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Chapter 9 
 

 

 

1. We use Eq. 9-5 to solve for 3 3( , ).x y   

 

(a) The x coordinate of the system’s center of mass is: 

 

     31 1 2 2 3 3
com

1 2 3

(2.00 kg)( 1.20 m) 4.00 kg 0.600 m 3.00 kg

2.00 kg 4.00 kg 3.00 kg

0.500 m.

xm x m x m x
x

m m m

   
 

   

 

 

 

Solving the equation yields x3 = –1.50 m. 

 

(b) The y coordinate of the system’s center of mass is: 

 

     31 1 2 2 3 3
com

1 2 3

(2.00 kg)(0.500 m) 4.00 kg 0.750 m 3.00 kg

2.00 kg 4.00 kg 3.00 kg

0.700 m.

ym y m y m y
y

m m m

   
 

   

 

 

 

Solving the equation yields y3 = –1.43 m. 

 

2. Our notation is as follows: x1 = 0 and y1 = 0 are the coordinates of the m1 = 3.0 kg 

particle; x2 = 2.0 m and y2 = 1.0 m are the coordinates of the m2 = 4.0 kg particle; and x3 = 

1.0 m and y3 = 2.0 m are the coordinates of the m3 = 8.0 kg particle. 

 

(a) The x coordinate of the center of mass is 

 

     
1 1 2 2 3 3

com

1 2 3

0 4.0 kg 2.0 m 8.0 kg 1.0 m
1.1 m.

3.0 kg 4.0 kg 8.0 kg

m x m x m x
x

m m m

  
  

   
 

 

(b) The y coordinate of the center of mass is 

 

     1 1 2 2 3 3
com

1 2 3

0 4.0 kg 1.0 m 8.0 kg 2.0 m
1.3 m.

3.0 kg 4.0 kg 8.0 kg

m y m y m y
y

m m m

  
  

   
 

 

(c) As the mass of m3, the topmost  particle,  is increased, the center of mass shifts toward 

that particle. As we approach the limit where m3 is infinitely more massive than the 

others, the center of mass becomes infinitesimally close to the position of m3. 

 

3. We use Eq. 9-5 to locate the coordinates. 
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(a) By symmetry xcom = –d1/2 = –(13 cm)/2 = – 6.5 cm. The negative value is due to our 

choice of the origin. 

 

(b) We find ycom as 

 

     

com, com, com, cm,

com

3 3

3 3

11 cm / 2 7.85 g/cm 3 11 cm / 2 2.7 g/cm
8.3 cm.

7.85 g/cm 2.7 g/cm

i i a a i i i a a a

i a i i a a

m y m y V y V y
y

m m V V

 

 

 
 

 


 



 

 

(c) Again by symmetry, we have zcom = (2.8 cm)/2 = 1.4 cm.  

 

4. We will refer to the arrangement as a “table.” We locate the coordinate origin at the 

left end of the tabletop (as shown in Fig. 9-37). With +x rightward and +y upward, then 

the center of mass of the right leg is at (x,y) = (+L, –L/2), the center of mass of the left leg 

is at (x,y) = (0, –L/2), and the center of mass of the tabletop is at (x,y) = (L/2, 0).  

 

(a) The x coordinate of the (whole table) center of mass is 

 

     
com

0 3 / 2

3 2

M L M M L L
x

M M M

   
 

 
. 

 

With L = 22 cm, we have xcom = (22 cm)/2 = 11 cm. 

 

(b) The y coordinate of the (whole table) center of mass is 

 

     
com

/ 2 / 2 3 0

3 5

M L M L M L
y

M M M

   
  

 
, 

or ycom = – (22 cm)/5 = – 4.4 cm.  

 

From the coordinates, we see that the whole table center of mass is a small distance 4.4 

cm directly below the middle of the tabletop. 

 

5. Since the plate is uniform, we can split it up into three rectangular pieces, with the 

mass of each piece being proportional to its area and its center of mass being at its 

geometric center.  We’ll refer to the large 35 cm   10 cm piece (shown to the left of the y 

axis in Fig. 9-38) as section 1; it has 63.6% of the total area and its center of mass is at 

(x1 ,y1) = (5.0 cm, 2.5 cm).  The top 20 cm   5 cm piece (section 2, in the first quadrant) 

has 18.2% of the total area; its center of mass is at (x2,y2) = (10 cm, 12.5 cm). The bottom 

10 cm x 10 cm piece (section 3) also has 18.2% of the total area; its center of mass is at 

(x3,y3) = (5 cm, 15 cm).   

 

(a) The x coordinate of the center of mass for the plate is  
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xcom = (0.636)x1 + (0.182)x2 + (0.182)x3  = – 0.45 cm . 

 

(b) The y coordinate of the center of mass for the plate is  

 

ycom = (0.636)y1 + (0.182)y2 + (0.182)y3  = – 2.0 cm . 

 

6. The centers of mass (with centimeters understood) for each of the five sides are as 

follows: 

1 1 1

2 2 2

3 3 3

4 4 4

   ( , , ) (0,20,20) for the side in the  plane

  ( , , ) (20,0,20) for the side in the  plane

  ( , , ) (20,20,0) for the side in the  plane

( , , ) (40,20,20) for the remaining side paral

x y z yz

x y z xz

x y z xy

x y z









5 5 5

lel to side 1

( , , ) (20,40,20) for the remaining side parallel to side 2x y z 

 

 

Recognizing that all sides have the same mass m, we plug these into Eq. 9-5 to obtain the 

results (the first two being expected based on the symmetry of the problem). 

 

(a) The x coordinate of the center of mass is 

 

x
mx mx mx mx mx

m
com cm

   


   
1 2 3 4 5

5

0 20 20 40 20

5
20  

 

(b) The y coordinate of the center of mass is 

 

y
my my my my my

m
com cm

   


   
1 2 3 4 5

5

20 0 20 20 40

5
20  

 

(c) The z coordinate of the center of mass is 

 

z
mz mz mz mz mz

m
com cm

   


   
1 2 3 4 5

5

20 20 0 20 20

5
16  

 

7. (a) By symmetry the center of mass is located on the axis of symmetry of the 

molecule – the y axis. Therefore xcom = 0. 

 

(b) To find ycom, we note that 3mHycom = mN(yN – ycom), where yN is the distance from the 

nitrogen atom to the plane containing the three hydrogen atoms: 

 

   
2 2

11 11 11

N 10.14 10 m 9.4 10 m 3.803 10 m.y          

 

Thus, 
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  
 

11

11N N
com

N H

14.0067 3.803 10 m
3.13 10 m

3 14.0067 3 1.00797

m y
y

m m






   
 

 

 

where Appendix F has been used to find the masses. 

 

8. (a) Since the can is uniform, its center of mass is at its geometrical center, a distance 

H/2 above its base. The center of mass of the soda alone is at its geometrical center, a 

distance x/2 above the base of the can. When the can is full this is H/2. Thus the center of 

mass of the can and the soda it contains is a distance 

 

h
M H m H

M m

H







/ /2 2

2

b g b g
 

 

above the base, on the cylinder axis. With H = 12 cm, we obtain h = 6.0 cm. 

 

(b) We now consider the can alone. The center of mass is H/2 = 6.0 cm above the base, 

on the cylinder axis. 

 

(c) As x decreases the center of mass of the soda in the can at first drops, then rises to H/2 

= 6.0 cm again. 

 

(d) When the top surface of the soda is a distance x above the base of the can, the mass of 

the soda in the can is mp = m(x/H), where m is the mass when the can is full (x = H). The 

center of mass of the soda alone is a distance x/2 above the base of the can. Hence 

 

h
M H m x

M m

M H m x H x

M mx H

MH mx

MH mx

p

p
















/ / / / /

/
.

2 2 2 2

2

2 2b g b g b g b gb g
b g b g  

 

We find the lowest position of the center of mass of the can and soda by setting the 

derivative of h with respect to x equal to 0 and solving for x. The derivative is 

 

dh

dx

mx

MH mx

MH mx m

MH mx

m x MmHx MmH

MH mx










 



2

2 2

2

2

2 2

2

2 2 2

2b g
c h
b g b g .  

