Lectures 14: Bootstrap |.

error propagation for nonlinear functions of fit
parameters

with material from
The University of Texas at Austin, CS 395T, Spring 2010, Prof. William H. Press



from Lecture 9: Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:
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So, while exploring the x? surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then
P(b{y;}) o< exp [—%(b - bo)TZb_l(b - bo)] P(b)
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B2y2 ] -1~ covariance (or “standard error”) matrix
1~

3, = |2 of the fitted parameters
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Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal, a very useful CLT-ish result!



multivariate normal distribution

Multivariate Normal Distributions

Generalizes Normal (Gaussian) to M-dimensions

Like 1-d Gaussian, completely defined by its mean and (co-)variance
Mean is a M-vector, covariance is a M x M matrix
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The mean and covariance of r.v.’s from this distribution are*
p=(x) T=((x-p)x-p’")

I o I In the one-dimensional case o is the standard deviation,
which can be visualized as “error bars” around the mean.

In more than one dimension X can be visualized as
an error ellipsoid around the mean in a similar way.
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multivariate normal distribution

Question: What is the generalization of
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to the case where the x,'s are normal, but not independent?
l.e., x comes from a multivariate Normal distribution?

(2m)M/2 (1iet(2)1/2 exp[—5(x — ) E7 (x — )]

N(x|p, %) =

The mean and covariance of r.v.’s from this distribution are*

p=(x) I=(x-—p)(x—pm)

} . I In the one-dimensional case o is the standard deviation,

which can be visualized as “error bars” around the mean.

In more than one dimension X can be visualized as
an error ellipsoid around the mean in a similar way.
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linear error propagation for arbitrary function of parameters

What is the uncertainty in quantities other than the fitted coefficients:

Method 1: Linearized propagation of errors

by is the MLE parameters estimate

b; = b — by is the RV as the parameters fluctuate

f=f(b)= f(bo) +Vfby+--
(f) = (f(bo)) + Vf (b1) = f(bo)
(£%) = (£)* = 2f (bo)(Vf {b1)) + ((Vf b1)?)
=Vf (bib] )VfT
=VfEVFT



linear error propagation for arbitrary function of parameters

In our example, if we are interested in the area of the “hump”,

bfit =
1.1235 1.5210 0.6582 3.2654 1.4832
covar = ]
0.1349 0.2224 0.0068 -0.0309 0.0135 ﬁj
0.2224 0.6918 0.0052 -0.1598 0.1585 ~ ¥l !
0.0068 0.0052 0.0049 0.0016 -0.0094 : f&] |
-0.0309 -0.1598 0.0016 0.0746 -0.0444 ‘J '
0.0135 0.1585 -0.0094 -0.0444 0.0948 N
J = bsbs

Vf=(0,0,bs,0,bs3)
VIV = bi233 + 2b3bs X35 + baXss = 0.0336
v/0.0336 = 0.18

So bsbs = 0.98 +0.18

the one standard deviation
(1-o) error bar

A function of normals is not normal



Sampling the posterior histogram

Method 2: Sample from the posterior distribution

1. Generate a large number of (vector) b’s
b ~ MVNormal(bg, >)

2. Compute your f(b) separately for each b

600

3. Histogram
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Note again that b is typically (close to) m.v. normal because of the CLT, but
your (nonlinear) fmay not, in general, be anything even close to normal!



Sampling the posterior histogram

Our example:

bees = mvnrnd(bfit,covar,10000);
humps = bees(:,3).*bees(:,5);
histChumps, 30);

std Chumps)
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Does it matter that | use the full covar, not
just the 2x2 piece for parameters 3 and 57?



comparison of linear propagation and posterior sampling:

Compare linear propagation of errors to sampling the posterior

* Note that even with lots of data, so that the distribution of the b’s
II'\jeaIIy ? multivariate normal, a derived quantity might be very non-
ormal.

— In this case, sampling the posterior is a good idea!

 For example, the ratio of two normals of zero mean is Cauchy
— which is very non-Normal'.

* So, sampling the posterior is a more powerful method than linear
propagation of errors.

— even when optimistically (or in ignorance) assuming multivariate
Gaussian for the fitted parameters

* In fact, sampling the posterior distribution of large Bayesian models
whose parameters are not at all Gaussian is, under the name
MCMC, the most powerful technique in modern computational
statistics.



bootstrap sampling

Method 3: Bootstrap resampling of the data

 We applied some end-to-end process to a data set
and got a number fout

 The data set was drawn from a population of
repetitions of the identical experiment

— which we don't get to see, unfortunately
— we see only a sample of the population

 We'd like to draw new data sets from the population,
reapply the process, and see the distribution of answers

— this would tell us how accurate the original answer, on average, was
— but we can’t: we don’t have access to the population

 However, the data set itself is an estimate of the population pdf!
— in fact, it's the only estimate we’ve got!
 So we draw from the data set — with replacement — many “fake”
data sets of equal size, and carry out the proposed program
— does this sound crazy? for a long time many people thought so!

— Bootstrap theorem [glossing over technical assumptions]: The
distribution of any resampled quantity around its full-data-set value
estimates (naively: “asymptotically has the same histogram as”) the
distribution of the data set value around the population value.




bootstrap sampling

Let’s try a simple example where we can see the “hidden” side of things, too.

