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Homework 4, solutions

1. (i) and (ii) at once. Recall from our discussion of SBH geodesics,

:r “ ´V 1prq “ ´
d

dr

„

1

2
´
GM

r
`
L2

2r2
´
GML2

r3



Using r “ 1{u and 9u “ u1 ¨ dφ
dt
“ Lu2u1, we have

´L2u2u2 “ ´
“

GMu2
´ L2u3

` 3GML2u4
‰

or, dividing through by ´L2u2,

u2 ` u “
GM

L2
` 3GMu2.

Neglecting the last term on the right we get the result for part (i). A particular solution is

u “ GM{L2 to which we add a solution to the homogeneous equation u2 ` u “ 0 which is

the harmonic oscillator. So we have the general solution u “ GM{L2p1` e cospφ´ φ0qq in

terms of two constants of integration, e and φ0. Clearly φ0 is trivial (we can shift φ by a

constant to define where we count from) and we have then

rpφq “
L2

GM

1` e cosφ
“

ap1´ e2q

1` e cosφ

where a is the semi-major axis of an ellipse with eccentricity e. The semi-latus rectum,

ap1´ e2q is L2{GM .

In part (ii) we estimate the size of the relativistic term relative the Newtonian term,

3GMu2

GM
L2

“ 3
L2

r2
“ 3

˜

r 9φ

c

¸2

where I have used unit mass and restored units in the last step by inserting appropriate

powers of speed of light. Then in MKS, for mercury we can use r À 1011 m, and 9φ “ 2π{T

with orbital period T « 1
4

yr « 1
4
πˆ 107 s. Plugging in I obtain less than 10´6 for the ratio

above.

(iii) We approximate the solution by u “ up0q ` up1q where up0q is the solution of the

unperturbed equation:

u “ GM{L2
p1` e cosφq ` fpφq
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and f “ up1q satisfies

f2 ` f “ κp1` e cosφq2 where κ “
3pGMq3

L4

Being a bit lazy I put into Mathematica and obtain

f “ κ` 1
2
κe2

` κeφ sinφ´ 1
6
κe2 cosp2φq ` C1 cosφ` C2 sinφ

with C1,2 constants of integration (and of course, this added to the above gives the solution

for upφq to this order). Note that C1 can be absorbed into e of the unperturbed solution.

This changes the meaning of e in the perturbation by something that is of higher order

than what we are retaining, so we are free to set C1 “ 0. Similarly, the C2 term just rotates

the orientation of the major axes and changes slightly the eccentricity, so we may also set

it to zero. Finally, the constant terms just shift the constant in the unperturbed solution.

(iv) Perihelion (Min distance to focal point) of the unperturbed trajectory is at φ “ 0.

We look for maxima of the function

u “ GM{L2
p1` e cosφq ` κeφ sinφ´ 1

6
κe2 cosp2φq

Taking one derivative we find a solution (to lowest order) at φ “ 0 and another at

´GM{L2eφ` 2πκe “ 0

So the perihelion has shifted in one revolution by

∆φ “
2πκe

eGM{L2
“ 6π

pGMq2

L2
“ 3πp2GMq

1

ap1´ e2q

Numerics (in SI/MKS units):

∆φ “
6πp6.7ˆ 10´11qp2.0ˆ 1030q

p5.8ˆ 1010p1´ p0.21q2qc2
“ 5.1ˆ 10´7 rad

To change this into per century we have to multiply the number of revolutions in a century,

and since the orbital period is 0.24 yr, we have

revs per century “ 100{0.24 “ 417

So the shift per century is 2.1ˆ 10´4 radians, or (times 360ˆ 602{2π) 43 arcsec per century.

