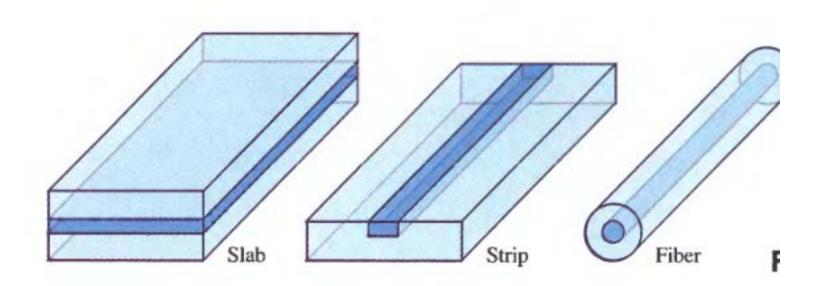
Optical waveguides



Planar-mirror waveguide

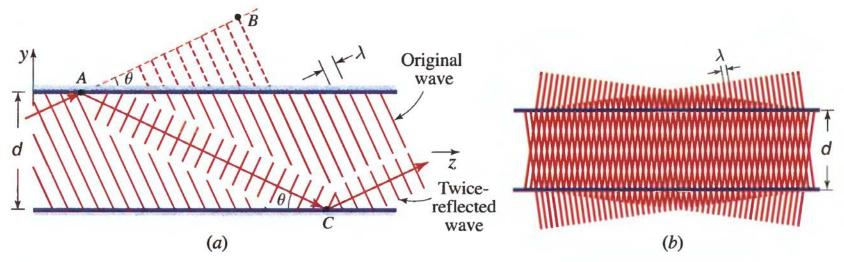


Figure 8.1-2 (a) Condition of self-consistency: as a wave reflects twice it duplicates itself. (b) At angles for which self-consistency is satisfied, the two waves interfere and create a pattern that does not change with z.

$$\Delta \varphi = 2\pi \overline{AC}/\lambda - 2\pi - 2\pi \overline{AB}/\lambda = 2\pi q$$
 $\sin \theta_m = m \frac{\lambda}{2d}, \qquad m = 1, 2, \dots$
 $\beta \equiv k_z = k \cos \theta. \qquad \beta_m^2 = k^2 - \frac{m^2 \pi^2}{d^2}.$

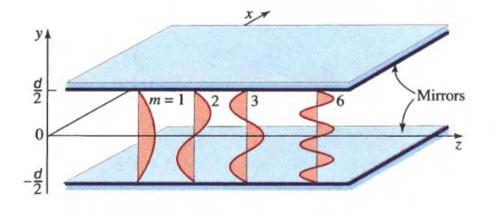


Figure 8.1-4 Field distributions of the modes of a planar-mirror waveguide.

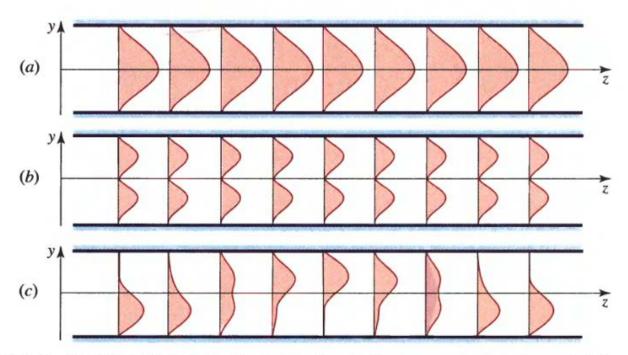


Figure 8.1-8 Variation of the intensity distribution in the transverse direction y at different axial distances z. (a) The electric-field complex amplitude in mode 1 is $E(y,z) = u_1(y) \exp(-j\beta_1 z)$, where $u_1(y) = \sqrt{2/d} \cos(\pi y/d)$. The intensity does not vary with z. (b) The complex amplitude in mode 2 is $E(y,z) = u_2(y) \exp(-j\beta_2 z)$, where $u_2(y) = \sqrt{2/d} \sin(2\pi y/d)$. The intensity does not vary with z. (c) The complex amplitude in a mixture of modes 1 and 2, $E(y,z) = u_1(y) \exp(-j\beta_1 z) + u_2(y) \exp(-j\beta_2 z)$. Since $\beta_1 \neq \beta_2$, the intensity distribution changes with z.