 

The solution to m
2
x

2
 + 2MmHx – MmH

2
 = 0 is 

 

x
MH

m

m

M
   
F
HG

I
KJ1 1 .  

 

The positive root is used since x must be positive. Next, we substitute the expression 

found for x into h = (MH
2
 + mx

2
)/2(MH + mx). After some algebraic manipulation we 

obtain 
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(12 cm)(0.14 kg) 0.354 kg
1 1 1 1 4.2 cm.

0.354 kg 0.14 kg

HM m
h

m M

   
            

   
 

 

9. We use the constant-acceleration equations of Table 2-1 (with +y downward and the 

origin at the release point), Eq. 9-5 for ycom and Eq. 9-17 for 

vcom . 

 

(a) The location of the first stone (of mass m1) at t = 300  10
–3

 s is  

 

y1 = (1/2)gt
2
 = (1/2)(9.8 m/s

2
) (300  10

–3
 s)

2
 = 0.44 m, 

 

and the location of the second stone (of mass m2 = 2m1) at t = 300  10
–3

 s is  

 

y2 = (1/2)gt
2
 = (1/2)(9.8 m/s

2
)(300  10

–3
 s – 100  10

–3
 s)

2
 = 0.20 m. 

 

Thus, the center of mass is at 

 

y
m y m y

m m

m m

m m
com

m m
m









1 1 2 2

1 2

1 1

1 2

0 44 2 0 20

2
0 28

. .
. .

b g b g
 

 

(b) The speed of the first stone at time t is v1 = gt, while that of the second stone is  

 

v2 = g(t – 100  10
–3

 s). 

 

Thus, the center-of-mass speed at t = 300  10
–3

 s is 

 

     2 3 2 3 3

1 11 1 2 2
com

1 2 1 1

9.8 m/s 300 10 s 2 9.8 m/s 300 10 s 100 10 s

2

2.3 m/s.

m mm v m v
v

m m m m

      
 

 



 

10. We use the constant-acceleration equations of Table 2-1 (with the origin at the traffic 

light), Eq. 9-5 for xcom and Eq. 9-17 for

vcom . At t = 3.0 s, the location of the automobile 

(of mass m1) is 

x at1
1
2

2 1
2

2
4 0 30 18  . .m / s s m,2c hb g  

 

while that of the truck (of mass m2) is x2 = vt = (8.0 m/s)(3.0s) = 24 m. The speed of the 

automobile then is   2

1 4.0 m/s 3.0 s 12 m/s,v at    while the speed of the truck 

remains v2 = 8.0 m/s. 

 

(a) The location of their center of mass is 
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x
m x m x

m m
com

kg m kg m

kg kg
m









1 1 2 2

1 2

1000 18 2000 24

1000 2000
22

b gb g b gb g
.  

 

(b) The speed of the center of mass is 

 

v
m v m v

m m
com

 kg  m / s  kg  m / s

 kg 2000 kg
 m / s.









1 1 2 2

1 2

1000 12 2000 8 0

1000
9 3

b gb g b gb g.
.  

 

11. The implication in the problem regarding 

v0  is that the olive and the nut start at rest. 

Although we could proceed by analyzing the forces on each object, we prefer to approach 

this using Eq. 9-14. The total force on the nut-olive system is 
o n

ˆ ˆ( i j) NF F    . Thus, 

Eq. 9-14 becomes 

com
ˆ ˆ( i j) N Ma    

 

where M = 2.0 kg. Thus, 21 1
com 2 2

ˆ ˆ( i j) m/sa    . Each component is constant, so we 

apply the equations discussed in Chapters 2 and 4 and obtain 

 

2

com com

1 ˆ ˆ( 4.0 m)i (4.0 m)j
2

r a t      

 

when t = 4.0 s. It is perhaps instructive to work through this problem the long way 

(separate analysis for the olive and the nut and then application of Eq. 9-5) since it helps 

to point out the computational advantage of Eq. 9-14.  

 

12. Since the center of mass of the two-skater system does not move, both skaters will 

end up at the center of mass of the system. Let the center of mass be a distance x from the 

40-kg skater, then 

65 10 40 6 2kg m kg mb gb g b g   x x x . .  

 

Thus the 40-kg skater will move by 6.2 m. 

 

13. THINK A shell explodes into two segments at the top of its trajectory. Knowing the 

motion of one segment allows us to analyze the motion of the other using the momentum 

conservation principle. 

 

EXPRESS We need to find the coordinates of the point where the shell explodes and the 

velocity of the fragment that does not fall straight down. The coordinate origin is at the 

firing point, the +x axis is rightward, and the +y direction is upward. The y component of 

the velocity is given by v = v0 y – gt and this is zero at time t = v0 y/g = (v0/g) sin 0, where 

v0 is the initial speed and 0 is the firing angle. The coordinates of the highest point on the 

trajectory are  
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 

22

0
0 0 0 0 0 2

20 m/s
cos sin cos sin 60 cos60 17.7 m

9.8 m/s
x

v
x v t v t

g
          

and 

y v t gt
v

g
y    

0

2 0

2
2

0

2

21

2

1

2

1

2

20

9 8
60 153sin

.
sin .

  m / s

 m / s
 m.

2

b g
 

 

Since no horizontal forces act, the horizontal component of the momentum is conserved. 

In addition, since one fragment has a velocity of zero after the explosion, the momentum 

of the other equals the momentum of the shell before the explosion. At the highest point 

the velocity of the shell is v0 cos0, in the positive x direction. Let M be the mass of the 

shell and let V0 be the velocity of the fragment. Then  

 

Mv0 cos0 = MV0/2, 

 

since the mass of the fragment is M/2. This means 

 

 0 0 02 cos 2 20 m/s cos60 20 m/s.V v      

 

This information is used in the form of initial conditions for a projectile motion problem 

to determine where the fragment lands.  

 

ANALYZE Resetting our clock, we now analyze a projectile launched horizontally at 

time t = 0 with a speed of 20 m/s from a location having coordinates x0 = 17.7 m, y0 = 

15.3 m. Its y coordinate is given by y y gt 0
1
2

2 ,  and when it lands this is zero. The 

time of landing is t y g 2 0 /  and the x coordinate of the landing point is  

 

x x V t x V
y

g
      0 0 0 0

02
17 7

2 153

9 8
53.

.

.
 m 20 m / s

 m

 m / s
 m.

2b g b g
 

 

LEARN In the absence of explosion, the shell with a mass M would have landed at  

 

 
22

0
0 0 2

20 m/s
2 sin 2 sin[2(60 )] 35.3 m

9.8 m/s

v
R x

g
      

 

which is shorter than 53 mx   found above. This makes sense because the broken 

fragment, having a smaller mass but greater horizontal speed, can travel much farther 

than the original shell.  

 

14. (a) The phrase (in the problem statement) “such that it [particle 2] always stays 

directly above particle 1 during the flight” means that the shadow (as if a light were 

directly above the particles shining down on them) of particle 2 coincides with the 

position of particle 1, at each moment.  We say, in this case, that they are vertically 
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aligned.  Because of that alignment, v2x = v1 = 10.0 m/s.  Because the initial value of v2 is 

given as 20.0 m/s, then (using the Pythagorean theorem) we must have  

 
2 2

2 2 2y xv v v  =  300   m/s 

 

for the initial value of the y component of particle 2’s velocity. Equation 2-16 (or 

conservation of energy) readily yields ymax = 300/19.6 = 15.3 m.  Thus, we obtain 

 

Hmax = m2 ymax /mtotal = (3.00 g)(15.3 m)/(8.00 g) = 5.74 m. 

 

(b) Since both particles have the same horizontal velocity, and particle 2’s vertical 

component of velocity vanishes at that highest point, then the center of mass velocity 

then is simply ˆ(10.0 m/s)i (as one can verify using Eq. 9-17). 