2. From class we have that for a null geodesic in the SBH metric

1

2

ˆ

dr

dλ

˙2

`
1

2

ˆ

1´
2GM

r2

˙

L2

r2
“

1

2
E2
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where L “ r2dφ{dλ. As in the previous problem introduce u “ 1{r and dr{dλ “

´u´2u1dφ{dλ “ ´Lu1, so that

pLu1q2 ` L2u2
p1´ 2GMuq “ E2

It is convenient to differentiate this, to put it in the same form as in the previous problem

(you could of course just integrate the above):

u2 ` u “ 3GMu2

The right hand side is a small quantity for the sun:

3GMu2

u
«

GM

Rsun
„ 10´6

Neglecting the right hand side we have a straight path,

up0q “ b´1 sinφ

where b is the impact parameter. Using this as the zeroth order approximation in teh

perturbative solution gives

f2 ` f “
3GM

b2
sin2 φ

which has a solution f “ p3GM{2b2qp1` 1{3 cos 2φq giving the solution

u “ b´1 sinφ`
3GM

b2

ˆ

1`
1

3
cos 2φ

˙

For large r (small u) φ is small modulo π. Taking the small solution, as u Ñ 0 we have

φÑ φin with

φin “ ´
2GM

b

and the total deflection ∆ is twice (the absolute value of) this,

∆ “
4GM

b

Closest approach is at φ “ π{2 or

1{r0 “ u0 “
1

b
`
GM

b2
or r0 « b´GM.

The largest deflection is for b « r0 “ rsun, the radius of the sun. Plugging in

∆max “ 4
p6.7ˆ 10´11qp2.0ˆ 1030q

p7.0ˆ 108qc2
“ 8.51ˆ 10´6 rad “ 1.75 arc sec
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3. We want to solve the equation

Gµν “ ´Λgµν

or equivalently

Rµν “ Λgµν

Moreover we are instructed to assume a spherical symmetric static metric. That is

ds2
“ ´T prqdt2 `Rprqdr2

` r2dΩ2
2

On chap 5, p.3 of my class notes you will find the Ricci tensor for this metric (this was

used in connection with the RN BH). The Rtt equation is

1

2

T 2

R
´

1

4

T 1R1

R2
´

1

4

T 12

RT
`

1

r

T 1

R
“ ´ΛT

As in every static case we try a solution with RT “ 1. This gives

T 2 `
2

r
T 1 ´ 2Λ “ 0

This is easy to solve (using r´2 d
dr
pr2T q “ T 2 ` 2

r
T 1 and integrating twice):

T “ C1 ` C2
1

r
´

1

3
Λr2

Now we can fix the constants of integration as follows. C1 “ 1 is necessary for solving the

Rθθ equation. You could guess it from setting Λ “ 0 and requiring this gives a SBH. In fact

this is what we do to interpret (cheaply) the second constant, which we set to C2 “ ´2GM .

So we have

T “
1

R
“ 1´

2GM

r
´

1

3
Λr2

It is straightforward to check that the other component of Einstein’s equations are satisfied.

(ii) For M “ 0 the metric is

ds2
“ ´p1´ 1

3
Λr2

qdt2 ` p1´ 1
3
Λr2

q
´1dr2

` r2dΩ2
2

We know this should be dS or AdS, depending on the sign of Λ, but looks unfamiliar. We

could simply check that the Riemann tensor satisfies the condition ofr maximal symmetry.

But more interesting is to display a change of coordinates that relates this to one of our

known versions of the metric. Or beter yet, to derive this static metric form the embedding

in 5D. Recall, dS is the 4D hypersurface

´u2
` w2

` x2
` y2

` z2
“ α2
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in 5D flat Lorentzian space, ds2 “ ´du2 ` dw2 ` dx2 ` dy2 ` dz2. The obvious thing to try

in going to spherical symmetry is spherical coordinates for x, y, z, so that

´u2
` w2

“ α2
´ r2

Then we need to choose one more coordinate form u and w and solve for the last. But we

do not want square roots. So we go to lightcone coordinates, w˘ “ w ˘ u. We choose then

w` “
α2 ´ r2

w´

Finally, since w´ will now appear in the metric as dw´{w´ we introduce ξ “ lnw´ so that

