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EXERCISE 6.1-4
Normal Modes of Simple Polarization Systems.

(a) Show that the normal modes of the linear polarizer are linearly polarized waves.

(b) Show that the normal modes of the wave retarder are linearly polarized waves.

(c) Show that the normal modes of the polarization rotator are right and left circularly polarized
waves.

What are the eigenvalues of the systems described above?

6.2 REFLECTION AND REFRACTION

In this section we examine the reflection and refraction of a monochromatic plane wave
of arbitrary polarization incident at a planar boundary between two dielectric media.
The media are assumed to be linear, homogeneous, and isotropic with impedances 7,
and 79, and refractive indexes n; and n9. The incident, refracted, and reflected waves
are labeled with the subscripts 1, 2, and 3, respectively, as illustrated in Fig. 6.2-1.

As shown in Sec. 2.4A, the wavefronts of these waves are matched at the boundary if
the angles of reflection and incidence are equal, f3 = 6, and if the angles of refraction
and incidence satisfy Snell’s law,

1 sin 0; = no sin 5. (6.2-1)

To relate the amplitudes and polarizations of the three waves, we associate with
each wave an z—y coordinate system in a plane normal to the direction of propagation
(Fig. 6.2-1). The electric-field envelopes of these waves are described by the Jones

vectors
. Al:z: . Agx - Agx
Jl — lA]yJ 3 J2 — I:A2y:| 3 J3 — I:Asy:l . (6.2-2)

We proceed to determine the relations between Jo and J; and between J3 and J;.
These relations are written in the form of matrices Jo = tJ; and J3 = rJ;, where t
and r are 2 x 2 Jones matrices describing the transmission and reflection of the wave,
respectively.

The elements of the transmission and reflection matrices may be determined by
imposing the boundary conditions required by electromagnetic theory, namely the
continuity at the boundary of the tangential components of E and H and the normal
components of D and B. The electric field associated with each wave is orthogonal to
the magnetic field; the ratio of their envelopes is the characteristic impedance, which
is 7 for the incident and reflected waves and 72 for the transmitted wave. The result
is a set of equations that are solved to obtain relations between the components of the
electric fields of the three waves.

The algebra involved is reduced substantially if we observe that the two normal
modes for this system are linearly polarized waves with polarizations along the x and y
directions. This may be proved if we show that an incident, a reflected, and a refracted
wave with their electric field vectors pointing in the z direction are self-consistent
with the boundary conditions, and similarly for three waves linearly polarized in the y
direction. This is indeed the case. The x and y polarized waves are therefore uncoupled.
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Figure 6.2-1 Reflection and refraction at the boundary between two dielectric media.

The z-polarized mode is called the transverse electric (TE) polarization or the or-
thogonal polarization, since the electric fields are orthogonal to the plane of incidence.
The y-polarized mode is called the transverse magnetic (TM) polarization since the
magnetic field is orthogonal to the plane of incidence, or the parallel polarization since
the electric fields are parallel to the plane of incidence. The orthogonal and parallel
polarizations are also called the s (for the German senkrecht, meaning “perpendicular’)
and p (for “parallel”) polarizations, respectively. The y axes in Fig. 6.2-1 are arbitrarily
defined such that their components parallel to the boundary between the dielectrics all
point in the same direction.

The independence of the = and y polarizations implies that the Jones matrices t and
r are diagonal,

|tz O e O
t = [0 ty] . r= [0 Ty] (6.2-3)
so that
FEop =ty Py, Esy =t E1y (6.2-4)
E3p = 1B, E3y = T‘y-Ely- (6.2-5)

The coefficients t; and t, are the complex amplitude transmittances for the TE and
TM polarizations, respectively; T, and 1, are the analogous complex amplitude re-
flectances.