 

(c) Only particle 2 experiences any acceleration (the free fall acceleration downward), so 

Eq. 9-18 (or Eq. 9-19) leads to  

 

acom = m2 g /mtotal = (3.00 g)(9.8 m/s
2
)/(8.00 g) = 3.68 m/s

2
 

 

for the magnitude of the downward acceleration of the center of mass of this system. 

Thus, 2

com
ˆ( 3.68 m/s ) ja   . 

 

15. (a) The net force on the system (of total mass m1 + m2) is m2g.  Thus, Newton’s 

second law leads to a = g(m2/( m1 + m2)) = 0.4g. For block 1, this acceleration is to the 

right (the i
^
 direction), and for block 2 this is an acceleration downward (the –j

^
 direction).  

Therefore, Eq. 9-18 gives 

 

acom

     

 =  
 m1 a1 

  

 + m2 a2 
  

 

 m1 + m2 
 =  

(0.6)(0.4gi
^
 ) + (0.4)(–0.4gj

^
 )

 0.6 + 0.4
  =  (2.35 i

^
 – 1.57 j

^
 ) m/s

2
 . 

 

(b) Integrating Eq. 4-16, we obtain 

 

comv = (2.35 i
^
 – 1.57j

^
 ) t 

 

(with SI units understood), since it started at rest.  We note that the ratio of the y-

component to the x-component (for the velocity vector) does not change with time, and it 

is that ratio which determines the angle of the velocity vector (by Eq. 3-6), and thus the 

direction of motion for the center of mass of the system. 

 

(c) The last sentence of our answer for part (b) implies that the path of the center-of-mass 

is a straight line.   

 

(d) Equation 3-6 leads to  = 34º.  The path of the center of mass is therefore straight, at 

downward angle 34.  
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16. We denote the mass of Ricardo as MR and that of Carmelita as MC. Let the center of 

mass of the two-person system (assumed to be closer to Ricardo) be a distance x from the 

middle of the canoe of length L and mass m. Then  

 

MR(L/2 – x) = mx + MC(L/2 + x). 

 

Now, after they switch positions, the center of the canoe has moved a distance 2x from its 

initial position. Therefore, x = 40 cm/2 = 0.20 m, which we substitute into the above 

equation to solve for MC: 

 

M
M L x mx

L x
C

R
 




 




/

/

. .

. / .

.2

2

80 0 20 30 0 20

30 2 0 20
58

3 0
2b g b gb g b gb g
b g  kg.  

 

17. There is no net horizontal force on the dog-boat system, so their center of mass does 

not move. Therefore by Eq. 9-16,  

 

M x m x m xb b d d  com   0 , 

which implies 

.d
b d

b

m
x x

m
    

 

Now we express the geometrical condition that relative to the boat the dog has moved a 

distance d = 2.4 m: 

 x x db d   

 

which accounts for the fact that the dog moves one way and the boat moves the other. We 

substitute for |xb| from above: 

m

m
x x dd

b

d d b g    

 

which leads to 
2.4 m

1.92 m.
1 / 1 (4.5 /18)

d

d b

d
x

m m
   

 
  

 

The dog is therefore 1.9 m closer to the shore than initially (where it was D = 6.1 m from 

it). Thus, it is now D |xd| = 4.2 m from the shore. 

 

18. The magnitude of the ball’s momentum change is  

 

(0.70 kg) (5.0 m/s) ( 2.0 m/s) 4.9 kg m/s.i fp m v v         

 

19. (a) The change in kinetic energy is  
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      

     

2 22 2

224 3

4

1 1 1
2100 kg 51 km/h 41 km/h

2 2 2

9.66 10  kg km/h 10  m/km 1 h/3600 s

7.5 10  J.

f iK mv mv    

  

 

 

 

(b) The magnitude of the change in velocity is  

 

       
22 2 2

41 km/h 51 km/h 65.4 km/hi fv v v         

 

so the magnitude of the change in momentum is  

 

 
 
p m v 

F
HG

I
KJ   2100 654

1000

3600
38 104 kg  km / h

 m / km

 s / h
 kg m / s.b gb g. .  

 

(c) The vector p  points at an angle  south of east, where  

 

 
F
HG
I
KJ 

F
HG

I
KJ   tan tan .1 1 41

51
39

v

v

i

f

 km / h

 km / h
 

 

20. We infer from the graph that the horizontal component of momentum px is 4.0 

kg m/s . Also, its initial magnitude of momentum po is 6.0 kg m/s .  Thus, 

coso = 
px

 po
          o =  48 . 

 

21. We use coordinates with +x horizontally toward the pitcher and +y upward. Angles 

are measured counterclockwise from the +x axis. Mass, velocity, and momentum units 

are SI. Thus, the initial momentum can be written 

p0 4 5 215  .b g  in magnitude-angle 

notation.  

 

(a) In magnitude-angle notation, the momentum change is  

 

(6.0   – 90°) – (4.5   215°) = (5.0  – 43°) 

 

(efficiently done with a vector-capable calculator in polar mode). The magnitude of the 

momentum change is therefore 5.0 kg m/s.  

 

(b) The momentum change is (6.0   0°) – (4.5   215°) = (10   15°). Thus, the 

magnitude of the momentum change is 10 kg m/s.  

 

22. (a) Since the force of impact on the ball is in the y direction, px is conserved:  

 

 1 2sin sinxi xf i ip p mv mv    . 
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With  = 30.0°, we find  = 30.0°. 

 

(b) The momentum change is  

 

         2 2
ˆ ˆ ˆcos j cos j 2 0.165 kg 2.00 m/s cos30 j

ˆ( 0.572 kg m/s)j.

i ip mv mv        

  

 

 

23. We estimate his mass in the neighborhood of 70 kg and compute the upward force F 

of the water from Newton’s second law: F mg ma  , where we have chosen +y upward, 

so that a > 0 (the acceleration is upward since it represents a deceleration of his 

downward motion through the water). His speed when he arrives at the surface of the 

water is found either from Eq. 2-16 or from energy conservation: v gh 2 , where 

12 mh , and since the deceleration a reduces the speed to zero over a distance d = 0.30 

m we also obtain v ad 2 .  We use these observations in the following. 

 

Equating our two expressions for v leads to a = gh/d. Our force equation, then, leads to 

 

F mg m g
h

d
mg

h

d
 

F
HG
I
KJ  
F
HG
I
KJ1  

 

which yields F  2.8  10
4
 kg. Since we are not at all certain of his mass, we express this 

as a guessed-at range (in kN) 25 < F < 30. 

 

Since F mg ,  the impulse 

J  due to the net force (while he is in contact with the water) 

is overwhelmingly caused by the upward force of the water: F dt Jz 
 to a good 

approximation. Thus, by Eq. 9-29, 

 

Fdt p p m ghf i    z  
0 2d i  

 

(the minus sign with the initial velocity is due to the fact that downward is the negative 

direction), which yields   2 3(70 kg) 2 9.8 m/s 12 m 1.1 10 kg m s.    Expressing this 

as a range we estimate  
3 31.0 10 kg m s 1.2 10 kg m s.F dt       

 

24. We choose +y upward, which implies a > 0 (the acceleration is upward since it 

represents a deceleration of his downward motion through the snow). 

 

(a) The maximum deceleration amax of the paratrooper (of mass m and initial speed v = 56 

m/s) is found from Newton’s second law 

 



 

  

425 

F mg masnow max   

 

where we require Fsnow = 1.2  10
5
 N. Using Eq. 2-15 v

2
 = 2amaxd, we find the minimum 

depth of snow for the man to survive: 

 

 

  

 

22 2

5
max snow

85kg 56m s
1.1 m.

2 2 2 1.2 10 N

v mv
d

a F mg
   

 
 

 

(b) His short trip through the snow involves a change in momentum 

 

   30 85kg 56m s 4.8 10 kg m s,f ip p p           

 

or 3| | 4.8 10 kg m sp    . The negative value of the initial velocity is due to the fact that 

downward is the negative direction. By the impulse-momentum theorem, this equals the 

impulse due to the net force Fsnow – mg, but since F mgsnow   we can approximate this 

as the impulse on him just from the snow. 

