6-44. (a) Forx>0, i’ky /2m+V, =E =’k /2m =2V,

1/2 1/2

So, k, = 2mV, /}‘1. Because k, = 4mV /h, thenﬁa:kl.f\,@

) R= k—k [/ k+k ° (Equation 6-68)

2 2
= l—lfJ’E / 1 +1;W’:_T =0.0294, or 2.94% of the incident particles are

reflected.
(c) T=1-R=1-0.0294=0.971

(d) 97.1% of the particles, or 0.971x10° =9.71x10°, continue past the step in the +x

direction. Classically, 100% would continue on.

6-45 (a) Equation 6-76: T = ]6;[]— g}:‘z’” where o =2, ’2?”;; V,-E)/h

0 0

and a = barrier width .

—2¢a = -2[J2(938 MeV/c?)(50 —44)MeV / 6.58 x10" 2 MeV -s]xm'” =-1.075

T¥1644MEV 1— 44 MeV e_l_o‘]'j
50MeV 50MeV
T =0577

(b) decay rate ~ N xT where

1/2
w7 Yeroton _ 2x 44MeVx1.60x107" J/MeV 5 1
2R 1.67x107" kg 2x10 P m

=4.59%x102 s

decay rate ~ 0.577x 4.59x10% s ' = 2.65x10% 5™
(c) In the expression for 7, ¢ %" = ¢ and so T~0.577 =T ~0.197. The decay

rate then becomes 9.05x10*s™ | a factor of 0.34x the original value.

6-46. (a) Forx>0, h’ky 12m-V, = E = i’k | 2m = 2V,

112

So, k, = 6mV, /ﬁ. Because k; = 4mV) m/ﬁ, then k, = +/3/2k



®) R= k-k [ k+k

2 2
R= k-k [ k+k * = 1-43/2 / 1++3/2  =0.0102
Or 1.02% are reflected at x = 0.
() T=1-R=1-0.0102=0.99
(d) 99% of the particles, or 0.99x10° =9.9x10°, continue in the +x direction.

Classically, 100% would continue on.

E=4eV oer—y,  @=y2m Vo—E Ih

=J2 0.511x10%V /& 5eV Ih

=\/5.11x105.«3vﬂm

c
_ 2260eV
" 197 3eVenm

06nmm=a

=11.46nm"
and aa = 0.6nmx11.46nm™" =6.87
Since aa is not < 1, use Equation 6-75:

The transmitted fraction
inh’ B 81 B
14— 24 =|1+] = |sinh® 6.87
4 Elv, 1-E/V, 80

Recall that sinhx = & —¢™* /2,

T=

31( 557 — o 6% )
T=|1+ %[fJ =4.3%x10°° is the transmitted fraction.

(b) Noting that the size of T'is controlled by aa through the sinh? @a and increasing T

implies increasing E. Trying a few values, selecting E = 4.5eV yields T=8.7x10°°

or approximately twice the value in part (a).



6-50. Using Equation 6-76,

T= 16£[1 - EJE'Q'” where E =2.0eV, V, =6.5¢V, and a = 0.5nm.

0 0

T~ 15(%}(1 —%Je'z 108795 £ 6.5%10” (Equation 6-75 yields 7 =6.6x107.)

—k
6-51. R= L"’Z and T=1-R (Equations 6-68 and 6-70)

k+ kK,

(a) For protons:

k = N2mc’E [he = JZ 938MeV 40MeV [197.3MeVfin =1.388

ky=\J2mc® E—V, Ihc=[2938MeV 10MeV /197.3MeVfin =0.694

1.388—0.694 Y
1.388 + 0.694

0.694
2.082

2
] =0.111 AndT=1-R=0.889
(b) For electrons:

112 112
k = 1.388(%) =0.0324 k, = 0.694(%} =0.0162

0.0324-0.0162
2=

2
=0.111 AndT=1-R=0.889
0.0324+ 0.0162

No, the mass of the particle is not a factor. (We might have noticed that \fr: could

be canceled from each term.



6-56. (a) The requirement is that > x =i’ —x =i —x  —x . This can only be true if:

(b)

(©

W =X =i X Oor W —X =—ly X .

