Lectures 4/5: central limit theorem Il.



distribution functions:

We are often interested in distributions that have some kind of
localization (because why would we be interested if they didn’t?)
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Suppose we want to summarize p(x) by a single number
a, its “value”. Let’s find the value a that minimizes the
mean-square discrepancy of the “typical” value x:




distribution functions:

Recall expectation notation:

(anything) = [ (anything) p(z)dx
i.e., the weighted average of “anything”, weighted by the probable values of x.

Expectation is linear over “anything” (sums, constants times, etc.).

minimize: A* = ((z —a)®) = (2° — 2az + a*)
_ 2 2 2
= ((z*) — (2)°) + ({z) — a)
This is the variance Var(x), /
but all we care about here is
that it doesn’t depend on a.

(in physics this is called the “parallel axis theorem”)

The minimum is obviously a = (x). (Take derivative
wrt a and set to zero if you like mechanical calcula-
tions.)



distribution functions:

Why mean-square? Why not mean-absolute? Try it!

A=(o—a) = [ lo-olp)ds
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Mean and median are both “measures of central tendency”.



distribution functions:

Higher moments, centered moments are conventionally defined by

pi = (z') = f:z:"tp(a:)d:z: |
M; = (@ — (@) = [(2 — () pla)do

The centered second moment M, , the variance, is by far
most useful
Mp = Var(z) = {(z — (2))?) = (z?) — (a)?

0—(3;) = \/Var(a;) «— “standard deviation” summarizes a distribution’s half-width
(r.m.s. deviation from the mean)

Third and fourth moments also have “names”
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But generally wise to be cautious about using high moments.
Otherwise perfectly good distributions don’t have them at all
(divergent). And (related) it can take a lot of data to measure

them accurately.



distribution functions:

Let us review some standard (i.e., frequently occurring) distributions:

The “bell shaped” ones differ qualitatively by their tail behaviors:
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distribution functions:

Normal (Gaussian) has the fastest falling tails:

x ~ N(u. o). o >0

o | ( l px—pu 2)
H(x) = ——
P V210 P 2[ o ]

Cauchy (aka Lorentzian) has the slowest falling tails:

x ~ Cauchy(u. o). o> (

o (1 [54)

Cauchy has area=1 (zerot» moment), but no defined mean or
variance (1st and 2" moments divergent).




characteristic function:

The Central Limit Theorem is the reason that the Normal (Gaussian) distribution
is uniquely important. We need to understand where it does and doesn’t apply.

The characteristic function of a distribution is its
Fourier transform.

dx(t) = /00 e px (x)dz

— OO

(Statisticians often use notational convention that X is a random
variable, x its value, p,(x) its distribution.)

¢x(0) =1
B (0) = / izpx (z)dz = ip

~0%(0) = [ *px(a)de =0 + 42

So, the coefficients of the Taylor series expansion of the
characteristic function are the (uncentered) moments.

: 1 2,2
t—ao0°t
¢Normal (t) — ew 27



characteristic function:

Addition of independent r.v.’s:

let S=X+4+Y

ps(s) = /pX (u)py (s — u)du
¢s(t) = ox(t)Py (t)
Last line follows immediately from the Fourier

convolution theorem. (In fact, it is the Fourier
convolution theorem!)



distribution functions:

Proof of convolution theorem:

bx(t) = / " et (2)da

—00

L [~ .
px(z) = 2—/ Ox(t)e " dt

n 00

ps(s) = /00 px (u)py (s — u)du

-

Fourier transform pair

:/ p)((’u,) [%/ (I'I)Y'(t)e_zt(s_u)dt:| du

1 o0 . e0 .
— = Dy (t)e ™ {/ p‘x(u)e’t“du] dt
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distribution functions:

Mean and variance are additive over independent random variables:

(x+y)=x+y Var(x + y) = Var(x) + Var(x)

AN

note “bar” notation, equivalent to < >

Certain combinations of higher moments are also additive. These
are called semi-invariants.

Ib=M>, I3=M3z I4=M4y—3M;
Is = Ms — 10MaM3  Is = Mg — 15Ma My — 10M3 + 30M5

Skew and kurtosis are dimensionless combinations of semi-invariants
Skew(x) = I3/1;/*  Kurt(x) = I4/12

A Gaussian has all of its semi-invariants higher than I, equal to zero.
A Poisson distribution has all of its semi-invariants equal to its mean.



characteristic function:

Scaling law for r.v.’s:

P (*) ‘

Scaling law for characteristic functions:

bax(t) = / et x () da
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central limit theorem:

Let S=+3 X, =3 & with (X;) =0

Can always subtract off the means, then add back later.

Then

t2 Whoal! It better have a
- (]_ — lo-?_ + .. ) convergent Taylor series
around zero! (Cauchy
doesn’t, e.g.)

t2
= exp Zln (1—%02.2_24_...)
L

_ These terms decrease with N, but how fast?
1 (1 2\
~ €XP —5 m E g; + -
, 7 _
So, S is normally distributed

ps(+) ~ Normal(0, ﬁ > 02-2)




central limit theorem:

Intuitively, the product of a lot of arbitrary functions that all start at 1
and have zero derivative looks like this:

- 1/

Because the product falls off so fast, it loses all memory of the
details of its factors except the starting value 1 and fact of zero
derivative. In characteristic function space that’s basically the CLT.



central limit theorem:

CLT is usually stated about the sum of RVs, not the average, so

ps(+) ~ Normal(0, % Za?)

Now, since
NS=Y X, and Var(NS)= N?Var(S)

it follows that the simple sum of a large number of
r.v.’s is normally distributed, with variance equal to

the sum of the variances:

Py x,(+) ~ Normal(0, > a,?)

If N is large enough, and if the higher moments are well-enough behaved,
and if the Taylor series expansion exists!

Also beware of borderline cases where the assumptions technically hold, but
convergence to Normal is slow and/or highly nonuniform. (This can affect p-
values for tail tests, as we will soon see.)



central limit theorem:
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central limit theorem:

Since Gaussians are so universal, let’s learn estimate the parameters u
and o of a Gaussian from a set of points drawn from it:

For now, we'll just find the maximum of the posterior distribution of (u,o),
given some data, for a uniform prior. This is called “maximum a posteriori

(MAP)” by Bayesians, and “maximum likelihood (MLE)” by frequentists.

The datais: z;, 1t =1,...,N

1 (mz —p)?

The statistical model is:  P(x|u, o) H Sy
o

1 — nif
The posterior estimate is: P(u, o|x) o 27T0'Ne—262 Si(wi—n)? o P/OATS iform

Now find the MAP (MLE):

oOP P 1 Ha! The MAP mean is the sample
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