 

25. We choose +y upward, which means 

vi  25m s  and 


v f  10m s.  During the 

collision, we make the reasonable approximation that the net force on the ball is equal to 

Favg, the average force exerted by the floor up on the ball. 

 

(a) Using the impulse momentum theorem (Eq. 9-31) we find 

   
J mv mvf i      12 10 12 25 42. .b gb g b gb g kg m s.  

 

(b) From Eq. 9-35, we obtain 




F
J

t
avg N.   



42

0 020
21 103

.
.  

 

26. (a) By energy conservation, the speed of the victim when he falls to the floor is  

 

 2 21
2 2(9.8 m/s )(0.50 m) 3.1m/s.

2
mv mgh v gh      

 

Thus, the magnitude of the impulse is  

 

 2| | | | (70 kg)(3.1m/s) 2.2 10 N s.J p m v mv          

 

(b) With duration of 0.082 st   for the collision, the average force is  

 
2

3

avg

2.2 10 N s
2.7 10 N.

0.082 s

J
F

t

 
   

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27. THINK The velocity of the ball is changing because of the external force applied. 

Impulse-linear momentum theorem is involved.  

 

EXPRESS The initial direction of motion is in the +x direction. The magnitude of the 

average force Favg is given by 

 3

avg 2

32.4 N s
1.20 10  N.

2.70 10  s

J
F

t 


   
 

 

 

The force is in the negative direction. Using the linear momentum-impulse theorem 

stated in Eq. 9-31, we have  

 avg ( )f iF t J p m v v       . 

 

where m is the mass, vi the initial velocity, and vf  the final velocity of the ball. The 

equation can be used to solve for vf . 

 

ANALYZE (a) Using the above expression, we find  

 

     3

avg
0.40kg 14m s 1200 N 27 10 s

67m s.
0.40kg

i

f

mv F t
v

m

  
     

 

The final speed of the ball is | |fv 67 m/s.  

 

(b) The negative sign in vf indicates that the velocity is in the –x direction, which is 

opposite to the initial direction of travel. 

 

(c) From the above, the average magnitude of the force is 3 

avg 1.20 10 N.F    

 

(d) The direction of the impulse on the ball is –x, same as the applied force. 

 

LEARN In vector notation, avg ( )f iF t J p m v v      , which gives 

  

avg

f i i

F tJ
v v v

m m


     

 

Since J  or avgF  is in the opposite direction of iv , the velocity of the ball will decrease 

under the applied force. The ball first moves in the +x-direction, but then slows down and 

comes to a stop, and then reverses its direction of travel.    

 

28. (a) The magnitude of the impulse is  

 

 | | | | (0.70 kg)(13 m/s) 9.1kg m/s 9.1 N s.J p m v mv           
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(b) With duration of 35.0 10 st     for the collision, the average force is  

 

3

avg 3

9.1 N s
1.8 10 N.

5.0 10 s

J
F

t 


   
 

 

 

29. We choose the positive direction in the direction of rebound so that 

v f  0  and 


vi  0.  Since they have the same speed v, we write this as 


v vf   and 


v vi   .  Therefore, 

the change in momentum for each bullet of mass m is  

p m v mv  2 . Consequently, 

the total change in momentum for the 100 bullets (each minute)  
 
P p mv 100 200 .  

The average force is then 

 

   

  

3

avg

200 3 10 kg 500m s
5 N.

1min 60s min

P
F

t


  


 

 

30. (a) By Eq. 9-30, impulse can be determined from the “area” under the F(t) curve.  

Keeping in mind that the area of a triangle is 
1

2
 (base)(height), we find the impulse in this 

case is 1.00 N s . 

 

(b) By definition (of the average of function, in the calculus sense) the average force must 

be the result of part (a) divided by the time (0.010 s).  Thus, the average force is found to 

be 100 N. 

 

(c) Consider ten hits.  Thinking of ten hits as 10 F(t) triangles, our total time interval is 

10(0.050 s) = 0.50 s, and the total area is 10(1.0 N s ).  We thus obtain an average force 

of 10/0.50 = 20.0 N.  One could consider 15 hits, 17 hits, and so on, and still arrive at this 

same answer.  

 

31. (a) By energy conservation, the speed of the passenger when the elevator hits the 

floor is  

 2 21
2 2(9.8 m/s )(36 m) 26.6 m/s.

2
mv mgh v gh      

 

Thus, the magnitude of the impulse is  

 

 3| | | | (90 kg)(26.6 m/s) 2.39 10 N s.J p m v mv          

 

(b) With duration of 35.0 10 st     for the collision, the average force is  

 
3

5

avg 3

2.39 10 N s
4.78 10 N.

5.0 10 s

J
F

t 

 
   
 
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(c) If the passenger were to jump upward with a speed of 7.0 m/sv  , then the resulting 

downward velocity would be   

 

26.6 m/s 7.0 m/s 19.6 m/s,v v v       

 

and the magnitude of the impulse becomes  

 

 3| | | | (90 kg)(19.6 m/s) 1.76 10 N s.J p m v mv             

 

(d) The corresponding average force would be 

 
3

5

avg 3

1.76 10 N s
3.52 10 N.

5.0 10 s

J
F

t 

  
    

 
 

 

32. (a) By the impulse-momentum theorem (Eq. 9-31) the change in momentum must 

equal the “area” under the F(t) curve. Using the facts that the area of a triangle is  
1

2
 

(base)(height), and that of a rectangle is (height)(width), we find the momentum at t = 4 s 

to be (30 kg
.
m/s)i

^
. 

 

(b) Similarly (but keeping in mind that areas beneath the axis are counted negatively) we 

find the momentum at t = 7 s is (38 kg
.
m/s)i

^
. 

 

(c) At t = 9 s, we obtain v = (6.0 m/s)i
^
. 

 

33. We use coordinates with +x rightward and +y upward, with the usual conventions for 

measuring the angles (so that the initial angle becomes 180 + 35 = 215°). Using SI units 

and magnitude-angle notation (efficient to work with when using a vector-capable 

calculator), the change in momentum is 

 

     3.00 90 3.60 215 5.86 59.8 .f iJ p p p              

 

(a) The magnitude of the impulse is 5.86 kg m/s 5.86 N sJ p      . 

 

(b) The direction of J is 59.8° measured counterclockwise from the +x axis. 

 

(c) Equation 9-35 leads to 

3

avg avg 3

5.86 N s
5.86 N s    2.93 10 N.

2.00 10 s
J F t F




       


 

 

We note that this force is very much larger than the weight of the ball, which justifies our 

(implicit) assumption that gravity played no significant role in the collision. 
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(d) The direction of avgF is the same as J , 59.8° measured counterclockwise from the +x 

axis. 

 

34. (a) Choosing upward as the positive direction, the momentum change of the foot is  

 
3

foot0 (0.003 kg) ( 1.50 m s)=4.50 10  N sip m v         . 

 

(b) Using Eq. 9-35 and now treating downward as the positive direction, we have 

 
2

avg lizard  (0.090 kg)(9.80 m/s )(0.60 s) 0.529 N s.J F t m g t        

 

(c) Push is what provides the primary support. 

 

35. We choose our positive direction in the direction of the rebound (so the ball’s initial 

velocity is negative-valued). We evaluate the integral J F dt z  by adding the 

appropriate areas (of a triangle, a rectangle, and another triangle) shown in the graph (but 

with the t converted to seconds). With m = 0.058 kg and v = 34 m/s, we apply the 

impulse-momentum theorem: 

 

 

   

     

0.002 0.004 0.006

wall
0 0.002 0.004

max max max

1 1
0.002s 0.002s 0.002s 2

2 2

f iF dt mv mv F dt F dt F dt m v m v

F F F mv

        

   

   
 

 

which yields     max 0.004s 2 0.058kg 34m sF  = 9.9  10
2
 N. 