This relation may be written in terms of the cutoff angular frequency $\omega_c = 2\pi\nu_c = \pi c/d$ as

$$eta_m = rac{\omega}{c} \sqrt{1 - m^2 rac{\omega_c^2}{\omega^2}} \,.$$
 (8.1-12) Dispersion Relation

As shown in Fig. 8.1-5(b) for $m=1,2,\ldots$, the propagation constant β for mode m is zero at angular frequency $\omega=m\omega_c$, increases monotonically with angular frequency, and ultimately approaches the linear relation $\beta=\omega/c$ for sufficiently large values of β .

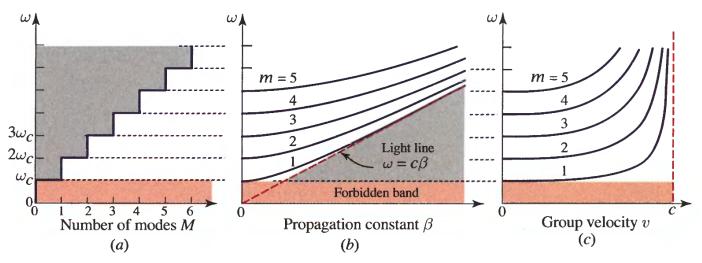


Figure 8.1-5 (a) Number of modes M as a function of angular frequency ω . Modes are not permitted for angular frequencies below the cutoff, $\omega_c = \pi c/d$. M increments by unity as ω increases by ω_c . (b) Dispersion relation. A forbidden band exists for angular frequencies below ω_c . (c) Group velocities of the modes as a function of angular frequency.

Planar-dielectric waveguide

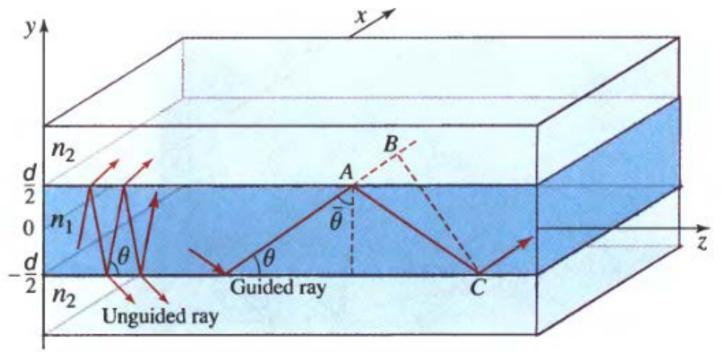


Figure 8.2-1 Planar dielectric (slab) waveguide. Rays making an angle $\theta < \bar{\theta}_c = \cos^{-1}(n_2/n_1)$ are guided by total internal reflection.

$$\frac{2\pi}{\lambda} 2\mathbf{d} \sin \theta - 2\varphi_r = 2\pi m, \qquad m = 0, 1, 2, \dots$$

$$2k_y \mathbf{d} - 2\varphi_r = 2\pi m.$$

$$\theta_1 = \pi/2 - \theta$$
 and $\theta_c = \pi/2 - \overline{\theta}_c$ in (6.2-11)

$$\tan \frac{\varphi_r}{2} = \sqrt{\frac{\sin^2 \overline{\theta}_c}{\sin^2 \theta} - 1},$$

so that φ_r varies from π to 0 as θ varies from 0 to $\overline{\theta}_c$. Rewriting (8.2-1) in the form $\tan(\pi d \sin \theta/\lambda - m\pi/2) = \tan(\varphi_r/2)$ and using (8.2-3), we obtain

