Optical waveguides




Planar-mirror waveguide
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Figure 8.1-2 (a) Condition of self-consistency: as a wave reflects twice it duplicates itself. (b) At
angles for which self-consistency is satisfied, the two waves interfere and create a pattern that does
not change with z.
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dl Figure 8.1-4 Field distributions
2 m=1 of the modes of a planar-mirror
LN waveguide.
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Figure 8.1-8 Variation of the intensity distribution in the transverse direction y at different axial
distances z. (a) The electric-field complex amplitude in mode 1 is E(y, z) = u,(y)exp(—jfi2),
where u;(y) = /2/d cos(wy/d). The intensity does not vary with z. (b) The complex amplitude
in mode 2 is E(y,z) = ua(y)exp(—jf2z), where us(y) = 1/2/d sin(2ny/d). The intensity
does not vary with z. (¢) The complex amplitude in a mixture of modes 1 and 2, E(y,z) =
uy (y) exp(—jBi2) + u2(y) exp(—jB22). Since B, # [, the intensity distribution changes with 2.



This relation may be written in terms of the cutoff angular frequency w,. = 27, =

mwc/d as
w w?
B = =4 [1 = m22%. (8.1-12)
c w

Dispersion Relation

As shown in Fig. 8.1-5(b) for m = 1, 2, . . ., the propagation constant 3 for mode m is
zero at angular frequency w = muw,, increases monotonically with angular frequency,
and ultimately approaches the linear relation 3 = w/c for sufficiently large values of

B.
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Figure 8.1-5 (a) Number of modes M as a function of angular frequency w. Modes are not
permitted for angular frequencies below the cutoff, w. = we¢/d. M increments by unity as w increases
by w.. (b) Dispersion relation. A forbidden band exists for angular frequencies below w,. (¢) Group
velocities of the modes as a function of angular frequency.



Planar-dielectric waveguide
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Figure 8.2-1 Planar dielectric
(slab) waveguide. Rays making an
angle 6 < 6. = cos™'(ng/n,) are
guided by total internal reflection.

fa

" Unguided ray

2 _
f2d sinf — 20, = 2rm, m=0,1,2,... 0, = /2 —0and 6, = 7/2 — 0, in (6.2-11)
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so that ¢, varies from 7 to 0 as # varies from 0 to ... Rewriting (8.2-1) in the form
tan(rdsin@/A — mn/2) = tan(y,/2) and using (8.2-3), we obtain
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Figure 8.2-2 Graphical solution of (8.2-4) to determine the bounce angles @,,, of the modes of a
planar dielectric waveguide. The RHS and LHS of (8.2-4) are plotted versus sin . The intersection
points, marked by filled circles, determine sin f,,,. Each branch of the tan or cot function in the LHS
corresponds to a mode. In this plot sin 6, = 8(}./20" ) and the number of modes is M = 9. The open
circles mark sin,, = mA/2d, which provide the bounce angles of the modes of a planar-mirror
waveguide of the same dimensions.
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“Internal” solution:

cos (2?1.5111)‘9;” y) y m=0,2.4;...
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“External” solution, match at boundaries (homework):

exp(—ymy), y>d/2
U (Y) x
exp(1my), y<-—d/2.

Compare with planar-mirror case:

Figure 8.2-5 Field distributions for TE guided modes in a dielectric waveguide. These results
should be compared with those shown in Fig. 8.1-4 for the planar-mirror waveguide.



Two-dimensional waveguides

Dielectric waveguide
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Figure 8.3-3 Various waveguide geometries. The darker the shading, the higher the refractive

index.



Photonic crystal waveguides
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Figure 8.4-1 Planar waveguide made
of a dielectric slab sandwiched between
two Bragg-grating reflectors (BGR).
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Figure 8.4-3 (a) Propagating mode in a photonic-crystal waveguide. (b) L-shaped photonic-crystal

waveguide.



Fiber optics
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Figure 9.0-1 An optical fiber is a cylindrical dielectric waveguide with an inner core and an outer

cladding.

Step-Index MMF
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Figure 9.0-2 Geometry, refractive-index profile, and typical rays in a step-index multimode fiber
(MMF), a single-mode fiber (SMF), and a graded-index multimode fiber (GRIN MMF).