 

36. (a) Performing the integral (from time a to time b) indicated in Eq. 9-30, we obtain 

 

2 3 3(12 3 ) 12( ) ( )
b

a
t dt b a b a      

 

in SI units. If b = 1.25 s and a = 0.50 s, this gives 7.17 N s .  

 

(b) This integral (the impulse) relates to the change of momentum in Eq. 9-31.  We note 

that the force is zero at t = 2.00 s.  Evaluating the above expression for a = 0 and b = 2.00 

gives an answer of 16.0 kg m/s . 

 

37. THINK We’re given the force as a function of time, and asked to calculate the 

corresponding impulse, the average force and the maximum force.  

 

EXPRESS Since the motion is one-dimensional, we work with the magnitudes of the 

vector quantities. The impulse J  due to a force ( )F t  exerted on a body is  
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avg( )

f

i

t

t
J F t dt F t   , 

 

where avgF  is the average force and f it t t   . To find the time at which the maximum 

force occurs, we set the derivative of F with respect to time equal to zero, and solve for t. 

 

ANALYZE (a) We take the force to be in the positive direction, at least for earlier times. 

Then the impulse is 
3 3

3

3.0  10 3.0  10
6 9 2

0 0

3.0 10

6 2 9 3

0

(6.0 10 ) (2.0 10 )

1 1
(6.0 10 ) (2.0 10 ) 9.0 N s.

2 3

J Fdt t t dt

t t

 



 



      

 
      
 

 
 

 

(b) Using J = Favg t, we find the average force to be 

 

3

avg 3

9.0 N s
3.0  10  N.

3.0  10  s

J
F

t 


  

 
 

 

(c) Differentiating ( )F t  with respect to t and setting it to zero, we have  

 

 6 9 2 6 9(6.0 10 ) (2.0 10 ) (6.0 10 ) (4.0 10 ) 0
dF d

t t t
dt dt

           , 

 

which can be solved to give  t = 1.5  10
–3

 s. At that time the force is 

 

 

Fmax

6 9 36.0 10 10 2.0 10 10 4.5 10 N.        c hc h c hc h15 153 3
2

. .  

 

(d) Since it starts from rest, the ball acquires momentum equal to the impulse from the 

kick. Let m be the mass of the ball and v its speed as it leaves the foot. The speed of the 

ball immediately after it loses contact with the player’s foot is 

 

9.0 N s
  20 m/s.

0.45 kg

p J
v

m m


     

 

LEARN The force as function of time is shown 

below. The area under the curve is the impulse J. 

From the plot, we readily see that ( )F t  is a 

maximum at 0.0015 st  , with max 4500 N.F    
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38. From Fig. 9-54, +y corresponds to the direction of the rebound (directly away from 

the wall) and +x toward the right. Using unit-vector notation, the ball’s initial and final 

velocities are 

 
ˆ ˆ ˆ ˆcos i sin j 5.2 i 3.0 j

ˆ ˆ ˆ ˆcos i sin j 5.2 i 3.0 j

i

f

v v v

v v v

 

 

   

   
 

 

respectively (with SI units understood). 

 

(a) With m = 0.30 kg, the impulse-momentum theorem (Eq. 9-31) yields 

 

  ˆ ˆ2 0.30 kg (3.0 m/s j) (1.8 N s)jf iJ mv mv     . 

 

(b) Using Eq. 9-35, the force on the ball by the wall is ˆ ˆ(1.8 0.010)j (180N) j.J t    

By Newton’s third law, the force on the wall by the ball is ˆ( 180 N)j  (that is, its 

magnitude is 180 N and its direction is directly into the wall, or “down” in the view 

provided by Fig. 9-54). 

 

39. THINK This problem deals with momentum conservation. Since no external forces 

with horizontal components act on the man-stone system and the vertical forces sum to 

zero, the total momentum of the system is conserved.  

 

EXPRESS Since the man and the stone are initially at rest, the total momentum is zero 

both before and after the stone is kicked. Let ms be the mass of the stone and vs be its 

velocity after it is kicked. Also, let mm be the mass of the man and vm be his velocity after 

he kicks the stone. Then, by momentum conservation, 

 

 0 s
s s m m m s

m

m
m v m v v v

m
     . 

 

ANALYZE We take the axis to be positive in the direction of motion of the stone. Then  

 

   30.068 kg
4.0 m/s 3.0 10  m/s

91 kg

s
m s

m

m
v v

m

        

or 3| | 3.0 10  m/smv   .  

 

LEARN The negative sign in mv indicates that the man moves in the direction opposite to 

the motion of the stone. Note that his speed is much smaller (by a factor of /s mm m ) 

compared to the speed of the stone.  

 

40. Our notation is as follows: the mass of the motor is M; the mass of the module is m; 

the initial speed of the system is v0; the relative speed between the motor and the module 
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is vr; and, the speed of the module relative to the Earth is v after the separation. 

Conservation of linear momentum requires  

 

(M + m)v0 = mv + M(v – vr). 

Therefore, 

v v
Mv

M m

m

m m

r 


 


 0

34300
82

4
4 4 10km / h

4 km / h
km / h.

b gb g
.  

 

41. (a) With SI units understood, the velocity of block L (in the frame of reference 

indicated in the figure that goes with the problem) is  (v1 – 3)i
^
 .  Thus, momentum 

conservation (for the explosion at t = 0) gives 

 

mL (v1 – 3) + (mC + mR)v1 = 0 

 

which leads to      

v1  =  
3 mL

 mL + mC + mR
  = 

3(2 kg)

10 kg
  =  0.60 m/s. 

 

Next, at t = 0.80 s, momentum conservation (for the second explosion) gives 

 

mC v2   + mR (v2 + 3) = (mC + mR)v1 = (8 kg)(0.60 m/s) = 4.8 kg m/s . 

 

This yields v2 =  – 0.15.  Thus, the velocity of block C after the second explosion is  

 

v2  = –(0.15 m/s)i
^
. 

 

(b) Between t = 0 and t = 0.80 s, the block moves v1t = (0.60 m/s)(0.80 s) = 0.48 m.  

Between t = 0.80 s and t = 2.80 s, it moves an additional  

 

v2t = (– 0.15 m/s)(2.00 s) = – 0.30 m. 

 

Its net displacement since t = 0 is therefore 0.48 m – 0.30 m = 0.18 m.  

 

42. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass 

of the original body is m; its initial velocity is 

v v0 

i ; the mass of the less massive piece 

is m1; its velocity is 

v1 0 ; and, the mass of the more massive piece is m2. We note that 

the conditions m2 = 3m1 (specified in the problem) and m1 + m2 = m generally assumed in 

classical physics (before Einstein) lead us to conclude  

 

m m m m1 2

1

4

3

4
   and  .  

Conservation of linear momentum requires 

 

 0 1 1 2 2 2

3
î 0

4
mv m v m v mv mv      



 

  

433 

 

which leads to 

v v2

4

3
 i.  The increase in the system’s kinetic energy is therefore 

 

 

2

2 2 2 2 2

1 1 2 2 0

1 1 1 1 3 4 1 1
0 .

2 2 2 2 4 3 2 6
K m v m v mv m v mv mv

  
         

  
 

 

43. With 
0

ˆ ˆ(9.5 i 4.0 j) m/s,v    the initial speed is 

 

2 2 2 2

0 0 0 (9.5 m/s) (4.0 m/s) 10.31m/sx yv v v      

 

and the takeoff angle of the athlete is  

 
01 1

0

0

4.0
tan tan 22.8 .

9.5

y

x

v

v
     

      
  

 

 

Using Equation 4-26, the range of the athlete without using halteres is 

 

 
2 2

0 0
0 2

sin 2 (10.31m/s) sin 2(22.8 )
7.75 m.

9.8 m/s

v
R

g

 
    

  

On the other hand, if two halteres of mass m = 5.50 kg were thrown at the maximum 

height, then, by momentum conservation, the subsequent speed of the athlete would be 

 

 0 0

2
( 2 ) x x x x

M m
M m v Mv v v

M


      

 

Thus, the change in the x-component of the velocity is  

 

0 0 0 0

2 2 2(5.5 kg)
(9.5 m/s) 1.34 m/s.