Visible side (sample): Hidden side (population):

o
o

—y

i

These happento be  sxo
drawn from a
Gamma distribution.  soco}

0 1 9

Statistic we are interested in happens to be (it could be anything):

mean of distribution
median of distribution

sammedian = median(sample) themedian = median(bigsample)
sammean = mean(sample) themean = mean(bigsample)
samstatistic = sammean/sammedian thestatistic = themean/themedian
sammedian = themedian =

2.6505 2.6730
sammean = . . themean =

29712 How accurate is this? 2.9997
Samstatfstic/ thestatistics =

1.0984 1.1222



bootstrap sampling
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bootstrap sampling

To estimate the accuracy of our statistic, we bootstrap

ndata = 100; new sample of integers in ndata = 100;

nboot = :1()()()()(); 1:r1cnatai"vvitr|r{;Fﬂzacxarruarjt nboot = :l()()()()();

vals = zeros(nboot,1); vals = zeros(nboot,1);

for j=1:nboot, for j=1:nboot,
choose = randsample(ndata,ndata, true); sam = randg(3, [ndata 1]);
vals(j) = mean(sample(choose)) vals(j) = mean(sam)/median(sam);

/median(sample(choose)); end
end hist(vals,100)

hist(vals,100)
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Things to notice:
The mean of resamplings does not improve the original estimate! (Same data!)

The distribution around the mean is not identical to that of the population. But it is
close and would become identical asymptotically for large ndata (not nboot!).




bootstrap sampling

ndata 20;
nboot 1000;
vals = zeros(nboot,1);

ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)).A2);

for j=1:nboot,

samp = randsample(ndata,ndata,true); new sample of integersin 1:ndata, with replaceme

xX = x(samp);

yy = y(samp);
ssig = sig(samp);

chisgfun = @(b) sum(((ymodel(xx,b)-yy)./ssig).A2);

bguess = [1 2 .7 3.14 1.5];

here is the embedded “whole

options = optimset('MaxFuntevals',10000, 'MaxIter’, / statistical analysis of a data set”

10000, '"TolFun',0.001);

inside the bootstrap loop

[b fval flag] = fminsearch(chisqfun,bguess,options);

if (flag == 1), vals(j) = b(3)*b(5); 120
else vals(j) = 100; end
end

hist(vals(vals < 2),30); 1001

std(vals(vals < 2))

80
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So we get the peak around

1, as before, but a much a0

broader distribution.
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bootstrap sampling

Can you guess what the extreme bootstrap
cases look like, compared to the full data?
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frequentist is concerned about error estimate



bootstrap sampling

We previously compared bootstrap-from-sample to bootstrap-from-population.
More relevant, let’s compare boostrap-from-sample to sample-the-posterior:

1400 120

bootstrap

sample the posterior
ki 100 F
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 We could increase number of samples of posterior, and of bootstrap, to make both
curves very smooth.

— the histograms would not converge to each other!

 We could increase the size of the underlying data sample
— from 20 (x,y) values to infinity (x,y) values
— the histograms would converge to each other (modulo technical assumptions)

* For finite size samples, each technique is a valid answer to a different question

— Frequentist: Imagining repetitions of the experiment, what would be the range of values
obtained?

* And. conservatively, | shouldn’t expect my experiment to be better than that, should 1?

— Bayesian: For exactly the data that | see, what is the probability distribution of the
parameters?

« Because maybe | got lucky and my data set really nails the parameters!



bootstrap sampling
Note that sampling the posterior “honors” the stated measurement errors.

Bootstrap doesn’t. That can be good!

Suppose (very toy example) the “statistic” is
sample posterior

S — I + 9
bootstrap

then the posterior probability is

(s =z — T9)?

P(S) X eXp _5 0.% _|_ 0.% B 2x4 X+ 2x;

Note that this depends on the o’s!

The bootstrap (here noticeably discrete) doesn’'t depend on the ¢’s. In
some sense it estimates them, too.

So, if the errors were badly underestimated, sampling the posterior would give
too small an uncertainty, while bootstrap would still give a valid estimate.

If the errors are right, both estimates are valid. Notice
that the model need not be correct. Both procedures
give estimates of the statistical uncertainty of

parameters of even a wrong (badly fitting) model. But | I

for a wrong model, your interpretation of the
parameters may not mean anything!



bootstrap sampling

Compare and contrast bootstrap resampling and sampling from the posterior

Both have same goal:

Bootstrap is frequentist in outlook
— draw from “the population”

— even if we have only an estimate of it (the
data set)

Easy to code but computationally intensive
— great for getting your bearings

— must repeat your basic fitting calculation over
all the data100 or 1000 times

Applies to both model fitting and descriptive
statistics
Fails completely for some statistics

— e.g. (extreme example) “harmonic mean of
distance between consecutive points”

— how can you be sure that your statistic is OK
(without proving theorems)?

Doesn’t generalize much
— take it or leave it!

It is not always obvious what you should
resample over

— things that are independent draws from a
population

Estimate the accuracy of fitted parameters.

Sampling from the posterior is Bayesian in
outlook

— there is only one data set and it is never
varied

— what varies from sample to sample is the
goodness of fit of the parameters

— we don't just sit on the (frequentist’'s) MLE, we
explore around

In general harder to implement

— we haven't learned how yet, except in the
simple case of an assumed multivariate
normal posterior

— will come back to this later, when we do
Markov Chain Monte Carlo (MCMC)

— may or may not be computationally intensive
(depending on whether there are shortcuts
possible in computing the posterior)

Rich set of variations and generalizations
are possible






