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In traditional optical instruments and systems, light is transmitted between different
locations in the form of beams that are collimated, relayed, focused, and scanned by
mirrors, lenses, and prisms. The beams diffract and broaden as they propagate though
they can be refocused by the use of lenses and mirrors. However, the bulk optical
components that comprise such systems are often large and unwieldy, and objects in
the paths of the beams can obstruct or scatter them.

In many circumstances it is advantageous to transmit optical beams through di-
electric conduits rather than through free space. The technology for achieving this
is known as guided-wave optics. It was initially developed to provide long-distance
light transmission without the necessity of using relay lenses. This technology now has
many important applications. A few examples are: carrying light over long distances
for lightwave communications, biomedical imaging where light must reach awkward
locations, and connecting components within miniaturized optical and optoelectronic
devices and systems.

The underlying principle of optical confinement is simple. A medium of refractive
index n;, embedded in a medium of lower refractive index ns < n1, acts as a light
“trap” within which optical rays remain confined by multiple total internal reflections at
the boundaries. Because this effect facilitates the confinement of light generated inside
a medium of high refractive index [see Exercise (1.2-6)], it can be exploited in making
light conduits — guides that transport light from one location to another. An optical
waveguide is a light conduit consisting of a slab, strip, or cylinder of dielectric material
embedded in another dielectric material of lower refractive index (Fig. 8.0-1). The
light is transported through the inner medium without radiating into the surrounding
medium. The most widely used of these waveguides is the optical fiber, comprising
two concentric cylinders of low-loss dielectric material such as glass (see Chapter 9).

ARSI Stab Figure 8.0-1 Optical waveguides.

Integrated optics is the technology of combining, on a single substrate (“chip”),
various optical devices and components useful for generating, focusing, splitting, com-
bining, isolating, polarizing, coupling, switching, modulating, and detecting light. Op-
tical waveguides provide the links among these components. Such chips (Fig. 8.0-2)
are optical versions of electronic integrated circuits. Integrated optics has, as its goal,
the miniaturization of optics in much the same way that integrated circuits have served
to miniaturize electronics.

This Chapter

The basic theory of optical waveguides is presented in this and the following chapter.
In this chapter, we consider rectangular waveguides, which are used extensively in
integrated optics. Chapter 9 deals with cylindrical waveguides, i.e., optical fibers. If
reflectors are placed at the two ends of a short waveguide, the result is a structure
that traps and stores light — an optical resonator. These devices, which are essential
to lasers, are described in Chapter 10. Other integrated-optic components and devices
(such as semiconductor lasers, detectors, modulators, and switches) are considered in
290
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the chapters that deal specifically with those components and devices. Optical fiber
communication systems are discussed in detail in Chapter 24.

8.1 PLANAR-MIRROR WAVEGUIDES

We begin by examining wave propagation in a waveguide comprising two parallel
infinite planar mirrors separated by a distance d (Fig. 8.1-1). The mirrors are assumed
to reflect light without loss. A ray of light, say in the y—z plane, making an angle 6
with the mirrors reflects and bounces between them without loss of energy. The ray is
thus guided along the z direction.

This waveguide appears to provide a perfect conduit for light rays. It is not used
in practical applications, however, principally because of the difficulty and cost of
fabricating low-loss mirrors. Nevertheless, we study this simple example in detail
because it provides a valuable pedagogical introduction to the dielectric waveguide,
which we examine in Sec. 8.2, and to the optical resonator, which is the subject of
Chapter 10.
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Figure 8.1-1 Planar-mirror
T waveguide.

Waveguide Modes

The ray-optics picture of light being guided by multiple reflections cannot explain a
number of important effects that require the use of electromagnetic theory. A simple
approach for carrying out an electromagnetic analysis is to associate with each optical
ray a transverse electromagnetic (TEM) plane wave. The total electromagnetic field is
then the sum of these plane waves.

Consider a monochromatic TEM plane wave of wavelength A = A,/n, wavenumber
k = nk,, and phase velocity ¢ = ¢,/n, where n is the refractive index of the medium
between the mirrors. The wave is polarized in the z direction and its wavevector lies in
the y—z plane at an angle 6 with the z axis (Fig. 8.1-1). Like the optical ray, the wave
reflects from the upper mirror, travels at an angle —#6, reflects from the lower mirror,
and travels once more at an angle 6, and so on. Since the electric-field vector is parallel
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to the mirror, each reflection is accompanied by a phase shift 7 for a perfect mirror,
but the amplitude and polarization are not changed. The 7 phase shift ensures that the
sum of each wave and its own reflection vanishes so that the total field is zero at the
mirrors. At each point within the waveguide we have TEM waves traveling upward at
an angle 6 and others traveling downward at an angle —@; all waves are polarized in
the z direction.

We now impose a self-consistency condition by requiring that as the wave reflects
twice, it reproduces itself [see Fig. 8.1-2(a)], so that we have only two distinct plane
waves. Fields that satisfy this condition are called the modes (or eigenfunctions) of
the waveguide (see Appendix C). Modes are fields that maintain the same transverse
distribution and polarization at all locations along the waveguide axis. We shall see
that self-consistency guarantees this shape invariance. In connection with Fig. 8.1-2,
the phase shift Ay encountered by the original wave in traveling from A to B must be
equal to, or differ by an integer multiple of 27, from that encountered when the wave
reflects, travels from A to C, and reflects once more. Accounting for a phase shift of

7 at each reflection, we have Ay = 27rAC/\ — 21 — 2rAB/) = 27mq, where ¢ =
0,1,2,...,s0 that 2r(AC — AB)/\ = 2m(q+1). The geometry portrayed in Fig. 8.1-
2(a), together with the identity cos(2x) = 1 —2sin? z, provides AC — AB = 2dsin ¥,
where d is the distance between the mirrors. Thus, 27(2d sin ) /X = 27w(g+1) so that

277T2d sin @ = 27 m, m=1,2,.... (8.1-1)

where m = g + 1. The self-consistency condition is therefore satisfied only for certain
bounce angles 8 = 6, satisfying

Sin@m:mi, m=1,2,.... (8.1-2)

2d Bounce Angles

Each integer m corresponds to a bounce angle 6,,, and the corresponding field is called
the mth mode. The m = 1 mode has the smallest angle, 6; = sin~1()\/2d); modes
with larger m are composed of more oblique plane-wave components.
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Figure 8.1-2 (a) Condition of self-consistency: as a wave reflects twice it duplicates itself. (b) At
angles for which self-consistency is satisfied, the two waves interfere and create a pattern that does
not change with z.

When the self-consistency condition is satisfied, the phases of the upward and down-
ward plane waves at points on the z axis differ by half the round-trip phase shift g,
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q=0,1,...,or(m—1)wr,m = 1,2,..., so that they add for odd m and subtract for
even m.

Since the y component of the propagation constant is given by k, = nk,sin®, it is
quantized to the values k,,, = nk,sin 0,, = (2 /) sin f,,. Using (8.1-2), we obtain

s
kym = m—, m=1,23..., (8.1-3)

d Wavevector
Transverse Component

so that the k,,, are spaced by 7/d. Equation (8.1-3) states that the phase shift en-
countered when a wave travels a distance 2d (one round trip) in the y direction, with
propagation constant k,,,,, must be a multiple of 2.

Propagation Constants

A guided wave is composed of two distinct plane waves traveling in the y—z plane
at angles +6 with the z axis. Their wavevectors have components (0, k,, k) and
(0, —ky, k). Their sum or difference therefore varies with z as exp(—jk,z), so that
the propagation constant of the guided wave is 3 = k, = k cos 8. Thus, 3 is quantized
to the values 3,, = k cos 6,,, from which 52, = k?(1 — sin?#,,). Using (8.1-2), we
obtain

(8.1-4)
Propagation Constants

Higher-order (more oblique) modes travel with smaller propagation constants. The
values of 0,,, kyr,, and [y, for the different modes are illustrated in Fig. 8.1-3.
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Figure 8.1-3 The bounce angles 6,, and the wavevector components of the modes of a planar-
mirror waveguide (indicated by dots). The transverse components k,,, = ksin#f,, are spaced
uniformly at multiples of 7r/d, but the bounce angles 6,,, and the propagation constants 3, are not
equally spaced. Mode m = 1 has the smallest bounce angle and the largest propagation constant.
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Field Distributions

The complex amplitude of the total field in the waveguide is the superposition of
the two bouncing TEM plane waves. If A, exp(—jkymy — jfBmz) is the upward
wave, then e/(m=D7 A exp(+5kymy — jBnz) must be the downward wave [at y =
0, the two waves differ by a phase shift (m — 1)x]. There are therefore symmet-
ric modes, for which the two plane-wave components are added, and antisymmetric
modes, for which they are subtracted. The total field turns out to be E,(y,2) =
2A,, cos(kymy) exp(—jfBmz) for odd modes and 25 A, sin(ky,y) exp(—jfmz) for
even modes.

Using (8.1-3) we write the complex amplitude of the electric field in the form

Ez(y, 2) = anum(y) exp(—jfmz), (8.1-5)

\/%cos(mw%), m=1,3,5,...

wn(®) =4 (8.1-6)
e ¥ —
\/;sm(mwd), m=2,4,6,...,

with a,,, = V2d A,,, and jv2d A,,, for odd m and even m, respectively. The functions
U, (y) have been normalized to satisfy

where

d/2
/ u? (y)dy = 1. (8.1-7)
—d/2

Thus, a,, is the amplitude of mode m. It can be shown that the functions u,,(y) also
satisfy

d/2
/ Un(®) w(y)dy=0, L#m, (8.1-8)
—d/2

i.e., they are orthogonal in the [—d/2, d/2] interval.