78 kg
x x x x x x

M m m
v v v v v v

M M


         

 

The maximum height is attained when 0 0y yv v gt   , or  

 

0

2

4.0 m/s
0.41s.

9.8 m/s

yv
t

g
    

 

Therefore, the increase in range with use of halteres is  

 

 ( ) (1.34 m/s)(0.41s) 0.55 m.xR v t      
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44. We can think of the sliding-until-stopping as an example of kinetic energy converting 

into thermal energy (see Eq. 8-29 and Eq. 6-2, with FN = mg).  This leads to v
2
 = 2gd 

being true separately for each piece.  Thus we can set up a ratio: 

 







vL

vR

2

 =  
2L gdL

2R gdR

  =  
12

25
  . 

 

But (by the conservation of momentum) the ratio of speeds must be inversely 

proportional to the ratio of masses (since the initial momentum before the explosion was 

zero).  Consequently, 

 







mR

mL

2

 =  
12

25
       mR = 

2

5
 3 mL = 1.39 kg. 

 

Therefore, the total mass is   mR + mL   3.4 kg. 

 

45. THINK The moving body is an isolated system with no external force acting on it. 

When it breaks up into three pieces, momentum remains conserved, both in the x- and the 

y-directions.  

 

EXPRESS Our notation is as follows: the mass of the original body is M = 20.0 kg; its 

initial velocity is 0
ˆ(200 m/s)iv  ; the mass of one fragment is m1 = 10.0 kg; its velocity 

is 1
ˆ(100 m/s) j;v   the mass of the second fragment is m2 = 4.0 kg; its velocity is 

2
ˆ( 500 m/s)i;v    and, the mass of the third fragment is m3 = 6.00 kg. Conservation of 

linear momentum requires 

Mv m v m v m v
   

0 1 1 2 2 3 3   . 

 

The energy released in the explosion is equal to ,K  the change in kinetic energy. 

 

ANALYZE (a) The above momentum-conservation equation leads to 

 

0 1 1 2 2
3

3

3 3

ˆ ˆ ˆ(20.0 kg)(200 m/s)i (10.0 kg)(100 m/s) j (4.0 kg)( 500 m/s)i

6.00 kg

ˆ ˆ(1.00 10 m/s) i (0.167 10 m/s) j

Mv m v m v
v

m

 


  


   

. 

 

The magnitude of 

v3  is 2 2 3

3 (1000 m/s) ( 167 m/s) 1.01 10 m/sv      . It points at 

  tan
–1

 (–167/1000) = –9.48° (that is, at 9.5° measured clockwise from the +x axis). 

 

(b) The energy released is K: 
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2 2 2 2 6

1 1 2 2 3 3 0

1 1 1 1
3.23 10 J.

2 2 2 2
f iK K K m v m v m v Mv

 
         

 
 

 

LEARN The energy released in the explosion, of chemical nature, is converted into the 

kinetic energy of the fragments.  

 

46. Our +x direction is east and +y direction is north. The linear momenta for the two m = 

2.0 kg parts are then 
 
p mv mv1 1 1  j  

where v1 = 3.0 m/s, and 

 
 
p mv m v v mvx y2 2 2 2      cos  i j i sin j2e j e j   

 

where v2 = 5.0 m/s and  = 30°. The combined linear momentum of both parts is then 

 

 

     

         

 

1 2 1 2 2 1 2
ˆ ˆ ˆ ˆ ˆj cos i sin j cos i sin j

ˆ ˆ2.0 kg 5.0 m/s cos30 i 2.0 kg 3.0 m/s 5.0 m/s sin 30 j

ˆ ˆ8.66 i 11 j kg m/s.

P p p mv mv mv mv mv          

    

  

 

 

From conservation of linear momentum we know that this is also the linear momentum of 

the whole kit before it splits. Thus the speed of the 4.0-kg kit is 

 

   
2 22 2

8.66 kg m/s 11 kg m/s
3.5 m/s.

4.0 kg

x yP PP
v

M M

   
     

 

47. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass 

of one piece is m1 = m; its velocity is 1
ˆ( 30 m/s)iv   ; the mass of the second piece is m2 

= m; its velocity is 2
ˆ( 30 m/s) jv   ; and, the mass of the third piece is m3 = 3m.  

 

(a) Conservation of linear momentum requires 

 

    0 1 1 2 2 3 3 3
ˆ ˆ0 30i 30j 3mv m v m v m v m m mv          

 

which leads to 3
ˆ ˆ(10i 10j) m/sv   . Its magnitude is v3 10 2 14 m/ s . 

 

(b) The direction is 45° counterclockwise from +x (in this system where we have m1 

flying off in the –x direction and m2 flying off in the –y direction). 
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48. This problem involves both mechanical energy conservation U K Ki  1 2 , where Ui 

= 60 J, and momentum conservation 

0 1 1 2 2 m v m v
 

 

 

where m2 = 2m1. From the second equation, we find | | | |
 
v v1 22 , which in turn implies 

(since v v1 1 | |


 and likewise for v2) 

 

K m v m v m v K1 1 1

2

2 2

2

2 2

2

2

1

2

1

2

1

2
2 2

1

2
2 

F
HG
I
KJ 

F
HG
I
KJ b g .  

 

(a) We substitute K1 = 2K2 into the energy conservation relation and find 

 

U K K K Ui i    2
1

3
202 2 2 J.  

 

(b) And we obtain K1 = 2(20) = 40 J. 

 

49. We refer to the discussion in the textbook (see Sample Problem – “Conservation of 

momentum, ballistic pendulum,” which uses the same notation that we use here) for 

many of the important details in the reasoning. Here we only present the primary 

computational step (using SI units): 

 

v
m M

m
gh


  2

2.010

0.010
2(9.8) (0.12) 3.1 10  m / s.2  

 

50. (a) We choose +x along the initial direction of motion and apply momentum 

conservation: 

                  

 g) (672 m / s) (5.2 g) (428 m / s)  (700 g)

bullet bullet blockm v m v m v

v

i

  


 

 

1 2

252( .
 

 

which yields v2 = 1.81 m/s. 

 

(b) It is a consequence of momentum conservation that the velocity of the center of mass 

is unchanged by the collision. We choose to evaluate it before the collision: 

 

 bullet
com

bullet block

(5.2 g) (672 m/s)
  4.96 m/s.

5.2 g 700 g

im v
v

m m
  

 
 

 

51. In solving this problem, our +x direction is to the right (so all velocities are positive-

valued). 

 

(a) We apply momentum conservation to relate the situation just before the bullet strikes 

the second block to the situation where the bullet is embedded within the block. 
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 (0.0035 kg) (1.8035 kg)(1.4 m/s) 721 m/s.v v    

 

(b) We apply momentum conservation to relate the situation just before the bullet strikes 

the first block to the instant it has passed through it (having speed v found in part (a)). 

 

0(0.0035 kg) (1.20 kg)(0.630 m/s) (0.00350 kg)(721 m/s)v    

 

which yields v0 = 937 m/s. 

 

52. We think of this as having two parts: the first is the collision itself – where the bullet 

passes through the block so quickly that the block has not had time to move through any 

distance yet – and then the subsequent “leap” of the block into the air (up to height h 

measured from its initial position). The first part involves momentum conservation (with 

+y upward): 

001 1000 50 001 400. . .kg m s kg kg m sb gb g b g b gb g 

v  

 

which yields 

v 12. m s . The second part involves either the free-fall equations from Ch. 

2 (since we are ignoring air friction) or simple energy conservation from Ch. 8. Choosing 

the latter approach, we have 

 

1

2
50 12 50 9 8

2 2
. . . .kg m s kg m sb gb g b gd i h  

 

which gives the result h = 0.073 m. 

