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1. We start by recalling the Friedmann equations:

:a

a
“ ´

4πG

3
pρ` 3pq (1)

ˆ

9a

a

˙2

`
k

a2
“

8πG

3
ρ (2)

9ρ` 3
9a

a
pρ` pq “ 0 (3)

(i) Use p “ wρ above, with w “ 0 and w “ 1{3 for matter and radiation domination,

respectively. In terms fo q and H the LHS of Eq. (1) is

:a

a
“ ´

ˆ

´
:aa

9a2

˙

9a2

a2
“ ´qH2

Hence the second of the desired relations is just a simple rewriting of (1):

´qH2
“ ´

4πG

3
pρ` 3pq “ ´

4πG

3
p1` 3wqρ

(from which the result follows by multiplying by ´2 for w “ 0 and by ´1 for w “ 1{3).

Using this result in (2) to eliminate ρ, the first of the desired relations follows:

ˆ

9a

a

˙2

`
k

a2
“

2

1` 3w
qH2, or simply:

k

a2
“

ˆ

2

1` 3w
q ´ 1

˙

H2.

(ii) For k “ 0 the metric is invariant under a Ñ ξa and the spatial coordinate χ Ñ

ξ´1χ. This means that we can change what we mean by a by changing units of distance

measurement in a flat universe. This cannot be done for k ‰ 0 The most obvious case is

k “ `1 where χ is an angular variable.

(iii) The equation is

9a2
“

8πGρ0a
3
0

3

1

a
´ k “

κ

a
´ k

where we have defined

κ “
8πGρ0a

3
0

3
“ 2q0H

2
0a

3
0 “

$

&

%

2|q0|H
´1
0 |2q0 ´ 1|´3{2 k “ ˘1

2q0H
2
0a

3
0 k “ 0
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So we need to integrate

t “

ż

da

˘
a

κ{a´ k

But the right hand side is, in the k “ 1 case,
c

κ

a
´ 1a`

κ

2
arctan

˜

κ{a´ 2

2
a

κ{a´ 2

¸

which is not easily inverted. Changing variables to conformal time, da{dt “ pda{dηqp1{aq ”

a1{a the Friedmann equation is

pa1q2 “ κa´ ka2
ñ η “

ż

da

˘
?
κa´ ka2

or

η “

$

’

’

’

&

’

’

’

%

2 arcsin
a

a{κ k “ `1

2
a

a{κ k “ 0

2 arcsinh
a

a{κ k “ ´1

This is inverted straightforwardly,

apηq “

$

’

’

’

&

’

’

’

%

κ sin2 η{2 “ 1
2
κp1´ cos ηq k “ `1

κpη{2q2 k “ 0

κ sinh2 η{2 “ 1
2
κpcosh η ´ 1q k “ ´1

We can then obtain a relation between η and t by integrating dt “ apηqdη:

t “

$

’

’

’

&

’

’

’

%

1
2
κpη ´ sin ηq k “ `1

1
12
κη3 k “ 0

1
2
κpsinh η ´ ηq k “ ´1

Before moving on to the next question it worth pondering a bit over the form of the

solution. For definiteness let’s concentrate on the closed universe case, k “ `1. That

ap0q “ ap2πq “ 0 is no surprise, since from the mechanical analogy (particle in a potential)

we knew the solution must expand from a “ 0, reach a maximum (here at apπq “ κ and

then re-colapse to a “ 0. But with the exact solution we can determine, for example, the

life-span of the universe, tlife “ πκ.

(iv) Of course you should understand “the volume of the universe today,” V0, as the

volume of one of the 3-dimensional hypersurfaces, Σ0, we used in the foliation that defined

the isotropic spacetime, namely the one for which the time coordinate corresponds to today:

V0 “

ż

Σ0

d3x
a

gp3q
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Here the metric on the three surface, gp3q, is inherited from that of the ambient the spacetime

in an obvious way (t “ const, or, if you want to get fancy, if φ : Σ ÑM is the embedding

of the hypersurface Σ in the spacetime M, then the metric is the pullback φ˚g of the metric

g defined on M). In our case,

ds2
“ ´dt2 ` a2

rdχ2
` sin2 χpdθ2

` sin2 θdφ2
qs

so that

det gp3q “ a6
0 sin4 χ sin2 θ

Here a0 is the scale factor today, which can (and will) be expressed in terms of observables