Compare with planar-mirror case:

$$\tan\left(\pi\frac{d}{\lambda}\sin\theta-m\frac{\pi}{2}\right)=\sqrt{\frac{\sin^2\overline{\theta}_c}{\sin^2\theta}-1}.\qquad \sin\theta_m=m\,\frac{\lambda}{2d},\qquad m=1,2,\dots$$

Figure 8.2-2 Graphical solution of (8.2-4) to determine the bounce angles θ_m of the modes of a planar dielectric waveguide. The RHS and LHS of (8.2-4) are plotted versus $\sin \theta$. The intersection points, marked by filled circles, determine $\sin \theta_m$. Each branch of the tan or cot function in the LHS corresponds to a mode. In this plot $\sin \overline{\theta}_c = 8(\lambda/2d)$ and the number of modes is M = 9. The open circles mark $\sin \theta_m = m\lambda/2d$, which provide the bounce angles of the modes of a planar-mirror waveguide of the same dimensions.

"Internal" solution:

$$u_m(y) \propto \begin{cases} \cos\left(2\pi \frac{\sin \theta_m}{\lambda} y\right), & m = 0, 2, 4, \dots \\ \sin\left(2\pi \frac{\sin \theta_m}{\lambda} y\right), & m = 1, 3, 5, \dots, \end{cases} - \frac{\mathbf{d}}{2} \leq y \leq \frac{\mathbf{d}}{2},$$

"External" solution, match at boundaries (homework):

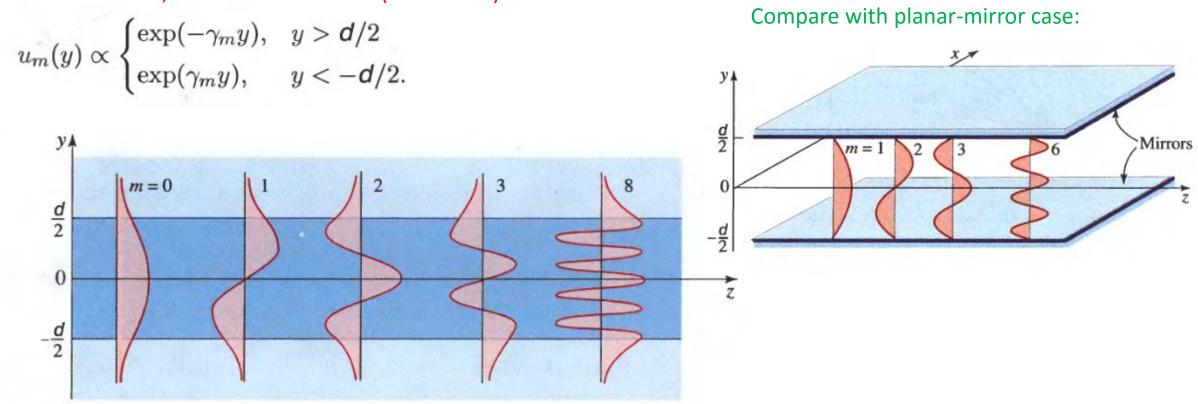


Figure 8.2-5 Field distributions for TE guided modes in a dielectric waveguide. These results should be compared with those shown in Fig. 8.1-4 for the planar-mirror waveguide.