 

53. With an initial speed of iv , the initial kinetic energy of the car is 2 / 2i c iK m v . After 

a totally inelastic collision with a moose of mass mm , by momentum conservation, the 

speed of the combined system is 

 ( ) ,c i
c i c m f f

c m

m v
m v m m v v

m m
   


 

with final kinetic energy 
2

2
2 21 1 1

( ) ( ) .
2 2 2

c i c
f c m f c m i

c m c m

m v m
K m m v m m v

m m m m

 
     

  
 

 

(a) The percentage loss of kinetic energy due to collision is  

 

 
500 kg 1

1 1 33.3%.
1000 kg 500 kg 3

i f f c m

i i i c m c m

K K K m mK

K K K m m m m


        

  
 

 

(b) If the collision were with a camel of mass camel 300 kg,m   then the percentage loss of 

kinetic energy would be  

 



 CHAPTER 9 438 

camel

camel

300 kg 3
23%.

1000 kg 300 kg 13i c

mK

K m m


   

 
 

 

(c) As the animal mass decreases, the percentage loss of kinetic energy also decreases.   

 

54. The total momentum immediately before the collision (with +x upward) is  

 

pi = (3.0 kg)(20 m/s) + (2.0 kg)( –12 m/s) = 36 kg m/s . 

 

Their momentum immediately after, when they constitute a combined mass of M = 5.0 

kg, is pf = (5.0 kg) v .  By conservation of momentum, then, we obtain v = 7.2 m/s, which 

becomes their "initial" velocity for their subsequent free-fall motion.  We can use Ch. 2 

methods or energy methods to analyze this subsequent motion; we choose the latter.  The 

level of their collision provides the reference (y = 0) position for the gravitational 

potential energy, and we obtain 

K0 + U0   =  K + U          
1

2
 Mv

2
0 + 0   =  0 + Mgymax . 

 

Thus, with v0 = 7.2 m/s, we find ymax = 2.6 m. 

 

55. We choose +x in the direction of (initial) motion of the blocks, which have masses m1 

= 5 kg and m2 = 10 kg. Where units are not shown in the following, SI units are to be 

understood. 

 

(a) Momentum conservation leads to 

 

 
        

1 1 2 2 1 1 2 2

15 kg 3.0 m/s 10 kg 2.0 m/s (5 kg) 10 kg 2.5 m/s

i i f f

f

m v m v m v m v

v

  

  
 

 

which yields 1 2.0 m/sfv  . Thus, the speed of the 5.0 kg block immediately after the 

collision is 2 0. m s .  

 

(b) We find the reduction in total kinetic energy: 

 

           
2 2 2 21 1 1 1

5 kg 3 m/s 10 kg 2 m/s 5 kg 2 m/s 10 kg 2.5 m/s
2 2 2 2

1.25 J 1.3 J.

i fK K    

   

 

 

 (c) In this new scenario where 

v f2 4 0 . m s , momentum conservation leads to 


v f1 10  . m s  and we obtain 40 JK   . 
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(d) The creation of additional kinetic energy is possible if, say, some gunpowder were on 

the surface where the impact occurred (initially stored chemical energy would then be 

contributing to the result). 

 

56. (a) The magnitude of the deceleration of each of the cars is a = f /m = k mg/m = kg. 

If a car stops in distance d, then its speed v just after impact is obtained from Eq. 2-16: 

 

v v ad v ad gdk

2

0

2    2 2 2  

 

since v0 = 0 (this could alternatively have been derived using Eq. 8-31). Thus, 

 

22 2(0.13)(9.8 m/s )(8.2 m) 4.6 m/s.A k Av gd    

 

(b) Similarly, 22 2(0.13)(9.8 m/s )(6.1 m) 3.9 m/s.B k Bv gd    

 

(c) Let the speed of car B be v just before the impact. Conservation of linear momentum 

gives mBv = mAvA + mBvB, or 

 

v
m v m v

m

A A B B

B








( (1100)(4.6) (1400)(3.9)

7.5 m / s.
)

1400
 

 

(d) The conservation of linear momentum during the impact depends on the fact that the 

only significant force (during impact of duration t) is the force of contact between the 

bodies. In this case, that implies that the force of friction exerted by the road on the cars 

is neglected during the brief t. This neglect would introduce some error in the analysis. 

Related to this is the assumption we are making that the transfer of momentum occurs at 

one location, that the cars do not slide appreciably during t, which is certainly an 

approximation (though probably a good one). Another source of error is the application 

of the friction relation Eq. 6-2 for the sliding portion of the problem (after the impact); 

friction is a complex force that Eq. 6-2 only partially describes. 

 

57. (a) Let v be the final velocity of the ball-gun system. Since the total momentum of the 

system is conserved mvi = (m + M)v. Therefore,   

 

(60 g)(22 m/s)
4.4 m/s

60 g + 240 g

imv
v

m M
  


. 

 

(b) The initial kinetic energy is K mvi i 1
2

2  and the final kinetic energy is 

 

K m M v m v m Mf i   1
2

2 1
2

2 2b g b g . 
 

The problem indicates Eth  0 , so the difference Ki – Kf must equal the energy Us stored 

in the spring: 
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U mv
m v

m M
mv

m

m M
mv

M

m M
s i

i
i i 


 



F
HG

I
KJ  

1

2

1

2

1

2
1

1

2

2
2 2

2 2

b g .  

 

Consequently, the fraction of the initial kinetic energy that becomes stored in the spring 

is 

240
0.80

60+240

s

i

U M

K m M
  


. 

 

58. We think of this as having two parts: the first is the collision itself, where the blocks 

“join” so quickly that the 1.0-kg block has not had time to move through any distance yet, 

and then the subsequent motion of the 3.0 kg system as it compresses the spring to the 

maximum amount xm. The first part involves momentum conservation (with +x 

rightward): 

m1v1 = (m1+m2)v       ( . ( .2 0 30 kg)(4.0 m s)  kg)

v  

 

which yields 

v  2 7. .m s  The second part involves mechanical energy conservation: 

 

1

2
30

1

2
( .  kg) (2.7 m s)  (200 N m)2

m

2 x  

 

which gives the result xm = 0.33 m. 

 

59. As hinted in the problem statement, the velocity v of the system as a whole, when the 

spring reaches the maximum compression xm, satisfies  

 

m1v1i + m2v2i = (m1 + m2)v. 

 

The change in kinetic energy of the system is therefore 

 

 
2

2 2 2 2 21 1 2 2
1 2 1 1 2 2 1 1 2 2

1 2

( )1 1 1 1 1
( )

2 2 2 2( ) 2 2

i i
i i i i

m v m v
K m m v m v m v m v m v

m m


       


 

 

which yields K = –35 J. (Although it is not necessary to do so, still it is worth noting 

that algebraic manipulation of the above expression leads to K v
m m

m m



1
2

1 2

1 2
d i  rel

2  where 

vrel = v1 – v2). Conservation of energy then requires 

 

2

m m

1 2 2( 35 J)

2 1120 N/m

K
kx K x

k

   
      = 0.25 m. 

 

60. (a) Let mA be the mass of the block on the left, vAi be its initial velocity, and vAf be its 

final velocity. Let mB be the mass of the block on the right, vBi be its initial velocity, and 

vBf be its final velocity. The momentum of the two-block system is conserved, so  
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mAvAi +  mBvBi  = mAvAf  + mBvBf 

and  

 

(1.6 kg)(5.5 m/s) (2.4 kg)(2.5 m/s) (2.4 kg)(4.9 m/s)

1.6 kg

1.9 m/s.

A Ai B Bi B Bf

Af

A

m v m v m v
v

m

   
 


 

(b) The block continues going to the right after the collision. 

 

(c) To see whether the collision is elastic, we compare the total kinetic energy before the 

collision with the total kinetic energy after the collision. The total kinetic energy before is 

 

2 2 2 21 1 1 1
(1.6 kg)(5.5 m/s) (2.4 kg)(2.5 m/s) 31.7 J.

2 2 2 2
i A Ai B BiK m v m v      

 

The total kinetic energy after is 

 

2 2 2 21 1 1 1
(1.6 kg)(1.9 m/s) (2.4 kg)(4.9 m/s) 31.7 J.

