Lecture 3: Bayesian parameter estimates



how to calculate Bayesian probabilities:

Example: The Monty Hall or
Let’'s Make a Deal Problem

* Three doors
* Car (prize) behind one door
* You pick a door, but don’t open it yet

* Monty then opens one of the other doors, always
revealing no car (he knows where it is)

* You now get to switch doors if you want
* Should you?

* Most people reason: Two remaining doors were
equiprobable before, and nothing has changed. So
doesn’t matter whether you switch or not.




how to calculate Bayesian probabilities:

H; = car behind door 7,1 =1,2,3
Wlog, you pick door 2 (relabeling).

Wlog, Monty opens door 3 (relabeling).

“Without loss of generality ”

) n
P(H,|03) x1-5=1¢ ?H., 8 H,_y N,
PULOY) e} §=3 [ LR
P(H3|03) O\%y " e 2 k) /
ignorance of Monty’s preference ;_ Bl "

between 1 and 3, so take 1/2

So you should always switch: doubles your chances!




how to calculate Bayesian probabilities:

Monty Hall and the Reverend Bayes

s Very important example! Master it.

* P(H;) = 5 is the “prior probability” or “prior”

% P(H;|03) is the “posterior probability” or “posterior”
% P(O3|H;) is the “evidence factor” or “evidence”

Y¢ Bayes says posterior o< evidence X prior



Bayesian parameter estimates:

Our next topic is Bayesian Estimation of
Parameters. We’'ll ease into it with an
example that looks a lot like the Monte Hall
Problem:

The Jailer’s Tip:

« Of 3 prisoners (A,B,C), 2 will be released tomorrow.

* A, who thinks he has a 2/3 chance of being released, asks
jailer for name of one of the lucky — but not himself.

« Jailer says, truthfully, “B”.
« “Darn,” thinks A, “now my chances are only 2, C or me”.

Is this like Monty Hall? Did the data ("B”) change the probabilities?



Bayesian parameter estimates:

Further, suppose (unlike Monty Hall) the jailer is not indifferent about responding
“B” versus “C”. Does that change your answer to the previous question?

AB BC CA
==
P(S5|BC) =z, (0<z<1) B
“says B” : o, o,
=1 A

P(AISp) = P(AB|SB)+P<@Z|/SB> )
B AB)P(//

(SB|AB)P(AB n P(s& P(BC) + P(Sg|CA)P(CA)

1- §+:z: 140 1+a

So if A knows the value x, he can calculate his chances.

If x=1/2 (like Monty Hall), his chances are 2/3, same as before; so (unlike
Monty Hall) he got no new information.

If x#1/2, he does get new info — his chances change.

But what if he doesn’t know x at all?



Bayesian parameter estimates:
“Marginalization” (this is important!)

 When a model has unknown, or uninteresting,
parameters we “integrate them out” ...

« ...multiplying by any knowledge of their distribution
— At worst, just a prior informed by background information
— At best, a narrower distribution based on data

* This is not any new assumption about the world
— it's just the Law of de-Anding

(e.g., Jailer’s Tip): /I)?;vaori; dEeI;AAg!ding:
P(A|SgI) = [ P(A|SpzI)p(z|I)dz

= J. I_%mp(mﬁ) dx



Bayesian parameter estimates:
(repeating previous equation:)
P(A|SgI) = [ P(A|SpaI)p(z|I)dzx

= | H%,ﬂp(aﬂ]) dx

first time we've seen a continuous probability distribution,
but we’'ll skip the obvious repetition of all the previous laws

p(z) = p(z|1)

(Notice that p(x) is a probability of a probability! f(X)
That is fairly common in Bayesian inference.)

— - — —y“_ .

ZPz-zl < Zp(a:,,;)dxizl < /p(a:)da:zl



Bayesian parameter estimates:

(repeating previous equation:)
P(A|SpI) = [ P(A|Spxl)p(z|I)dx

= | H%p(aﬂ[) dx

What should Prisoner A take for p(x) ?
Maybe the “uniform prior”?
ple)=1, (0<x<1)
_rt_a _ _
P(A|SBI) = fo H—mda: =In2 = 0.693

Not the same as the “massed prior at x=1/2"

1 <‘,ﬁo,,,/—/—/“Dirac delta function”
p(z) = 6@ — 1) (U< < 1)

P(A|SBI) = 1+11/2 32/3

substitute value and
remove integral



Bayesian parameter estimates:

Review where we are:  P(A|SgI) = [ P(A|SpzI)p(z|I)dx
We are trying to estimate a parameter = [ 5 p(|I) dz
r = P(Sg|BC), (0<z<1)

The form of our estimate is a (Bayesian) probability distribution
(of the parameter, itself here just happening to be a probability)

This is a sterile exercise if it is just a debate about priors.
What we need is data! Data might be a previous history
of choices by the jailer in identical circumstances.