Two-dimensional waveguides

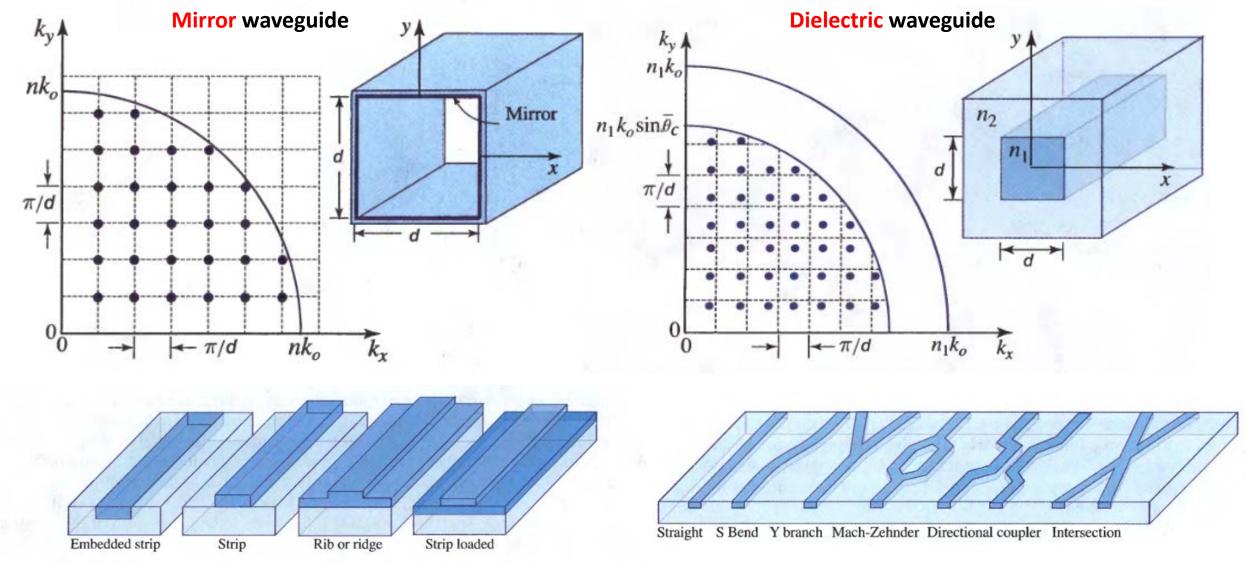


Figure 8.3-3 Various waveguide geometries. The darker the shading, the higher the refractive index.

Photonic crystal waveguides

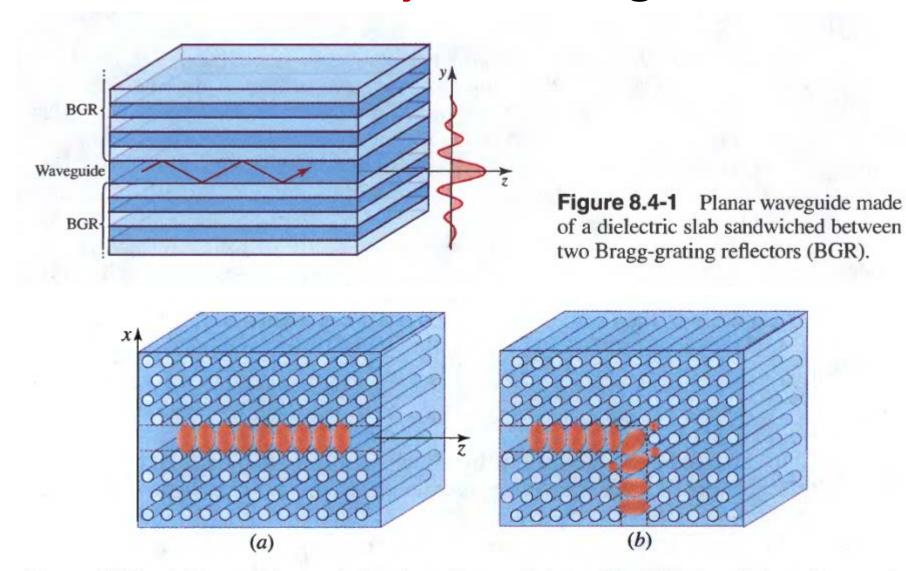


Figure 8.4-3 (a) Propagating mode in a photonic-crystal waveguide. (b) L-shaped photonic-crystal waveguide.

Fiber optics

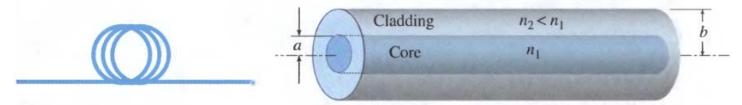


Figure 9.0-1 An optical fiber is a cylindrical dielectric waveguide with an inner core and an outer cladding.