Applying the boundary conditions (i.e., equating the tangential components of the
electric fields and the tangential components of the magnetic fields at both sides of the
boundary) in each of the TE and TM cases, we obtain the following expressions for the
reflection and transmission coefficients:

sec 05 — 7y sec @
L= 72 2— T 1, t, =141y, (6.2-6)
12 sec o + 11 sec 0, TE Polarization
cos o — 1y cos b cos @
Ty _ 72 2 T 1 ’ ty _ (1 4 ry) 1 . (62-7)
1 cos O + 1y cos Oy cos O TM Polarization
Reflection & Transmission

The characteristic impedance 7 = +/p /€ is complex if € and/or p are complex, as
is the case for lossy or conductive media. For nonlossy, nonmagnetic, dielectric media,

1 = 1,/n is real, where 1, = /p./€, and n is the refractive index. In this case,
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the reflection and transmission coefficients in (6.2-6) and (6.2-7) yield the following
equations, known as the Fresnel equations:

ny cos @y — ng cos O
T, = ! ! 2 2 , ty=14r1, (6.2-8)
ny cos 6 + ng cos by TE Polarization
ny sec 01 — ny sec @ cosf
r, — 1 1 2 2 t, = (1+1,) —1 (6.2-9)
ny sec B + ng sec by cos 6, TM Polarization
Fresnel Equations

Given ni, no, and 6, the reflection coefficients can be determined the Fresnel
equations by first determining 62 using Snell’s law, (6.2-1), from which

cosfy = \/1 —sin? 6, = \/1 — ('17,1/'17,2)2 sin® 6 . (6.2-10)

Since the quantities under the square-root signs in (6.2-10) can be negative, the re-
flection and transmission coefficients are in general complex. The magnitudes |r, | and
|ty |, and the phase shifts ¢, = arg{r,} and ¢, = arg{r,}, are plotted in Figs. 6.2-2
to 6.2-5 for the two polarizations, as functions of the angle of incidence 6,. Plots are
provided for external reflection (n; < ng) as well as for internal reflection (n; > ng).

TE Polarization
The dependence of the reflection coefficient 1, on 6; for the TE-polarized wave is

given by (6.2-8):

External reflection (n; < ng). The reflection coefficient r,, is always real and nega-
tive, corresponding to a phase shift ¢, = 7. The magnitude |r,| = (ng—nq)/(n1+n2)
at #; = 0 (normal incidence) and increases to unity at #; = 90° (grazing incidence),
as shown in Fig. 6.2-2.
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Figure 6.2-2 Magnitude and phase of the re- &
flection coefficient as a function of the angle -
of incidence for external reflection of the TE- 0
0 0, 90°

polarized wave (nz/n, = 1.5).

Internal reflection (n; > ny). For small §; the reflection coefficient is real and
positive. Its magnitude is (n; — n2)/(n1 + n2) when 6; = 0°, and increases grad-
ually to a value of unity, which is attained when 6, equals the critical angle 6, =
sin_l(nz /n1). For 6; > 0., the magnitude of r,, remains at unity, which corresponds

to total internal reflection. This may be shown by using (6.2-10) to writef cosfy; =

T The choice of the minus sign for the square root is consistent with the derivation that leads to the Fresnel
equation.
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—\/ 1 —sin?6,/sin? 0, = —j \/ sin’ 0, / sin? f. — 1, and substituting into (6.2-8). To-
tal internal reflection is accompanied by a phase shift ¢, = arg{r,} given by

20
e = COS2 = _4ii (6.2-11)
) cos? 0, TE-Reflection
Phase Shift

The phase shift ¢, increases from 0 at 0; = 0. to 7 at 6; = 90°, as illustrated in
Fig. 6.2-3. This phase plays an important role in dielectric waveguides (see Sec. 8.2).
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Figure 6.2-3 Magnitude and phase of the re- L
flection coefficient as a function of the angle :/
of incidence for internal reflection of the TE- 0
0 6, 6, 90°

polarized wave (ny/ny = 1.5).