The transverse distributions w,,(y) are plotted in Fig. 8.1-4. Each mode can be
viewed as a standing wave in the y direction, traveling in the z direction. Modes of
large m vary in the transverse plane at a greater rate k, and travel with a smaller
propagation constant 5. The field vanishes at y = +d/2 for all modes, so that the
boundary conditions at the surface of the mirrors are always satisfied.
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Since we assumed at the outset that the bouncing TEM plane wave is polarized in
the z direction, the total electric field is also in the = direction and the guided wave
is a transverse-electric (TE) wave. Transverse magnetic (TM) waves are analyzed in a
similar fashion as will be seen subsequently.
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EXERCISE 8.1-1

Optical Power. Show that the optical power flow in the z direction associated with the TE mode

E.(y,2) = Qmtm(y) exp(=78mz) is (|am|?/2n) cos 0,,, where 1 = 7, /n and 1, = /1o /€, is the
impedance of free space.

Number of Modes

Since sin 6,, = mA/2d, m = 1,2,..., and taking sin 6,,, < 1, the maximum allowed
value of m is the greatest integer smaller than 1/(\/2d),

M==". (8.1-9)
A Number of Modes

The symbol = denotes that 2d/ X is reduced to the nearest integer. As examples, when
2d/Xx = 0.9, 1, and 1.1, we have M = 0, 0, and 1, respectively. Thus, M is the
number of modes of the waveguide. Light can be transmitted through the waveguide
in one, two, or many modes. The actual number of modes that carry optical power
depends on the source of excitation, but the maximum number is M.

The number of modes increases with increasing ratio of the mirror separation to the
wavelength. Under conditions such that 2d/\ < 1, corresponding to d < \/2, M is
seen to be 0, which indicates that the self-consistency condition cannot be met and the
waveguide cannot support any modes. The wavelength A, = 2d is called the cutoff
wavelength of the waveguide. It is the longest wavelength that can be guided by the
structure. It corresponds to the cutoff frequency

Vp = ==, (8.1-10)
Cutoff Frequency

or the cutoff angular frequency w. = 27v, = wc/d, the lowest frequency of light
that can be guided by the waveguide. If 1 < 2d/A < 2 (ie.,d < A < 2dory, <
v < 2v,.), only one mode is allowed. The structure is then said to be a single-mode
waveguide. If d = 5 um, for example, the waveguide has a cutoff wavelength A\, =
10 pm; it supports a single mode for 5 um < A < 10 pm, and more modes for A <
5 um. Equation (8.1-9) can also be written in terms of the frequency v, M = v/v, =
w/we, so that the number of modes increases by unity when the angular frequency w is
incremented by w,, as illustrated in Fig. 8.1-5(a).

Dispersion Relation

The relation between the propagation constant 3 and the angular frequency w is an
important characteristic of the waveguide, known as the dispersion relation. For a
homogeneous medium, the dispersion relation is simply w = c¢3. For mode m of a
planar-mirror waveguide, (3,, and w are related by (8.1-4) so that

B2 = (w/c)? —m?n?/d>. (8.1-11)
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This relation may be written in terms of the cutoff angular frequency w, = 27r, =
wc/d as

2
-y (8.1-12)

Dispersion Relation

1 —m?2

Bm =

w
Cc w

As shown in Fig. 8.1-5(b) for m = 1,2, . . ., the propagation constant 3 for mode m is
zero at angular frequency w = muw,, increases monotonically with angular frequency,
and ultimately approaches the linear relation 8 = w/c for sufficiently large values of

3.
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Figure 8.1-5 (a) Number of modes M as a function of angular frequency w. Modes are not
permitted for angular frequencies below the cutoff, w. = m¢/d. M increments by unity as w increases
by w,. (b) Dispersion relation. A forbidden band exists for angular frequencies below w.. (¢) Group
velocities of the modes as a function of angular frequency.

Group Velocities

In a medium with a given w-£3 dispersion relation, a pulse of light (wavepacket) that
has an angular frequency centered at w travels with a velocity v = dw/df3, known as
the group velocity (see Sec. 5.6). Taking the derivative of (8.1-12) and assuming that
c is independent of w (i.e., ignoring dispersion in the waveguide material), we obtain
2Bm dBm /dw = 2w/c?, so that dw/dB,, = ¢*Bm/w = c?k cos by, /w = ¢ cos by, from
which the group velocity of mode m is

2
vmzccosem:c\/l—mzw—; . (8.1-13)
w

Group Velocity

It follows that more oblique modes travel with smaller group velocities since they are
delayed by the longer paths of the zigzagging process. The dependence of the group
velocity on angular frequency is illustrated in Fig. 8.1-5(c), which shows that for each
mode, the group velocity increases monotonically from 0 to c as the angular frequency
increases above the mode cutoff frequency.

Equation (8.1-13) may also be obtained geometrically by examining the plane wave
as it bounces between the mirrors and determining the distance advanced in the z
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direction and the time taken by the zigzagging process. For the trip from the bottom
mirror to the top mirror (Fig. 8.1-6) we have

distance dcotf
time  dcscl/c

= ccosé. (8.1-14)

. Figure 8.1-6 A plane wave
er_“?“ bouncing at an angle 6 advances in

4 R/ 1N the z direction by a distance d cot 6

d ¢°°"° : z = in a time d csc 6/c. The velocity is
p .

¥ \/4 | \/ / ccos.
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TM Modes

Only TE modes (electric field in the = direction) have been considered to this point.
TM modes (magnetic field in the = direction) can also be supported by the mirror
waveguide. They can be studied by means of a TEM plane wave with the magnetic
field in the = direction, traveling at an angle 6 and reflecting from the two mirrors
(Fig. 8.1-7). The electric-field complex amplitude then has components in the y and
z directions. Since the z component is parallel to the mirror, it behaves precisely like
the z component of the TE mode (i.e., it undergoes a phase shift 7 at each reflection
and vanishes at the mirrors). When the self-consistency condition is applied to this
component the result is mathematically identical to that of the TE case. The angles 6,
the transverse wavevector components k,,, and the propagation constants 3 of the TM
modes associated with this component are identical to those of the TE modes. There
are M = 2d/)\ TM modes (and a total of 2M modes) supported by the waveguide.
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Figure 8.1-7 TE and TM polarized guided waves.

The z component of the electric-field complex amplitude of mode m, as previously,
is the sum of an upward plane wave A, exp(—jkymy) exp(—jfFmz) and a downward

plane wave /(™17 A, exp(jkymy) exp(—jBmz), with equal amplitudes and phase
shift (m — 1), so that

am\/g cos (mw%) exp(—jfmz), m=1,3,5,...
E.(y,z) = (8.1-15)

2 y :
am\/; sin (mﬂa) exp(—jfBmz), m=2,4,6,...,

where a,, = V2d A,, and jVv2d A,, for odd and even m, respectively. Since the
electric-field vector of a TEM plane wave is normal to its direction of propagation, it
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makes an angle 7/2 + 6,,, with the z axis for the upward wave, and 7 /2 — 6,, for the
downward wave.
The y components of the electric field of these waves are

A, cot b, eXp(_jkymy) exp(_jﬁmz) and ejmﬂ-Am cot 0., eXp(jkymy) eXp(—jﬁmZ),
(8.1-16)

so that

2
am g cot 6,,, cos (mw%) exp(—jfmz), m=1,3,5,...
Ey(y,2) = (8.1-17)

2
Q| / 4 cot 6, sin (mw%) exp(—jBmz), m=2,4,6,....

Satisfaction of the boundary conditions is assured because E,(y, z) vanishes at the
mirrors. The magnetic field component H,(y, z) may be similarly determined by not-
ing that the ratio of the electric to the magnetic fields of a TEM wave is the impedance
of the medium 7. The resultant fields E,(y, z), E,(y, z), and H,(y, z) do, of course,
satisfy Maxwell’s equations.

Multimode Fields

For light to be guided by the mirrors, it is not necessary that it have the distribution
of one of the modes. In fact, a field satisfying the boundary conditions (vanishing at
the mirrors) but otherwise having an arbitrary distribution in the transverse plane can
be guided by the waveguide. The optical power, however, is then divided among the
modes. Since different modes travel with different propagation constants and different
group velocities, the transverse distribution of the field will alter as it travels through
the waveguide. Fig. 8.1-8 illustrates how the transverse distribution of a single mode
is invariant to propagation, whereas the multimode distribution varies with z (the
illustration is for the intensity distribution).
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Figure 8.1-8 Variation of the intensity distribution in the transverse direction y at different axial
distances 2. (a) The electric-field complex amplitude in mode 1 is E(y,2) = u;(y)exp(—3jfi2),
where u;(y) = 1/2/d cos(my/d). The intensity does not vary with z. (b) The complex amplitude
in mode 2 is E(y, z) = uz(y)exp(—jfP2z), where uz(y) = 1/2/d sin(27y/d). The intensity
does not vary with z. (c¢) The complex amplitude in a mixture of modes 1 and 2, E(y,z) =
u1(y) exp(—jp2) + ua(y) exp(—37B22). Since B; # [a, the intensity distribution changes with z.
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An arbitrary field polarized in the x direction and satisfying the boundary conditions
can be written as a weighted superposition of the TE modes,

M
Eo(y,2) = Y Gmtim (y) exp(—jfBm2), (8.1-18)
m=0

where a,,, the superposition weights, are the amplitudes of the different modes.