BCBCCBCCCBBCBCBCCCCBBCBCCCBCBCBBCCB

N =35 Ng=15Nc =20 l(_\ilz)/lf:jagi.\.nf;ong with: x=15/35=0.437?

We hypothesize (might later try to check) that these are i.i.d. “Bernoulli
trials” and therefore informative about x

“independent and identically distributed”

As good Bayesians, we now need P(data|x)



Bayesian parameter estimates:
means different things in frequentist vs. Bayesian contexts,
P(datalz) { so thisis a good time to understand the differences (we’'ll use

\ both ideas as appropriate)

Frequentist considers the universe of what might have been, imagining
repeated trials, even if they weren't actually tried, and needs no prior:

since i.i.d. only the A’s can matter (a so-called “sufficient statistic”).

prob. of exact sequence seen

N -~ N
P(data|z) = (NB>33NB (1—2)™e (’Z) — k:!(r?ik)!

no. of equivalent arrangements/

Bayesian considers only the exact data seen, and has a prior:

P(z|data) Ve (1 — a:)NC p(x|I) «——_ but we might first suppose
that the prior it is uniform

No binomial coefficient, both conceptually and also since independent of x
and absorbed in the proportionality. Use only the data you see, not
“equivalent arrangements” that you didn’t see. This issue is one we’ll
return to, not always entirely sympathetically to Bayesians (e.g.,
goodness-of-fit).



Bayesian parameter estimates:

Bayes numerator and denominator are:

P(z|data) = VB (1 — )N VB x 1

./0 P(x|data) = /o N (1 — )N Nedy = (N +I1‘)(I];£]YF ;)NB 1)

Plot of numerator over denominator for N=35, Ng = 15:

116925953760 x'° (1-3)2°

| | | 1 Matlab code:

o
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so this is what %%

syms nn nb x
+ thedatatellsus | ° XAnb*(1-)A(nn-nb):
about p(x) 7 denom = gamma(nn-nb+1)*gamma(nb+1)/gamma(nn+2);
71 p =num/denom;
1 p=x"nb*(1-x)(nn-nb)/gamma(nn- nb+1)/gamma(nb+1)*gamma(nn+2);
1 figure(30)
4 ezplot(subs(p,[nn,nb],[35,15]),[0,1]);

%%

1 1 1 1
O 0.z 04 06 038 1



Bayesian parameter estimates:
Find the mean, standard error, and mode of our estimate for x
P(z|data) = VB (1 — )N~ NB

dP(x|data) Npg “maximum likelihood” (ML) answer is to
=0 = = — estimate x as exactly the fraction seen

dx N

1 N .
B+1 mean is the 15t moment
<£13> = / a:P(ac|da,ta)d:1: — N + 9 notice it's different from ML!
0 +

variance involves the 2" moment,

(N +1)(N — N +1)

Var(z) = (z°) — /o 2’ P(z|data)dz — (z)° = (N +2)*(N +3)

e

This shows how p(x) gets narrower as the amount of data increases.



Bernoulli distribution:

(Let's leave behind the metaphor of the Jailer and Prisoner A.)

What we are illustrating is called Bernoulli trials:

two possible outcomes

l.i.d. events

a single parameter x (the probability of one outcome)
a sufficient statistic is the pair of numbers N and Ng

Jacob and Johann Bernoulli

P(data|a;) — VB (1 — .’IJ)N—NB (in the Bayesian sense)

P(z|data) o< 2NB(1 — )V ~NB x P(z|I)

for uniform prior, the Bayes denominator is, as we've seen, easy to calculate:

/O P(z|data) =/0 VB (1 —z)N " Nede = [Nz +I1‘)(1;\§J_v'_ ;)NB 1)




Bernoulli distribution:

Are there any other mathematical forms for the prior that would still
leave the Bayes denominator easy to calculate?

Yes! try

Choose a and B to make any
P(a’;l_[) o 1P (1 _ xﬁa/ desired center and width.

P(z|data) = VB (1 — )V VB x 2P(1 — z)®

1 1
/ P(x|data) = / eNBTA(1 — g)N—Neteqdy
0 0

B ['(Ng+B8+1I'(N—-Np+a+1)
I'(N+a+p8+2)
Priors that preserve the analytic form of p(x) are called “conjugate

priors”. There is nothing special about them except mathematical
convenience.

If you start with a conjugate prior, you'll also be able to assimilate new
data trivially, just by changing the parameters of your estimate. This is
because every posterior is in the right analytic form to be the new prior!






