Re {W [1 — z/:] } . (35)

Note that to get the last expression we used 2 x# = sin 6¢. It’s worth mentioning the similarity
in the structure between the electrical potential we computed in Problem I (a) and the present
result for the vector potential. By introducing [p*] = [p*|2, we can rewrite V as

V(r,t) ~ Re {’[p]’" [1 _ f‘] } (36)
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They both exhibit the same r dependence. Their angular dependence is determined by [p*] - 7
and [m*] x 7, respectively.

(b) The magnitude of the vector potential is |A(r,t)| = 4255 |[Xcos(w[t]) — rsin(w[t])] sin 6].

It vanishes at either # = 0,7 or tan(w[t]) = X/r. At fixed time ¢, |A(r,t)| is maximum at
0=73.

Problem 10.17

Once seen, from a given point z, the particle will forever remain in view—to disappear it would have to
travel faster than light.

[Light rays in + z directior—ll

Graph of w(t)
A person at point

z first sees the

particle when this point is reached
ie. at z = -ct, or

= -z/c

Region below wavy line represents space-time
points from which the particle is invisible




Problem 10.19
From Eq. 10.44, c(t —t,) = 2 = *(t —t,)?> = 2 2 = 2 - 2 . Differentiate with respect to t:
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Problem 10.20
q Z

=—4W60W[(02—v2)u+4 x (u x a)|. Here 1 2 B
v=v%, a=aZ%, and, for points to the right, 2 = . \ﬂ_lj
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For field points to the left, 2 = —% and u = —(c+v)%,s0 2 -u= 2 (c+v), and
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Problem 10.24
Ao, t) = )\0| sin(0/2)|, where § = ¢ — wt. So the (retarded) scalar potential at the center is (Eq. 10.26)
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(Note: at fixed t,., dp = dfl, and it goes through one full cycle of ¢ or 6.)
Meanwhile I(¢,t) = Av = Aowa [sin[(¢ — wt)/2]| ¢. From Eq. 10.26 (again)

I 2T\ in[(¢ —wt,)/2]| ¢
A(t) = Ho [ 2 gy = Ho owa [sin[(¢ — wt,)/2]| ads.
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But ¢, =t — a/c is again constant, for the ¢ integration, and qf) = —singX+cosgy.
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2
=0 / |sin[(¢ — wt,)/2]| (—singpX + cosp§)dp. Again, switch variables to 0 = ¢ — wt,.,
n 0

and integrate from 6 = 0 to § = 27 (so we don’t have to worry about the absolute value).
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1 1
= sin(r + wt,.) — sin(wt,) — 3 sin(3m 4+ wt,) + 3 sin(wt,.)

2 4
= —2sin(wt,) + 3 sin(wt,) = -3 sin(wt,.).
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1 1
= cos(m + wt,) — cos(wt,.) — 3 cos(3m + wt,) + 3 cos(wt;.)

2 4
= —2cos(wt,) + 3 cos(wt,) = —3 cos(wt,). So
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p §> [sin(wt,) X — cos(wt,) §] =

{sin[w(t — a/c)]| % — cos[w(t —a/c)| ¥} .