EXERCISE 8.1-2

Optical Power in a Multimode Field. Show that the optical power flow in the z direction
associated with the multimode field in (8.1-18) is the sum of the powers (|a,,|/2n) cos6,, carried
by each of the modes.

8.2 PLANAR DIELECTRIC WAVEGUIDES

A planar dielectric waveguide is a slab of dielectric material surrounded by media of
lower refractive indexes. The light is guided inside the slab by total internal reflection.
In thin-film devices the slab is called the “film” and the upper and lower media are
called the “cover” and the “substrate,” respectively. The inner medium and outer media
may also be called the “core” and the “cladding” of the waveguide, respectively. In this
section we study the propagation of light in a symmetric planar dielectric waveguide
made of a slab of width d and refractive index n; surrounded by a cladding of smaller
refractive index no, as illustrated in Fig. 8.2-1. All materials are assumed to be lossless.

y 27
!
n; B~
dl Mo
- -
o . - .
o newam] 7 Figure 8.2-1 Planar dielectric
adl W all . :
"2, DS e Guidedray C (slab) waveguide. Rays making an
; Unguided ray angle 6 < 6, = cos™!(ny/n,) are
guided by total internal reflection.

Light rays making angles € with the z axis, in the y—z plane, undergo multiple
total internal reflections at the slab boundaries, provided that € is smaller than the
complement of the critical angle §, = 7/2 —sin™!(na/n1) = cos™!(ng/n1) [see (1.2-
5) and Figs. 6.2-3 and 6.2-5]. They travel in the z direction by bouncing between the
slab surfaces without loss of power. Rays making larger angles refract, losing a portion
of their power at each reflection, and eventually vanish.

To determine the waveguide modes, a formal approach may be pursued by develop-
ing solutions to Maxwell’s equations in the inner and outer media with the appropriate
boundary conditions imposed (see Prob. 8.2-6). We shall instead write the solution in
terms of TEM plane waves bouncing between the surfaces of the slab. By imposing the
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self-consistency condition, we determine the bounce angles of the waveguide modes
from which the propagation constants, field distributions, and group velocities are
determined. The analysis is analogous to that used in the previous section for the
planar-mirror waveguide.

A. Waveguide Modes

Assume that the field in the slab is in the form of a monochromatic TEM plane wave
of wavelength A = \,/n; bouncing back and forth at an angle 0 smaller than the

complementary critical angle 6. The wave travels with a phase velocity ¢; = ¢,/n1,
has a wavenumber n; k,, and has wavevector components k; = 0, k, = n1k, sin 6, and
k., = nik, cos 6. To determine the modes we impose the self-consistency condition that
a wave reproduces itself after each round trip.

In one round trip, the twice-reflected wave lags behind the original wave by a
distance AC — AB = 2dsin 0, as in Fig. 8.1-2. There is also a phase ¢, introduced by
each internal reflection at the dielectric boundary (see Sec. 6.2). For self-consistency,
the phase shift between the two waves must be zero or a multiple of 2,

2
7” 2d sinf — 2p, = 2rm,  m=0,1,2,... (8.2-1)

or
2k, d — 2¢p, = 2mm. (8.2-2)
The only difference between this condition and the corresponding condition in the

mirror waveguide, (8.1-1) and (8.1-3), is that the phase shift 7 introduced by the mirror
is replaced here by the phase shift ¢, introduced at the dielectric boundary.

10 T
1
iJ RHS

A

sinf. sin 6

2d
Figure 8.2-2 Graphical solution of (8.2-4) to determine the bounce angles 6,, of the modes of a
planar dielectric waveguide. The RHS and LHS of (8.2-4) are plotted versus sin §. The intersection
points, marked by filled circles, determine sin &,,,. Each branch of the tan or cot function in the LHS
corresponds to a mode. In this plot sin 6. = 8(\/2d) and the number of modes is M = 9. The open
circles mark sin 6,, = m\/2d, which provide the bounce angles of the modes of a planar-mirror
waveguide of the same dimensions.

The reflection phase shift ¢, is a function of the angle 6. It also depends on the
polarization of the incident wave, TE or TM. In the TE case (the electric field is in the
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x direction), substituting 6; = /2 — 6 and . = w/2 — 0, in (6.2-11) gives

. 927

©Or sin“ 6,

tan - = =
2 sin? 6

1, (8.2-3)

so that (p,. varies from 7 to 0 as 8 varies from 0 to 0.. Rewriting (8.2-1) in the form
tan(rdsin6/\ — mmn/2) = tan(yp,/2) and using (8.2-3), we obtain

d in? 6,
tan <7r— sin 6 — mz) = sm_2¢ =1. (8.2-4)
A 2 sin” ¢ Self-Consistency Condition
(TE Modes)

This is a transcendental equation in one variable, sin 6. Its solutions yield the bounce
angles 0,,, of the modes. A graphic solution is instructive. The right- and left-hand sides
of (8.2-4) are plotted in Fig. 8.2-2 as functions of sin §. Solutions are given by the
intersection points. The right-hand side (RHS), tan(,./2), is a monotonic decreasing

function of sin f that reaches O when sin 6§ = sin .. The left-hand side (LHS) generates
two families of curves, tan[(wd/\) sin 6] and cot[(wd/)) sin 6], when m is even and
odd, respectively. The intersection points determine the angles 6,,, of the modes. The
bounce angles of the modes of a mirror waveguide of mirror separation d may be
obtained from this diagram by using ¢, = 7 or, equivalently, tan(y,/2) = oo. For
comparison, these angles are marked by open circles.

The angles 6, lie between 0 and 6. They correspond to wavevectors with compo-
nents (0, nyk, sin 6,,, n1k, cos,,). The z components are the propagation constants

Bm = n1ko cos Oy, . (8.2-5)
Propagation Constants

Since cos @, lies between 1 and cosf,. = no /n1, B lies between nok, and nik,, as
illustrated in Fig. 8.2-3.

n;k,sin6,

Figure 8.2-3 The bounce angles 6,,
and the corresponding components k,
and k, of the wavevector of the waveg-
uide modes are indicated by dots. The
angles 0,, lie between 0 and 6., and the
propagation constants ,, lie between
nok, and n; k,. These results should be
compared with those shown in Fig. 8.1-3
for the planar-mirror waveguide.
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The bounce angles ,,, and the propagation constants 3,,, of TM modes can be found
by using the same equation (8.2-1), but with the phase shift ¢, given by (6.2-13).
Similar results are obtained.

Number of Modes

To determine the number of TE modes supported by the dielectric waveguide we
examine the diagram in Fig. 8.2-2. The abscissa is divided into equal intervals of width
A/2d, each of which contains a mode marked by a filled circle. This extends over

angles for which sinf < sin 0.. The number of TE modes is therefore the smallest
integer greater than sin 6./(\/2d), so that

. sinf,

Vil (8.2-6)

The symbol = denotes that sin 0./(\/2d) is increased to the nearest integer. For
example, if sin 0_6/()\/2d) = 0.9, 1, or 1.1, then M = 1, 2, and 2, respectively.
Substituting cos 6, = nz/n; into (8.2-6), we obtain

2
M = —d NA, (8.2-7)
Ao Number of TE Modes
where
NA = {/n? — n2 (8.2-8)
Numerical Aperture

is the numerical aperture of the waveguide (the NA is the sine of the angle of accep-
tance of rays from air into the slab; see Exercise 1.2-5). A similar expression can be
obtained for the TM modes. If d/)\, = 10, n; = 1.47, and ny = 1.46, for example,

then §. = 6.7°, NA = 0.171, and M = 4 TE modes.

When A\/2d > sin 6, or (2d/),)NA < 1, only one mode is allowed. The waveguide
is then a single-mode waveguide. This occurs when the slab is sufficiently thin or the
wavelength is sufficiently long. Unlike the mirror waveguide, the dielectric waveguide
has no absolute cutoff wavelength (or cutoff frequency). In a dielectric waveguide
there is at least one TE mode, since the fundamental mode m = 0 is always allowed.
Each of the modes m = 1, 2, . .. has its own cutoff wavelength, however.

Stated in terms of frequency, the condition for single-mode operation is that v > v,
or w > w,, where the mode cutoff frequency is

1 ¢
1 e (8.2-9)
NA 2d Mode Cutoff Frequency

Ve = we/2m =

The number of modes is then M = v /v, = w/w,, which is the relation illustrated in
Fig. 8.2-4. M is incremented by unity as w increases by w,. Identical expressions for
the number of TM modes are obtained via a similar derivation.
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wA
2We = "
Figure 8.2-4 Number of TE modes
We = as a function of frequency. Compare
0 | | | | | > with Fig. 8.1-5(a) for the planar-mirror
0O 1 2 3 4 5 6 waveguide. There is no forbidden band
Number of modes M in the case at hand.

EXAMPLE 8.2-1. Modes in an AlIGaAs Waveguide. A waveguide is made by sandwiching
a layer of Al,Ga;_,As between two layers of Al,Ga;_,As. By changing the concentrations of z, y
of Al in these compounds their refractive indexes are controlled. If 2 and y are chosen such that at an
operating wavelength A\, = 0.9 um, n; = 3.5, and n; — ny = 0.05, then for a thickness d = 10 ym
there are M = 14 TE modes. For d < 0.76 pum, only a single mode is allowed.