ds2
“ ´pα2

´ r2
qdξ2

´ 2r dr dξ ` dr2
` r2dΩ2

2

“ ´pα2
´ r2

q

ˆ

dξ2
´ 2

r

α2 ´ r2
dr dξ

˙

` dr2
` r2dΩ2

2

Now, let

dR “
r

α2 ´ r2
dr

which can be obtained explicitly by integration, but we will not need. Then

ds2
“ ´pα2

´ r2
q
`

dξ2
´ 2dR dξ

˘

` dr2
` r2dΩ2

2

“ ´pα2
´ r2

q pdξ ´ dRq2 ` pα2
´ r2

qdR2
` dr2

` r2dΩ2
2

“ ´pα2
´ r2

q
1

α2
dt2 ` pα2

´ r2
q

ˆ

r

α2 ´ r2
dr

˙2

` dr2
` r2dΩ2

2

“ ´p1´ r2
{α2
qdt2 `

α2

α2 ´ r2
dr2

` r2dΩ2
2

In going from the second to the third line we have defined t “ αpξ ´ Rq. Identifying

Λ “ 3{α2 we see this is the M “ 0 limit of the BH metric above. Note that Λ ą 0

necessarily, since α2 ą 0. A similar computation can be made for the AdS case.

Killing horizon: we are looking for a solution to gtt “ 0. That is T prΛq “ 0 or

1´
2GM

rΛ

´
1

3
Λr2

Λ “ 0

For Λ ą 0 there are generically zero or two solutions, while for Λ ă 0 there is always one

solution.

(iii) As instructed

ds2
“ T prqdτ 2

` T prq´1dr2
` r2dΩ2

2

5



Now, let r “ rΛ ` q, so that T prq “ T 1prΛqq ` ¨ ¨ ¨ . Now the point is that

T´1dr2
„
dq2

q
“ 4pd

?
qq2 “ du2

where u “ 2
?
q “ 2

?
r ´ rΛ. The metric near rΛ is now

ds2
“ u2dτ 2

` du2
` r2

HdΩ2

The first two terms tell the story. u is only defined for u ą 0 so it is a radial coordinate

and du2 ` u2dτ 2 is precisely of the form of polar coordinates, and defines a regular space if

τ (the polar coordinate) is periodic mod 2π.

4. First generalities/review: The observer moves on a time-like geodesic, gµν
dxµ

dτ
dxν

dτ
“ ´1.

For the RN-BH with mass M , electric charge Q and zero magnetic charge,

ds2
“ ´T prqdt2 ` T prq´1dr2

` r2dΩ2
2, T prq “ 1´

2GM

r
`

4πGQ2

r2

we can take the geodesic to be on the θ “ π{2 (equatorial) plane with conserved quantities

(from the two Killing vectors ~Bt and ~Bφ):

E “ ´gtt
dt

dτ
“ T prq

dt

dτ
and L “ gφφ

dφ

dτ
“ r2dφ

dτ

Using this and the fact that on a circular orbit r “ constant we have

´1 “ ´
E2

T prq
`
L2

r2

.

The circumference, a given, C “ 2πr gives r and therefore we have a relation between E

and L. To fix them both we need in addition to require that :r “ 0, that is, that the effective

potential energy is minimized at this value of r. This is just as in classical mechanics. I

will not carry out the computation, and give only implicit results in what follows. The

instantaneous velocity of the observer has magnitude

β “ r
dφ

dt
“

L{r

E{T prq

and obviously is tangential to the circle.

At any point on the circular trajectory the observer has some tangential velocity ~β and

observes, instantaneously, the charged BH moving with velocity ´~β. Therefore the observer

sees a current in the direction of ´~β which produces a magnetic field transverse to the
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plane of the orbit: if the circulation is couter-clockwise as seen from above the plane of the

orbit then the magnetic field points up.

To compute the field we take the field of the BH, Er “ Q{r2 and Br “ 0 and boost it

to a frame for which the observer is instantaneously at rest. It is simplest to use cartesian

coordinates: instantaneously we can take the motion of the observer (in the rest frame of

the BH) to be in the x-direction, the direction towards the BH to be ´z, so that z is the

radial direction. Then y points up from the plane of the orbit. Boosting the electric field

strength F 1µν “ Λµ
ρΛν

σFρσ along the x-axis, Λ0
0 “ Λ1

1 “ γ “ 1{
a

1´ β2, Λ0
1 “ Λ1

0 “ ´βγ,

we have

F 113 “ Λ1
µΛ3

νFµν “ ´βγF03

so that the magnitude of the magnetic field pointing up is

βγEr

with β, γ and Er given above.
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