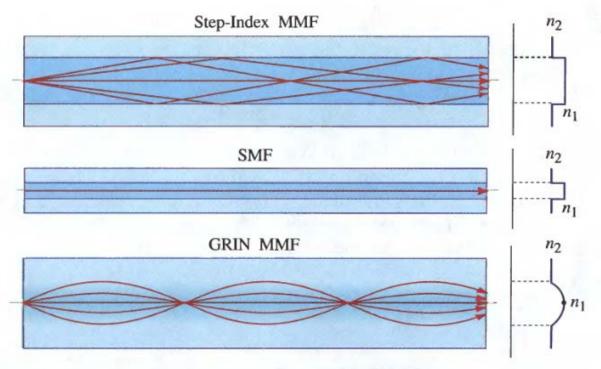


Figure 9.0-2 Geometry, refractive-index profile, and typical rays in a step-index multimode fiber (MMF), a single-mode fiber (SMF), and a graded-index multimode fiber (GRIN MMF).

Fiber optics as guided rays

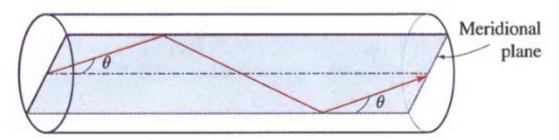


Figure 9.1-1 The trajectory of a meridional ray lies in a plane that passes through the fiber axis. The ray is guided if $\theta < \overline{\theta}_c = \cos^{-1}(n_2/n_1)$.

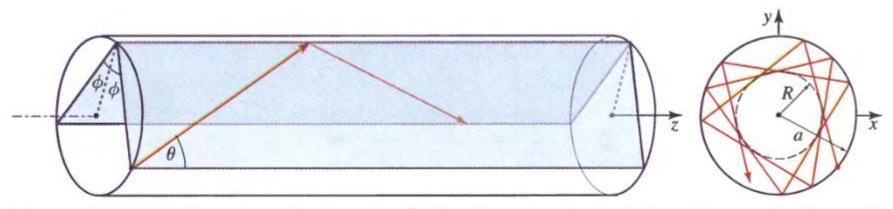


Figure 9.1-2 A skewed ray lies in a plane offset from the fiber axis by a distance R. The ray is identified by the angles θ and ϕ . It follows a helical trajectory confined within a cylindrical shell with inner and outer radii R and a, respectively. The projection of the ray on the transverse plane is a regular polygon that is not necessarily closed.

Fiber optics as guided rays

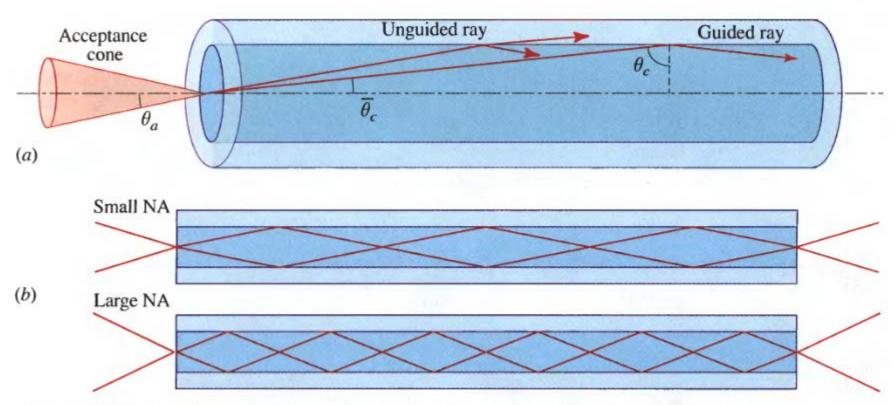


Figure 9.1-3 (a) The acceptance angle θ_a of a fiber. Rays within the acceptance cone are guided by total internal reflection. The numerical aperture NA = $\sin \theta_a$. The angles θ_a and $\overline{\theta}_c$ are typically quite small; they are exaggerated here for clarity. (b) The light-gathering capacity of a large NA fiber is greater than that of a small NA fiber.