B. Field Distributions

We now determine the field distributions of the TE modes.

Internal Field

The field inside the slab is composed of two TEM plane waves traveling at angles 6,
and —6,,, with the 2 axis with wavevector components (0, +n1k, sin ,,,, n1k, cos ,,).
They have the same amplitude and phase shift mz (half that of a round trip) at
the center of the slab. The electric-field complex amplitude is therefore E,(y,z) =
QU (y) exp(—7Bmz), where (3,,, = nyk, cos ,, is the propagation constant, a,, is a
constant,

in 0
cos(27rsm)\my>, m=0,2,4,...

U (y) o -

.y , (8.2-10)
sin(Z’;rSln)\my>, m=13,5,...,

and A = ),/ny. Note that although the field is harmonic, it does not vanish at the
slab boundary. As m increases, sin 6,, increases, so that higher-order modes vary more
rapidly with y.

External Field

The external field must match the internal field at all boundary points y = +d/2. It
must therefore vary with 2z as exp(—j 3y, z). Substituting E,(y, 2) = Qmtm(y) exp(—jBmz)
into the Helmholtz equation (V2 + n3k2)E,(y, z) = 0, we obtain

Puy,
d;g — 2ty = 0, (8.2-11)
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where
Vi = B — K. (8.2-12)

Since B, > ngk, for guided modes (See Fig. 8.2-3), 742, > 0, so that (8.2-11) is
satisfied by the exponential functions exp(—~,,y) and exp(v,,y). Since the field must
decay away from the slab, we choose exp(—7,y) in the upper medium and exp(vymy)
in the lower medium

exp(—Ymy), y > d/2
m 2-1
'y {exp(fymy), y< a2 -

The decay rate +,, is known as the extinction coefficient. The wave is said to be an

evanescent wave. Substituting 3,, = nk, cos6,, and cos, = ng/n; into (8.2-12),
we obtain

2
o5l _ (8.2-14)

cos? 6, Extinction Coefficient

As the mode number m increases, 6,, increases, and -y,,, decreases. Higher-order modes
therefore penetrate deeper into the cover and substrate.

To determine the proportionality constants in (8.2-10) and (8.2-13), we match the
internal and external fields at y = d/2 and use the normalization

/ h u? (y)dy = 1. (8.2-15)

This gives an expression for u,,(y) valid for all y. These functions are illustrated in
Fig. 8.2-5. As in the mirror waveguide, all of the u,,(y) are orthogonal, i.e.,

/ Um (y) w(y) dy = 0, [ #m. (8.2-16)

—00

¥

Figure 8.2-5 Field distributions for TE guided modes in a dielectric waveguide. These results
should be compared with those shown in Fig. 8.1-4 for the planar-mirror waveguide.
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An arbitrary TE field in the dielectric waveguide can be written as a superposition
of these modes:

Eo(y,2) =) amtim(y) exp(—jBm?2), (8.2-17)

m

where a,, is the amplitude of mode m.

EXERCISE 8.2-1
Confinement Factor. The power confinement factor is the ratio of power in the slab to the total
power
d/2 o d
r, —Jo_ u2m(y) y (8.2-18)
Jo vk () dy

Derive an expression for I',, as a function of the angle 6,,, and the ratio d/\. Demonstrate that the
lowest-order mode (smallest 6,,,) has the highest power confinement factor.

The field distributions of the TM modes may be similarly determined (Fig. 8.2-
6). Since it is parallel to the slab boundary, the z component of the electric field
behaves similarly to the x component of the TE electric field. The analysis may start
by determining F, (y, 2). Using the properties of the constituent TEM waves, the other
components Ey(y, z) and H;(y, z) may readily be determined, as was done for mirror
waveguides. Alternatively, Maxwell’s equations may be used to determine these fields.

Figure 8.2-6 TE and TM modes in a dielectric planar waveguide.

The field distribution of the lowest-order TE mode (m = 0) is similar in shape to
that of the Gaussian beam (see Chapter 3). However, unlike the Gaussian beam, guided
light does not spread in the transverse direction as it propagates in the axial direction
(see Fig. 8.2-7). In a waveguide, the tendency of light to diffract is compensated by
the guiding action of the medium.

|
\/

\/

"

(b)

Figure 8.2-7 (a) Gaussian beam in a homogeneous medium. (b)) Guided mode in a dielectric
waveguide.
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C. Dispersion Relation and Group Velocities

The dispersion relation (w versus /3) is obtained by writing the self-consistency equa-
tion (8.2-2) in terms of 3 and w. Since k2 = (w/c1)? — 42, (8.2-2) gives

/ 2
2dy [ = — 32 = 2¢, + 27m. (8.2-19)
cf

Since cos@ = 3/(w/c;) and cos 6, = ng/ny = c1/ca, (8.2-3) becomes

2 Pr ,82 . w2/c§
tan —2— = m . (82—20)

Substituting (8.2-20) into (8.2-19) we obtain

tan2/d [ Tl W e O (8.2-21)

N _2 - iy TR e e o™
K2 €1 2 ) w?/c} — B Dispersion
Relation

This relation may be plotted by rewriting it in parametric form,

By 2 2 _ =9
i 2 —
Wt Nl [ e L 'n2 ng . B=nw/co, (8.2-22)
We  4/n%—n? m ]~

in terms of the effective refractive index n defined in (8.2-22), where w./27 =
¢o/2dNA is the mode-cutoff angular frequency. As shown in the schematic plot in
Fig. 8.2-8(a), the dispersion relations for the different modes lie between the lines
w = coff and w = ¢, the light lines representing propagation in homogeneous
media with the refractive indexes of the surrounding medium and the slab, respectively.
As the frequency increases above the mode cutoff frequency, the dispersion relation
moves from the light line of the surrounding medium toward the light line of the slab,
i.e., the effective refractive index n increases from ns to ny. This effect is indicative
of a stronger confinement of waves of shorter wavelength in the medium of higher
refractive index.

The group velocity is obtained from the dispersion relation by determining the slope
v = dw/d3 for each of the guided modes. The dependence of the group velocity on the
angular frequency is illustrated schematically in Fig. 8.2-8(b). As the angular frequency
increases above the mode cutoff frequency for each mode, the group velocity decreases
from its maximum value cy, reaches a minimum value slightly below c;, and then
asymptotically returns back toward c;. The group velocities of the allowed modes thus
range from cy to a value slightly below c;.

In propagating through a multimode waveguide, optical pulses spread in time since
the modes have different velocities, an effect called modal dispersion. In a single-
mode waveguide, an optical pulse spreads as a result of the dependence of the group ve-
locity on frequency. This effect is called group velocity dispersion (GVD). As shown
in Sec. 5.6, GVD occurs in homogeneous materials by virtue of the frequency depen-
dence of the refractive index of the material. Moreover, GVD occurs in waveguides
even in the absence of material dispersion. It is then a consequence of the frequency
dependence of the propagation coefficients, which are determined by the dependence
of wave confinement on wavelength. As illustrated in Fig. 8.2-8(b), each mode has
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w w / ] |
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¢ |Light line m=3
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(@) (b

Figure 8.2-8 Schematic representations of (a) the dispersion relation for the different TE modes,
m = 0,1,2,...; and (b) the frequency dependence of the group velocity, which is the derivative of
the dispersion relation, v = dw/dg.

a particular angular frequency at which the group velocity changes slowly with fre-
quency (the point at which v reaches its minimum value so that its derivative with
respect to w is zero). At this frequency, the GVD coefficient is zero and pulse spreading
is negligible.
An approximate expression for the group velocity may be obtained by taking the
total derivative of (8.2-19) with respect to 3,
Oy, dw

2d (2w dw 00
2_]%(?%—2 >_28,8 +28w B (8.2-23)

Substituting dw/dg = v, ky,/(w/c1) = siné, and k,/ = tanf, and introducing the
new parameters

8(707~ 8g0,
L = — 2-24
Az ﬁ i A7 s (8 2 )

we obtain

Y — dcotf+ Az
~ dcscl/c; + AT

(8.2-25)

As we recall from (8.1-14) and Fig. 8.1-6 for the planar-mirror waveguide, d cot 6 is
the distance traveled in the z direction as a ray travels once between the two boundaries.
This takes a time dcsc6/c;. The ratio d cot8/(dcsch)/c; = c¢1cosf yields the
group velocity for the mirror waveguide. The expression (8.2-25) for the group velocity
in a dielectric waveguide indicates that the ray travels an additional distance Az =
Opr /0P, a trip that lasts a time AT = —9p,. /Ow. We can think of this as an effective
penetration of the ray into the cladding, or as an effective lateral shift of the ray, as
shown in Fig. 8.2-9. The penetration of a ray undergoing total internal reflection is
known as the Goos—Hinchen effect (see Prob. 6.2-7). Using (8.2-24) it can be shown
that Az /AT = w/B = ¢1/ cosbé.
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Figure 8.2-9 A ray model that replaces the
reflection phase shift with an additional distance
Az traversed at velocity ¢; / cos 6.

EXERCISE 8.2-2

The Asymmetric Planar Waveguide. Examine the TE field in an asymmetric planar waveg-

uide consisting of a dielectric slab of width d and refractive index n; placed on a substrate of lower

refractive index n, and covered with a medium of refractive index n3 < ny < ny, as illustrated in

Fig. 8.2-10.

