Rate Distortion arguments for bacterial
growth (Bialek’s book Biophysics, Chapter 6)
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Phase space growth rate-mutual
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Data Processing Inequality and
Applications to Bioinformatics

XY o Z

[(X.Z)<I(X.Y)

No miracles: if you process data, e.g. Z=f(Y) you
cannot create extra information even though
you might illustrate it much more clearly

ARACNE: An Algorithm for the Reconstruction of Gene Regulatory
Networks in a Mammalian Cellular Context

Adam A Margolin!-2, [lya Nemenman?, Katia Basso3, Chris Wiggins2-4,
Gustavo Stolovitzky®, Riccardo Dalla Favera3 and Andrea Califano*12

BMC Bioinformatics 2006, 7(Suppl 1):S7



Reconstruction of interaction
networks
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15t step: estimate ranks of Mls

We estimate MI using a computationally efficient Gaus-
sian Kernel estimator [12]. Given a set of two-dimen-

sional measurements, z; = {x;, y;},1=1 ... M, the JPD is
approximated as f(Z)=1/M2ih_26(h_l|'z'—2,-|),

where G(...) is the bivariate standard normal density. With
f(x) and f(y) being the marginals of f ( Z ), the Ml is:

(({s}4n ) = Sloe S 2

Absolute estimates are very sensitive
to smoothing, the ranks much less
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2"d step: threshold Mls

M| are positive and by chance they might take large
values. Threshold set at a value such that the probability

for that value to happen by chance is low

independent genes cannot be ruled out. To this extent, we
randomly shuffle the expression of genes across the vari-
ous microarray profiles, similar to [6], and evaluate the MI
for such manifestly independent genes and assign a p-
value, p, to an MI threshold, I,,, by empirically estimating

the fraction of the estimates below I,. This is done for dif-

ferent sample sizes M and for 105 gene pairs so that relia-
ble estimates of I,(p) are produced up to p = 104



3" (crucial) step: pruning links
using DPI

g, and g; might be strongly correlated and have high M| because of their
indirect coupling via g,. Their link is not necessarily eliminated by the
threshold. Conversely, it is eliminated by DPI as

I(g,8,)=min|1(g,8,),1(8,.8;)]



Testing the algorithm

We benchmark the three algorithms using synthetic tran-
scriptional networks proposed by Mendes et al. [16] as a
platform for comparison of reverse engineering algo-
rithms. These networks consist of 100 genes and 200
interactions organized either in an Erdos-Rényi (random
network) [24] or a scale-free [25] topology (Figure 3). In
the former, each vertex of a graph is equally likely to be
connected to any other vertex; in the latter, the distribu-
tion of the number of connections, k, associated with each
vertex follows a power law, p(k) ~ k7with > 0, and large
interactions hubs are present. Many real biological net-
works appear to exhibit such structure [26].
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Precision Recall Curves
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rics, precision and recall. Recall, N;p/(Nyp + Npy), indi-
cates the fraction of true interactions correctly inferred by
the algorithm, while precision, N;/(Np+ Ngp), measures
the fraction of true interactions among all inferred ones.



Performance in reconstruction of artificial

networks

Erdos-Rényi Topology
ARACNE Relevance Networks DPI Sensitivity DPI Precision Bayesian Networks
Num samples N Ngp Nrp Ngp Ntp Negp
1000 128.00 1.33 143.33 462.67 99.71% 96.78% 50.00 32.33
750 124.33 2.67 139.33 411.00 99.35% 96.46% 45.33 31.00
500 119.00 1.67 130.67 311.33 99.46% 96.37% 41.00 29.00
250 101.00 467 110.00 182.33 97.44% 95.18% 24.67 25.33
125 81.00 467 84.67 95.00 95.09% 96.10% 5.33 19.00
Scale-Free Topology
ARACNE Relevance Networks DPI Sensitivity DPI Precision Bayesian Networks
Num samples N Ngp Nrp Ngp N+ Ngp
1000 97.67 2.33 113.33 234.00 99.00% 93.67% 38.67 17.00
750 90.67 3.33 103.00 200.00 98.33% 94.10% 33.33 15.33
500 80.33 5.33 91.67 154.67 96.55% 92.95% 27.00 13.33
250 63.33 7.67 70.00 80.00 90.42% 91.56% 9.00 9.67
125 46.33 3.67 48.00 49.67 92.62% 96.50% 4.00 6.00




Applications to biological
expression data

In the original paper, the algorithm was applied to
human B cells expression profiles with very good
results. Since then, it has been applied to all sorts of cell
types and organisms (almost 600 citations) so it’s not
perfect but no algorithm can perfectly “solve the
problem” and ARACNE is very popular, useful and
elegant in its “simple” exploitation of DPI