Fiber optics as guided WAVES

$$u(r) \propto \begin{cases} J_l(k_T r), & r < a \text{ (core)} \\ K_l(\gamma r), & r > a \text{ (cladding)}, \end{cases}$$

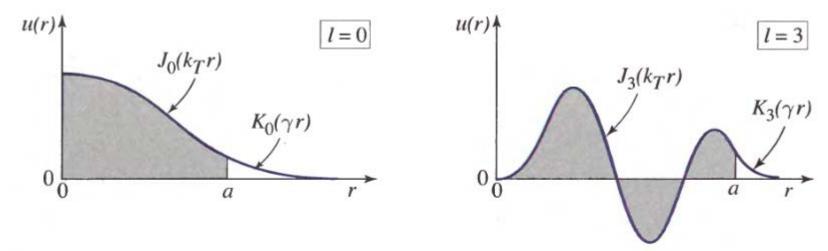


Figure 9.2-2 Examples of the radial distribution u(r) provided in (9.2-6) for l=0 and l=3. The shaded and unshaded areas represent the fiber core and cladding, respectively. The parameters k_T and γ , and the two proportionality constants in (9.2-6), have been selected such that u(r) is continuous and has a continuous derivative at r=a. Larger values of k_T and γ lead to a greater number of oscillations in u(r).

Similar to the planar (& 2D) dielectric waveguide solutions:

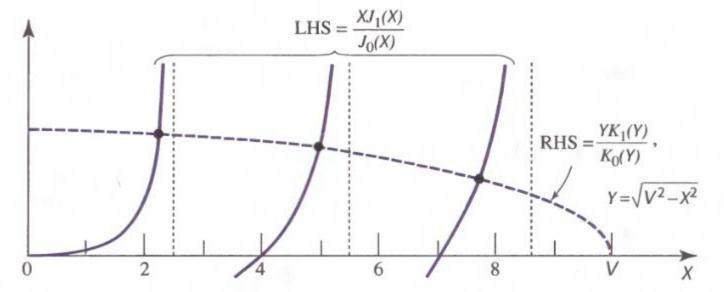


Figure 9.2-3 Graphical construction for solving the characteristic equation (9.2-14). The left- and right-hand sides are plotted as functions of X. The intersection points are the solutions. The LHS has multiple branches intersecting the abscissa at the roots of $J_{l\pm 1}(X)$. The RHS intersects each branch once and meets the abscissa at X = V. The number of modes therefore equals the number of roots of $J_{l\pm 1}(X)$ that are smaller than V. In this plot l = 0, V = 10, and either the - or + signs in (9.2-14) may be used.

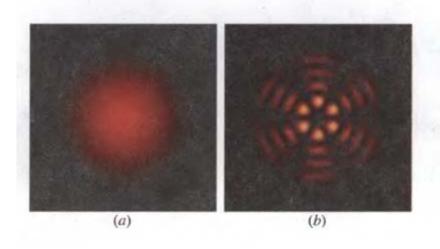


Figure 9.2-4 Intensity distributions of (a) the LP₀₁ and (b) the LP₃₄ modes in the transverse plane, assuming an azimuthal dependence of the form $\cos l\phi$. The distribution of the fundamental LP₀₁ mode is similar to that of the Gaussian beam discussed in Chapter 3.