(a) Determine an expression for the maximum inclination angle 8 of plane waves undergoing total
internal reflection, and the corresponding numerical aperture NA of the waveguide.

(b) Write an expression for the self-consistency condition, similar to (8.2-4).
(c) Determine an approximate expression for the number of modes M (valid when M is very large).

Figure 8.2-10 Asymmetric planar
waveguide.

—| Qe

8.3 TWO-DIMENSIONAL WAVEGUIDES

The planar-mirror waveguide and the planar dielectric waveguide studied in the pre-
ceding two sections confine light in one transverse direction (the y direction) while
guiding it along the z direction. Two-dimensional waveguides confine light in the
two transverse directions (the x and y directions). The principle of operation and the
underlying modal structure of two-dimensional waveguides is basically the same as
planar waveguides; only the mathematical description is lengthier. This section is a
brief description of the nature of modes in two-dimensional waveguides. Details can
be found in specialized books. Chapter 9 is devoted to an important example of two-
dimensional waveguides, the cylindrical dielectric waveguide used in optical fibers.

Rectangular Mirror Waveguide

The simplest generalization of the planar waveguide is the rectangular waveguide
(Fig. 8.3-1). If the walls of the waveguide are mirrors, then, as in the planar case,
light is guided by multiple reflections at all angles. For simplicity, we assume that the
cross section of the waveguide is a square of width d. If a plane wave of wavevector
(kz, ky, k) and its multiple reflections are to exist self-consistently inside the waveg-
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uide, it must satisfy the conditions:

2k, d = 27wmy, my=1,2,... 831
2k,d = 2rm,, my,=1,2,..., A1)

which are obvious generalizations of (8.1-3).

kyA YA
nk,|—
g N T I—'t | Mirror
N
i X
w/d l
\ f—a —
t ? Figure 8.3-1 Modes of a rect-
\ angular mirror waveguide are char-
\ acterized by a finite number of
0 > discrete values of k. and k, repre-
0 —~ |—md nk, k sented by dots.

The propagation constant 3 = k, can be determined by k; and k, by using the
relation k2 4 k2 4 3 = n?k2. The three components of the wavevector therefore have
discrete values, yielding a finite number of modes. Each mode is identified by two
indexes m,, and m,, (instead of one index m). All positive integer values of m, and m,
are allowed as long as k2 + k2 < n?k2, as illustrated in Fig. 8.3-1.

The number of modes M can be easily determined by counting the number of dots
within a quarter circle of radius nk, in the k;, versusk, diagram (Fig. 8.3-1). If this
number is large, it may be approximated by the ratio of the area 7(nk,)?/4 to the area
of a unit cell (7/d)?,

2
M = .;3 <3)“_j) . (8.3-2)

Since there are two polarizations per mode, the total number of modes is actually 2M.
Comparing this to the number of modes in a one-dimensional mirror waveguide, M =
2d/ )\, we see that increase of the dimensionality yields approximately the square of the
number of modes. The number of modes is a measure of the degrees of freedom. When
we add a second dimension we simply multiply the number of degrees of freedom.

The field distributions associated with these modes are generalizations of those in
the planar case. Patterns such as those in Fig. 8.1-4 are obtained in each of the x and y
directions depending on the mode indexes m, and m,,.

Rectangular Dielectric Waveguide

A dielectric cylinder of refractive index n, with square cross section of width d is
embedded in a medium of slightly lower refractive index n. The waveguide nodes can
be determined using a similar theory. Components of the wavevector (k;, ky, k) must
satisfy the condition k2 + k2 < n3k2sin® 0., where 6, = cos™*(nz/ny), so that k,
and k, lie in the area shown in Fig. 8.3-2. The values of k; and k, for the different
modes can be obtained from a self-consistency condition in which the phase shifts at
the dielectric boundary are included, as was done in the planar case.
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Figure 8.3-2 Geometry of a
rectangular dielectric waveguide.
The values of k, and k, for the
waveguide modes are marked by
dots.

Unlike the mirror waveguide, k, and k, of the modes are not uniformly spaced.
However, two consecutive values of k; (or k,) are separated by an average value
of w/d (the same as for the mirror waveguide). The number of modes can there-
fore be approximated by counting the number of dots in the inner circle in the k,
versusk, diagram of Fig. 8.3-2, assuming an average spacing of 7/d. The result is

M = (n/4)(nik, sin6,)?/(w/d )2, from which

2d\’
M=~Z (—) (NA)Z, (8.3-3)
4\ o Number of TE Modes
where NA = \/n?% — nZ is the numerical aperture. The approximation is satisfactory

when M is large. There is also an identical number M of TM modes. The number of
modes is roughly the square of that for the planar dielectric waveguide (8.2-7).

Geometries of Channel Waveguides

Useful geometries for waveguides include the strip, the embedded-strip, the rib or
ridge, and the strip-loaded waveguides illustrated in Fig. 8.3-3. The exact analysis for
some of these geometries is not easy, and approximations are usually used. The reader
is referred to specialized books for further information about this topic.

Embedded strip Strip Rib or ridge Strip loaded

Figure 8.3-3 Various waveguide geometries. The darker the shading, the higher the refractive
index.

The waveguide may be fabricated in different configurations, as illustrated in
Fig. 8.3-4 for the embedded-strip geometry. S bends are used to offset the propagation
axis. The Y branch plays the role of a beamsplitter or combiner. Two Y branches may
be used to make a Mach—Zehnder interferometer. Two waveguides in close proximity,
or intersecting, can exchange power and may be used as directional couplers, as we
shall see in the next section.
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Straight S Bend Y branch Mach-Zehnder Directional coupler Intersection

Figure 8.3-4 Different configurations for waveguides.

Materials

The most advanced technology for fabricating waveguides is Ti:LiNbO3. An embedded-
strip waveguide is fabricated by diffusing titanium into a lithium niobate substrate
to increase its refractive index in the region of the strip. GaAs strip waveguides
are made by using layers of GaAs and AlGaAs of lower refractive index. Another
semiconductor material that has recently gained importance in waveguides is InP.
Glass waveguides are made by ion exchange. Polymer waveguides are also emerging
as a viable technology.

Waveguides can also be fabricated using silicon-on-insulator (Si-SiO2 or SOI), and
silicon and oxide etching tools, which are standards in the industry. This technology
is also called silica-on-silicon. Since the refractive index of silica is ~ 3.5 and
that of silica is less than 1.5, this combination of materials exhibits a large index-of-
refraction difference An. A typical SOI may take the form of a silicon rib waveguide
(see Fig. 8.3-3) on top of a layer of silica, serving as a cladding, with a silicon sub-
strate underneath. Silicon processing and fabrication has been well developed by the
microelectronics industry, and compatibility with CMOS fabrication technology is an
important advantage.

| Sisubstrate | Figure 8.3-5 LiNbO; and silica-on-

LiNbO3
silicon waveguides.

The ability to modulate the refractive index is an important requirement for materi-
als used in integrated-optic devices, such as light modulators and switches, as we shall
see in Chapters 20 and 23.

8.4 PHOTONIC-CRYSTAL WAVEGUIDES

Bragg-Grating Waveguide

We have seen so far that light may be guided by bouncing between two parallel reflec-
tors — e.g., planar mirrors as described in Sec. 8.1; or planar dielectric boundaries,
at which the light undergoes total internal reflection, as described in Sec. 8.2. Alter-
natively, Bragg grating reflectors (BGR) may be used (see Sec. 7.1C), as illustrated in
Fig. 8.4-1. The BGR is a stack of alternating dielectric layers that has special angle- and
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frequency-dependent reflectance. For a given angle, the reflectance is close to unity at
frequencies within a stop band. Similarly, at a given frequency, the reflectance is close
to unity within a range of angles, but omnidirectional reflection is also possible. Thus,
a wave with a given frequency can be guided through the waveguide by repeated reflec-
tions within a range of bounce angles. Within this angular range, the self-consistency
condition is satisfied at a discrete set of angles, each corresponding to a propagating
mode. The field distribution of a propagating mode is confined principally to the slab;
decaying (evanescent) tails reach into the adjacent grating layers, as illustrated in
Fig. 8.4-1.

BGR|

Waveguide | =7 S

Figure 8.4-1 Planar waveguide made
of a dielectric slab sandwiched between
two Bragg-grating reflectors (BGR).

BGR

Bragg-Grating Waveguide as a Photonic Crystal with a Defect Layer

If the upper and lower gratings of a Bragg-grating waveguide are identical, and the slab
thickness is comparable to the thickness of the periodic layers constituting the gratings,
then the entire medium may be regarded as a 1D periodic structure, i.e., a 1D photonic
crystal, but with a defect. For example, the device shown in Fig. 8.4-1 is periodic
everywhere except for the slab, which is a layer of different thickness and/or different
refractive index; the slab may therefore be viewed as a “defective” layer. As described
in Sec. 7.2, a perfect photonic crystal has a dispersion relation, or energy band diagram,
containing bandgaps within which no propagating modes exist. In the presence of the
“defective” layer, however, a mode whose frequency lies within the bandgap may exist,
but it is confined primarily within the layer. Such a mode corresponds to a frequency in
the dispersion diagram that lies within the photonic bandgap, as illustrated in Fig. 8.4-
2. Such a frequency is the analog of a defect energy level that lies within the bandgap
of a semiconductor crystal.