TM Polarization
Similarly, the dependence of the reflection coefficient T, on 6; for the TM-polarized
wave is provided by (6.2-9):

External reflection (n; < ny). The reflection coefficient 1, is always real. It as-
sumes a negative value of (n; — ng)/(n1 + ng) at 6 = 0 (normal incidence). Its
magnitude then decreases until it vanishes when n; sec§; = ngsecfs, at an angle
0; = 0Og, known as the Brewster angle:

0g = tan"!(ng/n;) (6.2-12)
Brewster Angle

(see Prob. 6.2-5 for other properties of the Brewster angle). For 6; > 0p, 1, reverses
sign (p, goes from 7 to 0) and its magnitude gradually increases until it approaches
unity at 8; = 90°. The absence of reflection of the TM wave at the Brewster angle is
useful for making polarizers (see Sec. 6.6).
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Figure 6.2-4 Magnitude and phase of the re-
flection coefficient as a function of the angle

of incidence for external reflection of the TM- 0 0 900
: - B g
polarized wave (ng/n; = 1.5). )
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Internal reflection (n; > ng). At#; = 0°, 1, is positive and has magnitude (n; —
ng)/(n1 + n2). As 61 increases, the magnitude decreases until it vanishes at the Brew-
ster angle g = tan!(ng/n1). As 6, increases beyond 0g, T, becomes negative and
its magnitude increases until it reaches unity at the critical angle 6. For 6; > 6. the
wave undergoes total internal reflection accompanied by a phase shift ¢, = arg{r,}
given by

tan LY — (6.2-13)
2 TM-Reflection
Phase Shift

At normal incidence, evidently, the reflection coefficientis v = (ny —ng)/(ny+n2),

whether the reflection is TE or TM, or external or internal.
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Figure 6.2-5 Magnitude and phase of the re-
flection coefficient as a function of the angle
of incidence for internal reflection of the TM- 0 90
polarized wave (n; [ns = 1.5). N
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EXERCISE 6.2-1

Brewster Windows. At what angle is a TM-polarized beam of light transmitted through a glass
plate of refractive index n = 1.5 placed in air (n = 1) without suffering reflection losses at either
surface? Such plates, known as Brewster windows (Fig. 6.2-6), are used in lasers, as described in
Sec. 15.2D.

Figure 6.2-6 The Brewster window transmits
TM-polarized light with no reflection loss.

Power Reflectance and Transmittance

The reflection and transmission coefficients T and t represent ratios of complex ampli-
tudes. The power reflectance R and power transmittance T are defined as the ratios of
power flow (along a direction normal to the boundary) of the reflected and transmitted
waves to that of the incident wave. Because the reflected and incident waves propagate
in the same medium and make the same angle with the normal to the surface, it follows
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that
R =% (6.2-14)

For both TE and TM polarizations, and for both external and internal reflection, the
power reflectance at normal incidence is therefore

2
ni—n
e ( 1 2) . (6.2-15)
n1 +ng Power Reflectance
at Normal Incidence

At the boundary between glass (n = 1.5) and air (n = 1), for example, R = 0.04,
so that 4% of the light is reflected at normal incidence. At the boundary between GaAs
(n = 3.6) and air (n = 1), R ~ 0.32, so that 32% of the light is reflected at normal
incidence. However, at oblique angles the reflectance can be much greater or much
smaller than 32%), as illustrated in Fig. 6.2-7.
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Figure 6.2-7 Power reflectance of TE- and TM-polarization plane waves at the boundary between
air (n = 1) and GaAs (n = 3.6), as a function of the angle of incidence 6.

The power transmittance J is determined by invoking the conservation of power, so
that in the absence of absorption loss the transmittance is simply

T=1-R (6.2-16)

It is important to note, however, that T is generally not equal to [t|? since the power
travels at different angles and with different impedances in the two media. For a wave
traveling at an angle € in a medium of refractive index 7, the power flow in the direction
normal to the boundary is (|€[2/2n) cos@ = (|€|/2n,) n cos . It follows that

_ mgcosby |t|2

J= (6.2-17)

N1 cos 6,

Reflectance from a plate. The power reflectance at normal incidence from a plate
with two surfaces is described by R(1 + T?) since the power reflected from the far
surface involves a double transmission through the near surface. For a glass plate
in air, the overall reflectance is R(1 + T2) = 0.04[1 + (0.96)?] ~ 0.077, so that
about 7.7% of the incident light power is reflected. However, this calculation does
not include interference effects, which are washed out when the light is incoherent
(see Sec.11.2), nor does it account for multiple reflections inside the plate. Optical
transmission and reflectance from multiple boundaries in layered media are described
in detail in Sec. 7.1.