2
Writing the Schrédinger equation in the form d—"g = —Ew, the general solutions
h

of this 2° order differential equation are: y x = Asinkrand y x = .4coSkx

where k= J 2mE /ﬁ Because the boundaries of the box are at x==+71/2, both
solutions are allowed (unlike the treatment in the text where one boundary was at
x=0). Still, the solutions are all zero at x= +L/2 provided that an integral number

of half wavelengths fit between x=—L/2 and x =+L/2. This will occur for:

i

w, x = 2/L " cosnax/L whenn=13,5,--. And for

w, x = 2L msinmrfo when n =2,4,6,---.

The solutions are alternately even and odd.

The allowed energies are: E = h2k2 1 2m =# nx /L 12m=nh? I 8mI’ .



L
6-58. (x2)= j%xz sinz?dx Letting u = nzx/L, du= nx/L dx
0

2 e
(xz)= %(%] [%] _[uz sin® udu

0

nT




nr?

7-1 nmm = 8 (nf +m n,f) (Equation 7-4)
??2?1'2 2 2 3 hQ‘TZ
iy =—— (3 +1"+1°)=11E, where E, =——
M 2me ( ) =115, ° amp?
Ep=E(2+2°+2%)=12E, and E, =E,(3*+2°+1")=14E,
The ISt, 2ﬂd, 3“1, and 5™ excited states are degenerate.
A
14— 321
E 12 22
(<Eo) — 311
10 |
21
e |
6 211
4 -
111
2_2( 2 2 2 2_2 2 2
72 E,,, =" {%+n—§+n—§] J—ﬂ(”f +"—2+3J (Equation 7-5)
2m \ L} L, I3 2mL 4 9
n =n, =n; =1 1s the lowest energy level.
n'z?
E,, =E,(1+1/4+1/9)=1.361E, where £y = ——
2mL

The next nine levels are, increasing order,



7-4.

7-7.

7-8.

n 1, i, E (xE,)
1 1 2 1.694
1 2 1 2111
1 1 3 2250
1 2 2 2444
1 2 3 3.000
1 1 4 3.028
1 3 1 3360
1 3 2 3.472
1 2 4 3.778

X . Y

) Hy - Mz
@ ¥, (-\’-.J’,-)—Aoos I sin

sin

(b) They are identical. The location of the coordinate origin does not affect the energy

level structure.

v (xrz) = AsinZ sin 2 sin 2= Vin(x,2)= Asin™ sin 7Y sin 272
| L 2L 3L " 2L, 3L
. AX . AV . AZ . AX . @AY . 2@z
x,v,z2) = Asin—sin—sin x,V,z)=Asin—sin—sin
Wm( . ) 3 Wm( - ) 3L
. X . AY . WZ
Vi (x,0,2) = Asin~—sin—=sin—
L 2L L
2
R (1.055x107 Jes) #*

=37.68¢eV

""oml 2(9.11x10™'4g)(0.10x10°m)’ (1.609x 107 /e¥)

Eyyy — Eyyy = AE =11E, —3E, =8E, =301eV’

E,,, —E,, = AE =12E, —3E, = 9E, = 339V
E,, —E,, =AE=14E,—3E, =11E, = 415¢V’

(a) Adapting Equation 7-3 to two dimensions (i.e., setting k3 = 0), we have
MAX . MY

L

W = ASiN sin



. W’
(b) From Equation 7-5, E,, = W(nf + ng)

(c) The lowest energy degenerate states have quantum numbers 7 =1, m =2, and m =2,

H;g:l.



2 2 2 2 %) 2 2
7-5. E, .= 'z n12 + D 5+ ! 5 =h—”2[n12 +n_2+n_3j (from Equation 7-5)
2m | L (2L) (4L) 2mL; 4 16
2 2 2 2
T
E__ = n12+n—2+—3 where E, = .
nm 4 16 2mL;
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Chapter 7 — Atomic Physics

(Problem 7-5 continued)

(a)
n, n, n, E (xE,)
1 1 1 1313
1 1 2 1.500
1 1 3 1.813
1 2 1 2.063
1 1 4 2.250
1 2 2 2.250
1 2 3 2.563
1 1 5 2813
1 2 4 3.000
1 3 1 3313

(b) 1,1.4and 1,22