\/

Defect level Photonic bandgap
L A S —_————— e

Figure 8.4-2 Dispersion diagram of a photonic
0 K crystal with a defect layer.

2D Photonic-Crystal Waveguides

Waveguides may also be created by introducing a path of defects in a 2D photonic
crystal. In the example illustrated in Fig. 8.4-3(a), a 2D photonic crystal comprising a
set of parallel cylindrical holes, placed in a dielectric material at the points of a periodic
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triangular lattice, exhibits a complete photonic bandgap for waves traveling along di-
rections parallel to the plane of periodicity (normal to the cylindrical holes). The defect
waveguide takes the form of a line of absent holes. A wave entering the waveguide at
frequencies within the photonic bandgap does not leak into the surrounding periodic
media so that the light is guided through the waveguide. A typical profile of the field
distribution is illustrated in Fig. 8.4-3(a).

paersny
e
® 0“":"0 ® _

\

Figure 8.4-3 (a) Propagating mode in a photonic-crystal waveguide. (b) L-shaped photonic-crystal
waveguide.

Moreover, because of the omnidirectional nature of the photonic bandgap, light may
be guided through photonic-crystal waveguides with sharp bends and corners without
losing energy into the surrounding medium, as illustrated by the L-shaped waveguide
configuration shown in Fig. 8.4-3(b). Such behavior is not possible with conventional
dielectric waveguides based on total internal reflection.

8.5 OPTICAL COUPLING IN WAVEGUIDES

A. Input Couplers

Mode Excitation

As indicated in previous sections, light propagates in a waveguide in the form of modes.
The complex amplitude of the optical field is generally a superposition of these modes,

E(y,2) =Y amum(y) exp(—jfm2), (8.5-1)

where a,, is the amplitude, u,,(y) is the transverse distribution (assumed to be real),
and [3,, is the propagation constant of mode m.

The amplitudes of the different modes depend on the nature of the light source used
to excite the waveguide. If the source has a distribution that is a perfect match to a spe-
cific mode, only that mode will be excited. In general, a source of arbitrary distribution
s(y) excites different modes at different levels. The fraction of power transferred from
the source to mode m depends on the degree of similarity between s(y) and u,, (y).
To establish this, we write s(y) as an expansion (a weighted superposition) of the
orthogonal functions u,,(y),

s@W) = amum(y), (8.5-2)
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where the coefficient a;, which represents the amplitude of the excited mode [, is

al:/ s(y) wi(y) dy. (8.5-3)

—00

This expression can be derived by multiplying both sides of (8.5-2) by v, (y), integrat-
ing with respect to y, and using the orthogonality relation [ (y) unm(y) dy = 0
for [ # m along with the normalization condition. The coefficient a; represents the
degree of similarity (or correlation) between the source distribution s(y) and the mode
distribution ; (y).

Input Couplers

Light may be coupled into a waveguide by directly focusing it at one end (Fig. 8.5-1).
To excite a given mode, the transverse distribution of the incident light s(y) should
match that of the mode. The polarization of the incident light must also match that of
the desired mode. Because of the small dimensions of the waveguide slab, focusing
and alignment are usually difficult and coupling using this method is inefficient.

Lens

R,
y 4 ? -———E
/ Figure 8.5-1 Coupling an opti-
Un(y) cal beam into an optical waveguide.

In a multimode waveguide, the amount of coupling can be assessed by using a
ray-optics approach (Fig. 8.5-2). The guided rays within the waveguide are confined

to an angle 6, = cos™!(n2/n1). Because of refraction at the input to the waveg-
uide, this corresponds to an external angle 6, satisfying NA = sinf, = n;sinf, =

n1y/1 — (n2/n1)? = /n? — nZ, where NA is the numerical aperture of the waveg-

uide (see Exercise 1.2-5). For maximum coupling efficiency the incident light should
be focused within the angle 6,.

Figure 8.5-2 Focusing rays into
a multimode waveguide.

Light may also be coupled from a semiconductor source (a light-emitting diode
or a laser diode) into a waveguide by simply aligning the ends of the source and the
waveguide, leaving a small space that is selected for maximum coupling (Fig. 8.5-3).
In light-emitting diodes, light originates from a semiconductor junction region and is
emitted in all directions. In a laser diode, the emitted light is confined in a waveg-
uide of its own (light-emitting diodes and laser diodes are described in Chapter 17).
Other methods of coupling light into waveguides include the use of prisms, diffraction
gratings, and other waveguides, as discussed below.
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Waveguide

Light emitting | | Figure 8.5-3 End butt coupling
region LED or from a light-emitting diode or laser
laser diode diode into a waveguide.

Prism and Grating Side Couplers

Can optical power be coupled into a guided mode of a waveguide by use of a source
wave entering from the side at some angle 6; in the cladding, as shown in Fig. 8.5-4(a)?
The condition for such coupling is that the axial component of the wavevector of the
incident wave, nqk, cos 6;, equals the propagation constant 3, of the guided mode.
Since 3,, > ngk, (see Fig. 8.5-4), it is not possible to achieve the required phase
matching condition 3,, = ngk, cos 6;. The axial component of the wavevector of the
incident wave is simply too small. However, the problem may be alleviated by use of a
prism or a grating.

As illustrated in Fig. 8.5-4(b), a prism of refractive index n, > ng is placed at a
short distance d,, from the waveguide slab. The incident wave is refracted into the
prism where it undergoes total internal reflection at an angle 8,. The incident and
reflected waves form a wave traveling in the 2z direction with propagation constant
Bp = np ko, cos 6. The transverse field distribution extends into the space separating
the prism and the slab, as an evanescent wave that decays exponentially. If the distance
d, is sufficiently small, the wave is coupled into a mode of the slab waveguide with
a matching propagation constant 3,, ~ [, = npk,cosf,. Since n, > ng, phase
matching is possible, and if an appropriate interaction distance is selected, significant
power can be coupled into the waveguide. The operation may also be reversed to make
an output coupler, extracting light from the slab waveguide into free space.

The grating [Fig. 8.5-4(c)] addresses the phase-matching problem by modifying
the wavevector of the incoming wave. A grating with period A modulates the incom-
ing wave by phase factors 27q/Az, where ¢ = +1,4+2/.... These are equivalent
to changes of the axial component of the wavevector by factors 2wq/A. The phase
matching condition can now be satisfied if ng k, cos0; + 2wq/A = (B, with ¢ = 1,
for example. The grating may even be designed to enhance the ¢ = 1 component.

. Incident Incident
Ir{ﬁ;%%nt wave wave
> Grating
%\ 1y Ry %ru\-‘u-umn_
ny ——— L T i [y
(a) s (b) Prism coupler (c) Grating coupler

Figure 8.5-4 Prism and grating side couplers.

B. Coupled Waveguides

If two waveguides are sufficiently close such that their fields overlap, light can be
coupled from one into the other. Optical power can then be transferred between the
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waveguides, an effect that can be used to make optical couplers and switches. The
basic principle of waveguide coupling is presented here; couplers and switches are
discussed in Chapters 23 and 24.

Consider two parallel planar waveguides made of two slabs of widths d, separation
2a, and refractive indexes n; and ng, embedded in a medium of refraction index n that
is slightly smaller than n; and n9, as illustrated in Fig. 8.5-5. Each of the waveguides
is assumed to be single-mode. The separation between the waveguides is such that the
optical field outside the slab of one waveguide (in the absence of the other) overlaps
slightly with the slab of the other waveguide.

|
n
v \ \ £ 2a
d >;'::4r,_;,/‘?"{,f< | SR “h T
/ 2
I P ﬁ‘_\‘ ooy e e \\ / z Figure 8.5-5 Coupling between
d B L% el 3 e / = two parallel planar waveguides. At
B / 21 light is mostly in waveguide 1,
at z, it is divided equally between
A % &2 the two waveguides, and at z3 it is

[ Ly > mostly in waveguide 2.

The formal approach to studying the propagation of light in this structure is to
write Maxwell’s equations for the different regions and use the boundary conditions
to determine the modes of the overall system. These modes are different from those
of each of the waveguides in isolation. An exact analysis is not easy and is beyond
the scope of this book. For weak coupling, however, a simplified approximate theory,
known as coupled-mode theory, is often satisfactory.

Coupled-mode theory assumes that the mode of each waveguide is determined
as if the other waveguide were absent. In the presence of both waveguides, the
modes are taken to remain approximately unchanged, say wu;(y)exp(—jB12z) and
uz(y) exp(—jfB2z). Coupling is assumed to modify only the amplitudes of these
modes without affecting either their transverse spatial distributions or their propagation
constants. The amplitudes of the modes of waveguides 1 and 2 are therefore functions
of z, a1(z), and az(z). The theory is directed toward determining a;(z) and az(z)
under appropriate boundary conditions.

Coupling can be regarded as a scattering effect. The field of waveguide 1 is scattered
from waveguide 2, creating a source of light that changes the amplitude of the field in
waveguide 2. The field of waveguide 2 has a similar effect on waveguide 1. An analysis
of this mutual interaction leads to two coupled differential equations that govern the
variation of the amplitudes a;(z) and ax(z).

It can be shown (see the derivation at the end of this section) that the amplitudes
a1 (z) and ay(z) are governed by two coupled first-order differential equations

da . .

d_zl = — jCaexp(j AB z) ax(z) (8.5-4a)

da . .