Fiber optics as guided rays

\ Meridional
plane

Figure 9.1-1 The trajectory of a meridional ray lies in a plane that passes through the fiber axis.
The ray is guided if 8 < 6, = cos™ ' (nz/n,).

Figure 9.1-2 A skewed ray lies in a plane offset from the fiber axis by a distance R. The ray is
identified by the angles ¢ and ¢. It follows a helical trajectory confined within a cylindrical shell with
inner and outer radii R and a, respectively. The projection of the ray on the transverse plane is a
regular polygon that is not necessarily closed.



Fiber optics as guided rays

Unguided ray

Figure 9.1-3 (a) The acceptance angle @, of a fiber. Rays within the acceptance cone are guided
by total internal reflection. The numerical aperture NA = sin 6,. The angles 6, and 6, are typically
quite small; they are exaggerated here for clarity. (b) The light-gathering capacity of a large NA fiber
is greater than that of a small NA fiber.



Fiber optics as guided WAVES
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Figure 9.2-2 Examples of the radial distribution u(r) provided in (9.2-6) for /| = O and [ = 3. The
shaded and unshaded areas represent the fiber core and cladding, respectively. The parameters k7 and
7, and the two proportionality constants in (9.2-6), have been selected such that u(r) is continuous
and has a continuous derivative at + = a. Larger values of kp and -y lead to a greater number of

oscillations in u(7r).
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Figure 9.2-3 Graphical construction for solving the characteristic equation (9.2-14). The left- and
right-hand sides are plotted as functions of X. The intersection points are the solutions. The LHS has
multiple branches intersecting the abscissa at the roots of J;4; (X). The RHS intersects each branch
once and meets the abscissa at X = V. The number of modes therefore equals the number of roots of
Ji41(X) that are smaller than V. In this plot [ = 0, V = 10, and either the — or + signs in (9.2-14)
may be used.

Figure 9.2-4 Intensity distributions of (a) the
LPy, and (b) the LP3y; modes in the transverse
plane, assuming an azimuthal dependence of the
form cos l¢. The distribution of the fundamental
LPy; mode is similar to that of the Gaussian beam
(@) (b) discussed in Chapter 3.




Polarization maintaining fibers
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Figure 9.2-9 (a) Ideal polarization-maintaining fiber. (b) Random transfer of power between two
polarizations.



Why telecom uses 1550 nm light:

E ! | | I T T T | T I T —
B )
35 > Rayleigh ’: =
scattering Infrared it
21~ / absorption __h""«;f
1 g I’

OH
absorption

lﬁ’mq
RN

Attenuation coefficient OlfdB/km)
— R —

i UV absorption
band tail
288 \g/_ —
H"‘"--.. I
0.1 ] |~" ] | L | I | I 7’1'-. I
0.6 0.8 1.0 1.2 1.4 1.6 1.8

Wavelength ), (j2m)

Figure 9.3-2 Attenuation coefficient o of silica glass versus wavelength A,. There is a local
minimum at 1.3 pm (o = 0.3 dB/km) and an absolute minimum at 1.55 pym (o = 0.15 dB/km).



Finally, the ultimate fiber: Photonic crystal fibers

(a) (b) (©

Figure 9.4-1 Various forms of holey fibers. (a) Solid core (dotted circle) surrounded by a cladding
of the same material but suffused with a periodic array of cylindrical air holes whose diameters are
much smaller than a wavelength. The average refractive index of the cladding is lower than that of
the core. (b) Photonic-crystal holey fiber with cladding that contains a periodic array of large air holes
and a solid core (dotted circle). (c) Photonic-crystal holey fiber with cladding that contains a periodic
array of large air holes and a core that is an air hole of a different size (dotted circle).

Benefits:

 Single mode for a broad range of wavelengths

e Large mode area, e.g., step-index fiber 5 um, vs 50 um
e ->can handle more power

Dispersion can also be engineered









Goos—Hinchen Shift. Consider two TE plane waves undergoing total internal reflection at
angles # and @ + df, where df is an incremental angle. If the phase retardation introduced
between the reflected waves is written in the form dp = £d#, find an expression for the
coefficient £. Sketch the interference patterns of the two incident waves and the two reflected
waves and verify that they are shifted by a lateral distance proportional to £. When the
incident wave is a beam (composed of many plane-wave components), the reflected beam
is displaced laterally by a distance proportional to £. This is known as the Goos—-Hinchen

effect.
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