(H0 and q0). So we have

V0 “ a3
0

ż π

0

dχ sin2 χ

ż π

0

dθ sin θ

ż 2π

0

dφ (4)

“ 2π2a3
0 (5)

“ 2π2
rp2q0 ´ 1qH2

0 s
´3{2. (6)

(v) Without loss of generality we place ourselves at χ “ 0. Then photons coming from

a spherical shell between χ and χ` dχ originate from a comoving volume 4π sin2 χdχ. So

the proper volume of the universe we can see, Vf , is

Vf “

ż π

0

dχ4πa3
pχq sin2 χ, (7)

where apχq “ aptpχqq is the scale factor at the time the photons were emitted from χ. To

figure what this is we have to compute the time tpχq it took the photons to arrive from χ

to χ “ 0. The null geodesic satisfies

0 “ ´dt2 ` a2
ptqdχ2.

If we have the form of aptq we can integrate this to give tpχq. But we already computed

this in part (iii). It makes sense to use conformal time, so that the null geodesic has

0 “ a2
r´dη2

` dχ2
s

Note that the expression for the volume of the shell, and therefore of V , does not change

when we use conformal time. So if η0 is the conformal time today we have

η0 ´ η “ χ. (8)
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Using the result in (iii), apηq “ 1
2
κp1´ cos ηq, we have

Vf “ 4π

ż π

0

dχ sin2 χr1
2
κp1´ cospη0 ´ χqs

3. (9)

“ 1
2
πκ3

ˆ

5π

4
´

3π

8
cosp2η0q ´ 5 sinpη0q `

1

15
sinp3η0q

˙

. (10)

This can be written in terms of a0 “
1
2
κp1´ cos η0q by solving for cos η0 in terms of a0, and

then a0 can be written in terms of q0 and H0. But in practice it is easier to find the value

of η0 given q0 and H0 and plug in, so we will leave it as that.

(vi) The farthest distance we can see today corresponds to setting η “ 0 in Eq. (8). So

the volume is

Vf0 “ 4πa3
0

ż η0

0

dχ sin2 χ “ 2πa3
0pη0 ´ cos η0 sin η0q.

Before we declare victory, notice something strange about this expression. The expecta-

tion that Vf0 ď V0 is violated for η0 ą π. The reason is clear: Eq. (8) says that at η0 “ π

the farthest we can see, that is the photons coming from the big bang, η “ 0, originate from

χ “ π. But that is the opposite pole on the sphere! This means that from that instant on

we see the whole universe. The expression for today’s proper volume of the seeable universe

is

Vf0 “

$

&

%

2πa3
0pη0 ´ cos η0 sin η0q η0 ă π

2π2a3
0 η0 ě π

(11)
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2. In class we showed that the angular diameter distance, dA “ D{θ is related to the

luminosity distance (which we computed) by dA “ dL{p1` zq
2. So we have θpzq “ D{dA “

Dp1` zq2{dLpzq. Now recall

dL “
p1` zq

H0

a

|1´ Ω0|
Sk

ˆ

a

|1´ Ω0|

ż z

0

dz1

Epz1q

˙

.

Specializing to the assumptions in this problem (matter dominance and flat universe)

we use here S0pxq “ x, we take Ω0 as the matter density relative to the critical density

today and E2pzq “ Ω0p1` zq
3. Note that the universe is flat for Ω0 “ 1, so we expect the

factors of Ω0 ´ 1 to drop from the computation. For now we keep Ω0 as if it were arbitrary.

Computing:
ż z

0

dz1

Epz1q
“ Ω

´1{2
0

ż z

0

dz1

p1` z1q3{2
“ 2Ω

´1{2
0

ˆ

1´
1

?
1` z

˙

.

and finally we have

θpzq “
DH0Ω

1{2
0 p1` zq

2
´

1´ 1?
1`z

¯

As expected we can now safely replace Ω0 “ 1.

That the function θpzq{DH0 has a minimum is easy to see from a plot, or from noting

that it diverges to positive infinity both as z Ñ 0 and as z Ñ 8 (so it must turn around at

a minimum in between). Or simply by taking a derivative, we find θmin “ p3{2q
3DH0 at

zmin “ 5{4.