—2 = — jCrpexp(—j ABz) ai(2), (8.5-4b)

dz Coupled-Mode
Equations
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where
AB =P — P2 (8.5-5)
is the phase mismatch per unit length and

9 0 2 a+d
Co = § (ng — n?) —0/ u1(y) u2(y) dy,
¢ (8.5-6)

K2 [
Ci2 = % (nf - n2) E/ duz(y) u1(y) dy

are coupling coefficients. We see from (8.5-4) that the rate of variation of a; is pro-
portional to ay, and vice versa. The coefficient of proportionality is the product of the
coupling coefficient and the phase mismatch factor exp(j Af z).

The coupled-mode equations may be solved by multiplying both sides of (8.5-4a)
by exp(—jApBz), taking the derivative with respect to z, substituting from (8.5-4b),
and solving the resultant second-order differential equation in a;(z). The result is:

a;1(z) = A(z)a1(0) + B(z)az(0) (8.5-7a)
az(z) = C(z)a1(0) + D(z)az(0), (8.5-7b)

where

Aiz)=D"(2) = exp(j A,Bz) (cosvz — j—é—g sin 7z) (8.5-8a)

2
B(z) = —eﬂ exp (j Aﬂz) sin vz (8.5-8b)
3 2
C(z) = 91—3 exp (—j Aﬁz) sinyz (8.5-8¢)
Vel 2

are elements of a transmission matrix T that relates the output and input fields and

AB\2
g = (—'B> + €%, C=+/C12Cy. (8.5-9)

2

If we assume that no light enters waveguide 2 so that az(0) = 0, then the optical
powers P;(z) o< |a;(2)|? and Py(z) o< |az(2)|? are

2 ABN
Pi(z) = P1(0) |cos® vz + 2 sin® vz (8.5-10a)
_ Caul® . 5
Ps(z) = P1(0) " sin” ~yz. (8.5-10b)

Thus, power is exchanged periodically between the two waveguides, as illustrated in
Fig. 8.5-6(a). The period is 7 /.
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When the waveguides are identical, i.e., ny = ng, (1 = (2, and AF = 0, the two
guided waves are said to be phase matched. In this case, v = €, €12 = C2; = €, and
the transmission matrix takes the simpler form

_[A(z) B(2)] _ cosCz —jsinCz
= lC(z) D(z)| ~ |-jsinCz cosCz |~ E2!)
Equations (8.5-10) then simplify to
P:1(z) = P1(0) cos? Cz (8.5-12a)
P5(z) = P1(0) sin? Cz. (8.5-12b)

The exchange of power between the waveguides can then be complete, as illustrated in
Fig. 8.5-6(b).

W ide 1 P10 Waveguide 1
P1(0) Lo e Sape aveguide : 1(0) =
Waveguide 2 e Waveguide 2 — -
PO« -~ ~~ Pi(@ -~ Pi(O)N —7|\ Lo o5
A T L W N \ 7 N i
\v/ \v/ \\// \ / \ /
Py(2) \ v\
\\ / \\ /
0 0 1 \l.// s \]I/
0 Z 0 Ly

(@ ®)

Figure 8.5-6 Periodic exchange of power between waveguides 1 and 2: (a) Phase mismatched
case; (b) Phase matched case.

We thus have a device capable of coupling any desired fraction of optical power
from one waveguide into another. At a distance z = Ly = 7/2C, called the coupling
length or the transfer distance, the power is transferred completely from waveguide 1
into waveguide 2 [Fig. 8.5-7(a)]. At a distance Lo /2, half the power is transferred, so
that the device acts as a 3-dB coupler, i.e., a 50/50 beamsplitter [Fig. 8.5-7(b)].

P/2

(@ ®)

Figure 8.5-7 Optical couplers: (a) switching power from one waveguide to another; (b) a 3-dB
coupler.
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Switching by Control of Phase Mismatch

A waveguide coupler of fixed length, Ly = m/2C for example, changes its power-
transfer ratio if a small phase mismatch Af is introduced. Using (8.5-10b) and (8.5-9),
the power-transfer ratio T = Py(Lg)/P1(0) may be written as a function of Ag,

2 1 AB Lo\ 2
7=""_inc? —\/1+< p °> : (8.5-13)
4 2 e Power-Transfer
Ratio

where sinc(z) = sin(nz) /(7). Figure 8.5-8 illustrates the dependence of the power-
transfer ratio J on the mismatch parameter A3 Ly. The ratio achieves a maximum
value of unity at A Ly = 0, decreases with increasing A3 Lo, and then vanishes

when AB Ly = V3.

=~

g!

g

:

g

by Figure 8.5-8 Dependence of the power transfer

2 ratio T = P3(Ly)/P1(0) on the phase mismatch

= N parameter AS Lq. The waveguide length is chosen
00 NGy such that for AG = 0 (the phase-matched case),

7r maximum power is transferred to waveguide 2,

Phase mismatch ABLg fe T —1

The dependence of the transferred power on the phase mismatch can be utilized in
making electrically activated directional couplers. If the mismatch A3 Ly is switched

between 0 and v/3 7, the light is switched from waveguide 2 to waveguide 1. Electrical
control of AJ can be achieved if the material of the waveguides is electro-optic (i.e.,
if its refractive index can be altered by applying an electric field). Such devices will be
examined in Chapters 20 and 23 in connection with electro-optic switches.

J *Derivation of the Coupled Wave Equations. We proceed to derive the differential equations
(8.5-4) that govern the amplitudes a;(z) and az(z) of the coupled modes. When the two waveguides
are not interacting they carry optical fields whose complex amplitudes are of the form

Ei(y,2) = a1ui(y) exp(—3jf12) (8.5-14a)
Es(y, z) = agua(y) exp(—jfaz). (8.5-14b)

The amplitudes a; and as are then constant. In the presence of coupling, we assume that the am-
plitudes a; and a, become functions of z but the transverse functions u;(y) and us(y), and the
propagation constants (3, and (35, are not altered. The amplitudes a; and a, are assumed to be slowly
varying functions of z in comparison with the distance 3~! (the inverse of the propagation constant,
[ or 32), which is of the order of magnitude of the wavelength of light.

The presence of waveguide 2 is regarded as a perturbation of the medium outside waveguide 1 in
the form of a slab of refractive index no — n and width d at a distance 2a. The excess refractive index
(n2 — n) and the field F5 correspond to an excess polarization density P = (€2 — €)Ey = €,(n2 —
n?) E,, which creates a source of optical radiation into waveguide 1 [see (5.2-25)] 81 = —,0?P/Ot?
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with complex amplitude
S = pow? P = prow’e, (n% = n2) E, = (n% - n2) k2E,
= (k — &) Ez. (8.5-15)

Here €5 and € are the electric permittivities associated with the refractive indexes n, and n, respec-
tively, and ks = nok,. This source is present only in the slab of waveguide 2.

To determine the effect of such a source on the field in waveguide 1, we write the Helmholtz
equation in the presence of a source as

V2E, + K2E; = S, = — (kj — k°) Ex. (8.5-16a)

We similarly write the Helmholtz equation for the wave in waveguide 2 with a source generated as a
result of the field in waveguide 1,

V2E; + k3Ey = =S, = — (K} — k%) Ex, (8.5-16b)

where k1 = n1k,. Equations (8.5-16) are two coupled partial different equations that we solve to
determine E; and E. This type of perturbation analysis is valid only for weakly coupled waveguides.

We now write F(y,2) = ai(2)ei(y,2) and Ex(y,z) = aa(z)ez(y, 2), where e;(y,2) =
u1(y) exp(—jfiz) and ez(y,z2) = wuq2(y)exp(—jf22) and note that e; and e, must satisty the
Helmholtz equations,

V2e, + kie; =0 (8.5-17a)
Ve, + k2es =0, (8.5-17b)

where k1 = n1k, and k2 = nok, for points inside the slabs of waveguides 1 and 2, respectively, and
k1 = ko = nk, elsewhere. Substituting F; = a;e; into (8.5-16a), we obtain

a4, S dolt
d2 ' T “dz dz

= — (k% — kz) Qgé€q. (85'18)

Noting that a; varies slowly, whereas e; varies rapidly with z, we neglect the first term of (8.5-
18) in comparison with the second. The ratio between these terms is [(dV/dz)e;]/[2¥de; /dz] =
[((d¥/dz)e1]/[2%(—jP1e1)] = j(d¥/¥)/26; dz where ¥ = da; /dz. The approximation is valid if
dVU /¥ < f3; dz, i.e., if the variation in a,(2) is slow in comparison with the length 3; .

We proceed by substituting e; = u; exp(—j612) and es = wup exp(—jf22) into (8.5-18). Ne-
glecting the first term leads to

da _ i .
2 (—iB) wa(y) €77 = — (k] — k?) az ua(y) e 72", (8.5-19)

Multiplying both sides of (8.5-19) by u4(y), integrating with respect to y, and using the fact that
u2(y) is normalized so that its integral is unity, we finally obtain

da

—LeIP1Z = i@y ay(z) €772, (8.5-20)
dz
where Cs; is given by (8.5-6). A similar equation is obtained by repeating the procedure for waveg-
uide 2. These equations yield the coupled differential equations (8.5-4). ]

C. Periodic Waveguides

The analysis of light propagation in two coupled parallel planar waveguides may,
in principle, be generalized to multiple waveguides, although the resultant coupled
equations are difficult to solve. In the limit of a large number of parallel identical slabs
separated by equal distances, the theory of light propagation in periodic media, which is
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presented in Sec. 7.2, may be readily applied. It is instructive to compare the dispersion
diagram for light propagation in a slab dielectric waveguide, as shown in Fig. 8.2-8(a),
to that for light propagation in a periodic dielectric medium comprising a collection
of parallel dielectric slabs, as shown in Fig. 7.2-7. These diagrams are reproduced in
Fig. 8.5-9 for comparison.

| b
d % FaED T e R ny
w
2&)2;
w= C2ﬁ )
wa
0 Propagation constant 3 = k, 0 Propagation constant § =k, g

(@ ®)

Figure 8.5-9 Dispersion diagram of (a) slab waveguide with cutoff angular frequency w, =
(w/d)(co/NA); (b) periodic waveguide with Bragg angular frequency wg = (7/A)(c, /7).