Polarization maintaining fibers

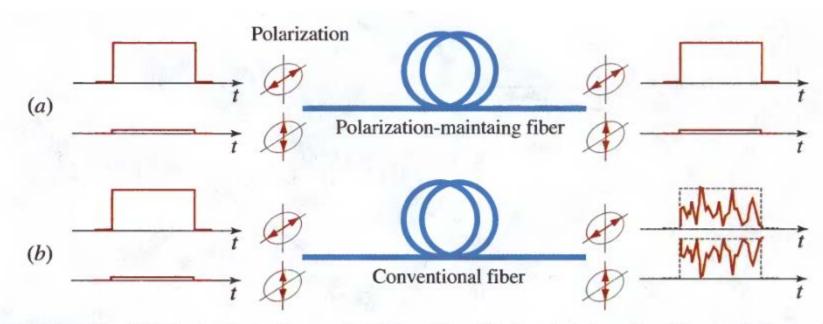


Figure 9.2-9 (a) Ideal polarization-maintaining fiber. (b) Random transfer of power between two polarizations.

Why telecom uses 1550 nm light:

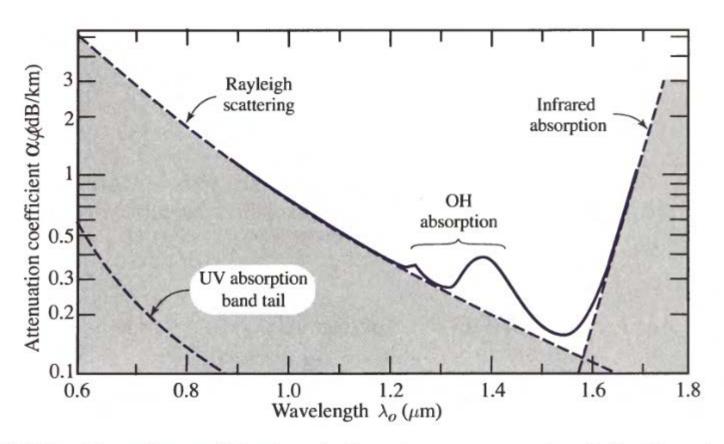


Figure 9.3-2 Attenuation coefficient α of silica glass versus wavelength λ_o . There is a local minimum at 1.3 μ m ($\alpha \approx 0.3$ dB/km) and an absolute minimum at 1.55 μ m ($\alpha \approx 0.15$ dB/km).

Finally, the ultimate fiber: Photonic crystal fibers

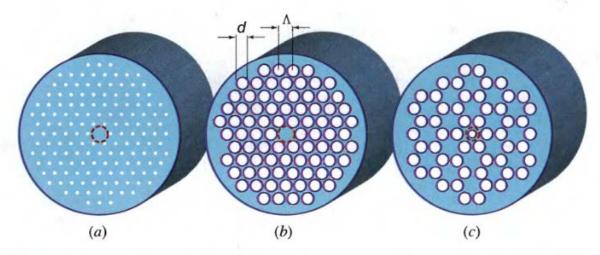


Figure 9.4-1 Various forms of holey fibers. (a) Solid core (dotted circle) surrounded by a cladding of the same material but suffused with a periodic array of cylindrical air holes whose diameters are much smaller than a wavelength. The average refractive index of the cladding is lower than that of the core. (b) Photonic-crystal holey fiber with cladding that contains a periodic array of large air holes and a solid core (dotted circle). (c) Photonic-crystal holey fiber with cladding that contains a periodic array of large air holes and a core that is an air hole of a different size (dotted circle).

Benefits:

- Single mode for a broad range of wavelengths
- Large mode area, e.g., step-index fiber 5 um, vs 50 um
- -> can handle more power
- Dispersion can also be engineered

Goos-Hänchen Shift. Consider two TE plane waves undergoing total internal reflection at angles θ and $\theta + d\theta$, where $d\theta$ is an incremental angle. If the phase retardation introduced between the reflected waves is written in the form $d\varphi = \xi d\theta$, find an expression for the coefficient ξ . Sketch the interference patterns of the two incident waves and the two reflected waves and verify that they are shifted by a lateral distance proportional to ξ . When the incident wave is a beam (composed of many plane-wave components), the reflected beam is displaced laterally by a distance proportional to ξ . This is known as the Goos-Hänchen effect.