Why? We will understand this if we understand why θpzq diverges both as z Ñ 0 and

z Ñ 8. Now the behavior as z Ñ 0 is physically obvious: an object of fixed size subtends

ever larger angles as it comes closer to the observer. The interesting question is why the

behavior as z Ñ 8 which is diametrically opposite the flat-Euclidean spacetime familiar

behavior of θ decreasing with increasing distance. The reason this happens is that the null

geodesics that are defining the angle are affected by curvature. An analogy may be useful.

Consider the geometry of the sphere: think of S2, in fact of the globe in your grandfather’s

office, and place an object of fixed diameter D on it, say a coin. Now imagine yourself as

an observer at the north pole and move the coin around, drawing rays (sections of great

circles) from the north pole to the coin: the envelope of these rays is a curvilinear cone

that subtends minimum angle when the coin is at the equator! The distance from the

north-pole in this example is in one to one correspondence with redshift. Of course the

example is misleading, the “expansion” from the south pole to the equator is analogous

enough but then there should be no contraction but rather a slow turnover to a flatter

space. On this flat space our common intuition of θ decreasing with z applies, but once
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we reach the equator and the universe starts contracting (we are going backwards in time)

then θ increases again.

Numerics. With D “ 10 kpc and H0 “ 100h km{s{Mpc we have (using c “ 3.0ˆ105km{s):

θmin “ 1.1ˆ 10´8h rad or 2.3h milliarcsec.

The solution ends here, but it is fun to play with other geometries. Specializing to the

assumption that the universe is closed instead of flat, but still matter dominated, we now

use S`1pxq “ sinpxq and Ω0 ą 1. This yields the awful looking expression

θpzq “ DH0

a

Ω0 ´ 1p1` zq csc

„

2

c

Ω0 ´ 1

Ω0

ˆ

1´
1

?
1` z

˙

.

Now, to show that the function has a minimum we can either take a derivative, find a

stationary point and then check that it is a minimum by evaluating the second derivative. Or

we can inspect the function and find where it may have singularities and what the asymptotic

behavior is as we approach the singularities. Now, cscpxq is singular at x “ 0 modpπq, and

cscpxq “ 1{x`x{3!` ¨ ¨ ¨ . So as z Ñ 0 we find that θpzq diverges θpzq “ DH0Ω
1{2
0

1
z
` ¨ ¨ ¨ Of

course, this is physically trivial: as z Ñ 0 the distance to the object in question decreases

to zero, so the angle subtended by an object of fixed diamater D diverges. What is more

interesting is that there is another divergence when the argument of the csc is π:

„

2

c

Ω0 ´ 1

Ω0

ˆ

1´
1

?
1` zmax

˙

“ π

And sinpxq ą 0 for 0 ă x ă π the function θpzq stays positive throughout the region

0 ă z ă zmax. With this and the fact that θpzq diverges at z “ 0 and z “ zmax we have

shown that there is a minimum of θpzq in that interval.

The redshift for which the minimum occurs, zmin, cannot be found analytically in closed

form but we can give a simple equation for it. Taking one derivative, dividing through by

non-vanishing quantities (like the csc) and equating to zero we have
c

Ω0 ´ 1

Ω0

cot

„

2

c

Ω0 ´ 1

Ω0

ˆ

1´
1

?
1` zmin

˙

“
?

1` zmin.

Let ω “
a

1´ Ω´1
0 and x “ 1{

?
1` zmin so that the equation we are trying to solve takes

the form fpx, ωq “ 1 where fpx, ωq ” ωx cotp2ωp1 ´ xqq. You can see that as ω Ñ 0 the

solution is x “ 2{3 or zmin “ 5{4, which correctly reproduces the flat case, above. As

ω increases, so does zmin. Keep in mind that ω ă 1 the limiting value correpsonding to

Ω0 Ñ 8. Here is a plot of fpx, ωq vs x for several values of ω:

6



0.67 0.68 0.69 0.70 0.71 0.72

1.0

1.1

1.2

You can see the functions for small ω all crossing f “ 1 at x “ 2{3 and then as ω increases

so does x that solves f “ 1. The case ω “ 1 is solved by x « 0.696. Of course, this value is

non-sensical because it corresponds to infinite density. But it does show that all solutions

are close to x “ 2{3, that is z “ 5{4 and we obtain an estimate for this minimum in terms

of the flat space case:

θmin “
2
3
θmin,flatΩ

1{2
0 ω cscp2

3
ωq

The factor ω cscp2
3
ωq starts as 3/2 at ω “ 0 and increases smoothly by about 10% by ω “ 1.