In the single-slab waveguide, light travels in modes, each with a dispersion line lying
in the region between the light lines w = ¢; 8 and w = ¢ 3. At any frequency, there is
at least one mode. In the periodic waveguide, the dispersion lines broaden into bands
separated by photonic bandgaps. Here, we assume that the modes travel in a direction
parallel to the layers (the z direction in Fig. 8.5-9, which corresponds to the = direction
in Fig. 7.2-7), so that the bands also lie in the region between the light lines.

8.6 SUB-WAVELENGTH METAL WAVEGUIDES (PLASMONICS)

As shown in earlier sections of this chapter, it is difficult to confine an optical wave
to dimensions much smaller than a wavelength (see also Sec. 4.4D). In the mirror
waveguide described in Sec. 8.1, for example, a wave of wavelength X cannot be guided
if the mirror separation d is smaller than \/2 (since the wave frequency would then be
smaller than the cutoff frequency ¢/2d). In the slab dielectric waveguide described in
Sec. 8.2, if the width d is reduced below \/2, only a single mode can be supported,
and if d is reduced further, there is substantial leakage of the guided wave into the
cladding. Light can, however, be confined and guided at the sub-wavelength scale by
the use of sub-wavelength metallic structures, such as thin films and metallic particles
buried in dielectric media. This approach has become feasible in recent years as a
result of advances in nanotechnology (nanostructures and nanoparticles), and the field
is known as plasmonics.
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The propagation of light in a bulk metal was described in Sec. 5.5D. It was shown
that at frequencies below the plasma frequency, the optical wave decays with an at-
tenuation coefficient that decreases as the frequency increases, and vanishes at the
plasma frequency; the free electrons then undergo longitudinal oscillations associated
with plasmons. Clearly, bulk metals cannot confine and guide optical waves. At a
metal-dielectric interface, however, Maxwell’s equations admit solutions in the form
of charge-density waves coupled with optical waves, generally referred to as surface
plasmon polaritons (SPPs). The conduction electrons oscillate in the longitudinal
direction and the electromagnetic field is confined to sub-wavelength dimensions near
the surface of the metal. These coupled waves can be excited at frequencies below
the plasma frequency and become most localized at the plasma frequency. SPPs allow
light to be controlled and manipulated at the nanometer spatial scale, while retaining
the high temporal frequency associated with optical waves.

Waveguides based on SPPs can, for example, be implemented by using a dielectric
slab surrounded by metallic claddings. The width of the slab must be sufficiently small
for the confined SPP waves at the claddings to overlap, thereby permitting the coupled
SPP waves to be guided. The dispersion relation for such a structure may be obtained
by matching the boundary conditions at the dielectric—metal interfaces using, e.g., the
Drude model for the metal (see Sec. 5.5D). For sufficiently small slab thicknesses, large
propagation constants can be achieved even for frequencies far below the bulk-metal
plasma frequency. These plasmonic waveguides are made of metal/insulator/metal
(MIM) heterostructures of submicrometer dimensions. Modes at near-infrared wave-
lengths can be localized at the nanometer scale, but the propagation length is limited.

Another class of plasmonic waveguides with subwavelength mode size makes use
of arrays of metallic nanoparticles that are sufficiently close so that their localized
plasmonic fields overlap. Such metamaterials (see Sec. 5.7) admit guided modes of
submicrometer size at frequencies of the individual particle plasmons or at the inter-
particle gap resonance.

Plasmonics seeks to couple the domains of highly integrated electronics (with di-
mensions < 100 nm) and optical-frequency photonics (with bandwidths > 100 THz).
It is envisioned to have a number of valuable applications in nano-optics, including
intrachip interconnects; the transmission of light through objects that are ordinarily
opaque (as a result of plasmon excitations at nanosize holes in the material); the cre-
ation of distributed point sources of light generated at the surfaces of metallic-coated
nanosize objects; and devices such as nanoantennas, nanoresonators, and nanowaveg-
uides that are analogous to electrical circuit elements but operate in the visible region
of the spectrum. Biosensing applications, based on the sensitivity of plasmon excita-
tions to the properties of a dielectric medium surrounding a metallic nanostructure,
include measurements of the thickness of colloidal films as well as the screening and
quantifying of protein binding events.
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PROBLEMS

8.1-3  Field Distribution.
(a) Demonstrate that a single TEM plane wave E, (y, z)=A exp(—jk,y) exp(—jfz) cannot
satisfy the boundary conditions, E,(+d/2,z) = 0 at all z, in the mirror waveguide
illustrated in Fig. 8.1-1.
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(b) Show that the sum of two TEM plane waves written as E,(y, z) = A; exp(—jky1y)
exp(—jf1z) + Az exp(—jky2y) exp(—jB22) does not satisfy the boundary conditions if
Ay = %Ay, by = Py, and by = —kyo = ma/d wherem = 1,2,. ...

Modal Dispersion. Light of wavelength A, = 0.633 pm is transmitted through a mirror
waveguide of mirror separation d = 10 um and n = 1. Determine the number of TE and TM
modes. Determine the group velocities of the fastest and the slowest mode. If a narrow pulse
of light is carried by all modes for a distance 1 m in the waveguide, how much does the pulse
spread as a result of the differences of the group velocities?

Parameters of a Dielectric Waveguide. Light of free-space wavelength A, = 0.87 pm is
guided by a thin planar film of width d = 2 pym and refractive index n; = 1.6 surrounded by
a medium of refractive index n, = 1.4.

(a) Determine the critical angle 6, and its complement 8., the numerical aperture NA, and

the maximum acceptance angle for light originating in air (n = 1).

(b) Determine the number of TE modes.
(c) Determine the bounce angle 6 and the group velocity v of the m = 0 TE mode.

Effect of Cladding. Repeat Prob. 8.2-3 if the thin film is suspended in air (ny = 1). Compare
the results.

Field Distribution. The transverse distribution ., (y) of the electric-field complex amplitude
of a TE mode in a slab waveguide is given by (8.2-10) and (8.2-13). Derive an expression for
the ratio of the proportionality constants. Plot the distribution of the m = 0 TE mode for a
slab waveguide with parameters n, = 1.48, no = 1.46, d = 0.5 pm, and A\, = 0.85 pm, and
determine its confinement factor (percentage of power in the slab).

Derivation of the Field Distributions Using Maxwell’s Equations. Assuming that the
electric field in a symmetric dielectric waveguide is harmonic within the slab and exponential
outside the slab and has a propagation constant 3 in both media, we may write E,(y, z) =
u(y) e 7P, where A

Acos(kyy +¢), —d/2<y<d/2,
u(y) = § Bexp(—y), y > d/2,
B exp(7y), y<d/2

For the Helmholtz equation to be satisfied, k2 + 82 = nikZ and —* + (> = n3k2.

Use Maxwell’s equations to derive expressions for Hy(y, z) and H,(y, z). Show that the

boundary conditions are satisfied if 3, -, and k, take the values S, ¥, and ky,, derived in

the text and verify the self-consistency condition (8.2-4).

Single-Mode Waveguide. What is the largest thickness d of a planar symmetric dielectric

waveguide with refractive indexes n; = 1.50 and ny = 1.46 for which there is only one TE

mode at A, = 1.3 pum? What is the number of modes if a waveguide with this thickness is
used at A\, = 0.85 pm instead?

Mode Cutoff. Show that the cutoff condition for TE mode m > 0 in a symmetric slab

waveguide with n; & n, is approximately A2 =~ 8n; An d?/m?, where An = ny — na.

TM Modes. Derive an expression for the bounce angles of the TM modes similar to (8.2-4).

Use a computer to generate a plot similar to Fig. 8.2-2 for TM modes in a waveguide with

sinf. = 0.3 and A\/2d = 0.1. What is the number of TM modes?

Modes of a Rectangular Dielectric Waveguide. A rectangular dielectric waveguide has a

square cross section of area 10~2 mm? and numerical aperture NA = 0.1. Use (8.3-3) to plot

the number of TE modes as a function of frequency v. Compare your results with Fig. 8.2-4.

Coupling Coefficient Between Two Slabs.

(a) Use (8.5-6) to determine the coupling coefficient between two identical slab waveguides
of width d = 0.5 um, spacing 2a = 1.0 um, refractive indexes n; = ng = 1.48, in a
medium of refractive index n = 1.46, at A, = 0.85 pm. Assume that both waveguides
are operating in the m = 0 TE mode and use the results of Prob. 8.2-5 to determine the
transverse distributions.

(b) Determine the length of the waveguides so that the device acts as a 3-dB coupler.
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