So roughly speaking θmin{θmin,flat « Ω
1{2
0 .
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3. In problem 1, part (v) we found the proper volume of the universe we can see. Let’s

adapt that question into what we need here. In (7) we computed the total volume we

can see by adding over volumes of thin concentric shells. We adapt (7) to the problem at

present by multiplying the integrand by an appropriate factor that counts how much energy

we get from that shell. Now, when in class we computed the luminosity distance we had

F

L
“

ˆ

a

a0

˙2
1

4πa2
0χ

2
.

This is what we get from one source in the shell a comoving distance χ away. There are

n “ n0pa0{aq
3 such sources per unit proper volume. Putting it all together the total flux

here, today is

FT “ L

ż χ0

0

dχ4πχ2a3
pχq ˆ n0

´a0

a

¯3

ˆ

ˆ

a

a0

˙2
1

4πa2
0χ

2
.

Recall, asin problem 1.(v), that χ “ χptq, is the comoving distance of a photon that has

traveld time t. Since 0 “ ´dt2 ` a2dχ2 it is easiest to convert the integral into an integral

over time:

FT “ n0L

ż t0

0

aptq

a0

dt.

For a k “ 0 mater dominated universe

ˆ

9a

a

˙2

“
8πGρ

3
“

8πGρ0

3

´a0

a

¯3

or
c

8πGρ0a3
0

3

ż

dt “

ż

?
a da ñ

aptq

apt0q
“
`

3
2
H0t

˘
2
3

Using this above we have, the brightness

B “
1

4π
FT “

1

4π
nL

ż t0

0

dt p3
2
H0tq

2
3 “

1

4π
nL

`

3
2
H0

˘
2
3 3

5
t
5
3
0

We can eliminate t0 in favor of H0 (as seen in class) from the equation above a0{a “ p
3
2
H0tq

2{3

evaluated today, t0 “
2
3
H´1

0 . We obtain finally

B “
3

20π
nLt0 “

1

10π
nLH´1

0 .

Here is an alternative method. The strategy is to compute the total energy today that

was radiated by any one star since the beginning of time (!). This times the density of

stars today is the energy density today of what was radiated by all stars. The brightness is

this times c{4π (“ 1{4π in our units).
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The energy emitted by a star between time t and δt is Lδt (L is energy radiated per

unit proper time and the coordinate time t measures proper time of comoving observers; we

assume the stars are comoving). This energy today is redshifted by a factor or aptq{apt0q.

The total amount of energy today radiated by one star over its history is

E “

ż t0

0

dt
aptq

apt0q
L

The rest follows.

4. (i) Use aptq “ et{α. Also from the form of the line element, d~x2 “ dχ2 ` χ2dΩ2
2, we

see that Skpχq “ χ, which means k “ 0. Then H “ 9a{a “ 1{α and we have

H2
“

8πGρ

3
´
k

a2
ñ

1

α2
“

8πGρ

3

So ρ “ constant. Then 9ρ ` 3 9a
a
pρ ` pq “ 0 give p “ ´ρ. This is a cosmological constant

solution with Λ “ 8πGρ “ ´8πGp “ 3{α2.

(ii) Since the metric is independent of x̂, ŷ, ẑ (or simply x̂i) we get three conservation

laws,
dx̂i

dλ
“
vi

gii
“ e´2t̂{αvi,

where vi “ constant. Then uµuµ “ 0 for null geodesics gives

dt̂

dλ
“ ˘|~v | e´t̂{α ñ λ “ pα{|~v |qet̂{α.

This shows that t̂ Ñ ´8 as λ Ñ 0, that is, along a geodesic we reach the end of the

spacetime given by these coordinates in finite affine parameter. It is easy to integrate

uµuµ “ ´1, for time-like geodesics and obtain the same result — that asymptotically

τ Ñ constant as t̂Ñ ´8. Explicitly, uµuµ “ ´1 gives

ˆ

dt̂

dτ

˙2

´ e´2t̂{α~v 2
“ 1

which gives

τ “

ż

dt̂
a

1` e´2t̂{α~v 2
“ t̂` α ln

´

1`
a

1` e´2t̂{α~v 2
¯

.

So as t̂ Ñ ´8 we find τ “ α ln |~v | ` pα{|~v |qet̂{α ` ¨ ¨ ¨ , while for t̂ Ñ `8 we find τ “

t̂` α ln 2` ¨ ¨ ¨ .
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