2 2 2 2
f A Af B BfK m v m v      

 

Since Ki = Kf the collision is found to be elastic. 

 

61. THINK We have a moving cart colliding with a stationary cart. Since the collision is 

elastic, the total kinetic energy of the system remains unchanged.   

 

EXPRESS Let m1 be the mass of the cart that is originally moving, v1i be its velocity 

before the collision, and v1f be its velocity after the collision. Let m2 be the mass of the 

cart that is originally at rest and v2f be its velocity after the collision. Conservation of 

linear momentum gives 1 1 1 1 2 2 .i f fm v m v m v   Similarly, the total kinetic energy is 

conserved and we have 

2 2 2

1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v  . 

 

Solving for 1 fv and 2 fv , we obtain: 

1 2 1
1 1 2 1

1 2 1 2

2
,f i f i

m m m
v v v v

m m m m


 

 
 

 

The speed of the center of mass is 1 1 2 2
com 

1 2

i im v m v
v

m m





. 

 

ANALYZE (a) With  m1 = 0.34 kg, 1 1.2 m/siv  and 1 0.66 m/sfv  , we obtain 
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1 1

2 1

1 1

1.2 m/s 0.66 m/s
 (0.34 kg) 0.0987 kg 0.099 kg.

1.2 m/s 0.66 m/s

i f

i f

v v
m m

v v

  
    

  
 

 

(b) The velocity of the second cart is: 

 

1
2 1

1 2

2 2(0.34 kg)
(1.2 m/s) 1.9 m/s.

0.34 kg 0.099 kg
f i

m
v v

m m

 
   

  
 

 

(c) From the above, we find the speed of the center of mass to be  

 

1 1 2 2
com 

1 2

(0.34 kg)(1.2 m/s) 0
0.93 m/s.

0.34 kg 0.099 kg

i im v m v
v

m m

 
  

 
 

 

LEARN In solving for com ,v  values for the initial velocities were used. Since the system 

is isolated with no external force acting on it, comv  remains the same after the collision, so 

the same result is obtained if values for the final velocities are used. That is,  

 

1 1 2 2

com 

1 2

(0.34 kg)(0.66 m/s) (0.099 kg)(1.9 m/s)
0.93 m/s.

0.34 kg 0.099 kg

f fm v m v
v

m m

 
  

 
 

 

62. (a) Let m1 be the mass of one sphere, v1i be its velocity before the collision, and v1f be 

its velocity after the collision. Let m2 be the mass of the other sphere, v2i be its velocity 

before the collision, and v2f be its velocity after the collision. Then, according to Eq.  

9-75, 

v
m m

m m
v

m

m m
vf i i1

1 2

1 2

1
2

1 2

2

2








 .  

 

Suppose sphere 1 is originally traveling in the positive direction and is at rest after the 

collision. Sphere 2 is originally traveling in the negative direction. Replace v1i with v, v2i 

with –v, and v1f with zero to obtain 0 = m1 – 3m2. Thus,  

 

2 1 / 3 (300 g) /3 100 gm m   . 

 

(b) We use the velocities before the collision to compute the velocity of the center of 

mass: 

       1 1 2 2
com

1 2

300 g 2.00 m s 100 g 2.00 m s
1.00 m/s.

300 g 100 g

i im v m v
v

m m

 
  

 
 

 

63. (a) The center of mass velocity does not change in the absence of external forces.  In 

this collision, only forces of one block on the other (both being part of the same system) 

are exerted, so the center of mass velocity is 3.00 m/s before and after the collision. 
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(b) We can find the velocity v1i of block 1 before the collision (when the velocity of block 

2 is known to be zero) using Eq. 9-17: 

 

(m1 + m2)vcom = m1 v1i + 0             v1i = 12.0 m/s . 

 

Now we use Eq. 9-68 to find v2 f : 

 

v2 f  =  
2m1

m1+ m2

 v1i  = 6.00 m/s . 

 

64. First, we find the speed v of the ball of mass m1 right before the collision (just as it 

reaches its lowest point of swing). Mechanical energy conservation (with h = 0.700 m) 

leads to 

2

1 1

1
2 3.7 m s.

2
m gh m v v gh     

 

(a) We now treat the elastic collision using Eq. 9-67: 

 

1 2
1

1 2

0.5 kg 2.5 kg
(3.7 m/s) 2.47 m/s

0.5 kg 2.5 kg
f

m m
v v

m m

 
   

 
 

 

which means the final speed of the ball is 2 47. .m s  

 

(b) Finally, we use Eq. 9-68 to find the final speed of the block: 

 

1
2

1 2

2 2(0.5 kg)
(3.7 m/s) 1.23 m/s.

0.5 kg 2.5 kg
f

m
v v

m m
  

 
 

 

65. THINK We have a mass colliding with another stationary mass. Since the collision is 

elastic, the total kinetic energy of the system remains unchanged.   

 

EXPRESS Let m1 be the mass of the body that is originally moving, v1i be its velocity 

before the collision, and v1f be its velocity after the collision. Let m2 be the mass of the 

body that is originally at rest and v2f be its velocity after the collision. Conservation of 

linear momentum gives 

 1 1 1 1 2 2i f fm v m v m v  . 

 

Similarly, the total kinetic energy is conserved and we have 

 

2 2 2

1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v  . 

 

The solution to 1 fv  is given by Eq. 9-67: 1 2
1 1

1 2

.f i

m m
v v

m m





 We solve for m2 to obtain 
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1 1

2 1

1 1

.
i f

i f

v v
m m

v v





 

The speed of the center of mass is 

1 1 2 2
com 

1 2

i im v m v
v

m m





. 

 

ANALYZE (a) given that v vf i1 1 4 / , we find the second mass to be 

 

1 1 1 1
2 1 1 1

1 1 1 1

/ 4 3 3
(2.0 kg) 1.2 kg

/ 4 5 5

i f i i

i f i i

v v v v
m m m m

v v v v

  
     

  
. 

 

(b) The speed of the center of mass is 
  1 1 2 2

com

1 2

2.0 kg 4.0 m/s
2.5 m s

2.0 kg 1.2 kg

i im v m v
v

m m


  

 
. 

 

LEARN The final speed of the second mass is 

 

1
2 1

1 2

2 2(2.0 kg)
(4.0 m/s) 5.0 m/s.

2.0 kg 1.2 kg
f i

m
v v

m m

 
   

  
 

 

Since the system is isolated with no external force acting on it, comv  remains the same 

after the collision, so the same result is obtained if values for the final velocities are used: 

 

1 1 2 2

com

1 2

(2.0 kg)(1.0 m/s) (1.2 kg)(5.0 kg)
2.5 m/s

2.0 kg 1.2 kg

f fm v m v
v

m m

 
  

 
. 

 

66. Using Eq. 9-67 and Eq. 9-68, we have after the collision 

 

1 2 1 1
1 1

1 2 1 1

1 1
2 1

1 2 1 1

0.40
(4.0 m/s) 1.71 m/s

0.40

2 2
(4.0 m/s) 5.71 m/s.

0.40

f i

f i

m m m m
v v

m m m m

m m
v v

m m m m

 
  

 

  
 

 

 

(a) During the (subsequent) sliding, the kinetic energy of block 1 2

1 1 1

1

2
f fK m v  is 

converted into thermal form (Eth =  k m1 g d1).  Solving for the sliding distance d1 we 

obtain d1 = 0.2999 m  30 cm. 

 

(b) A very similar computation (but with subscript 2 replacing subscript 1) leads to block 

2’s sliding distance d2 = 3.332 m  3.3 m. 
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67. We use Eq 9-67 and 9-68 to find the velocities of the particles after their first 

collision (at x = 0 and t = 0): 

 

1 2
1 1

1 2

1
2 1

1 2

0.30 kg 0.40 kg
(2.0 m/s) 0.29 m/s

0.30 kg 0.40 kg

2 2(0.30 kg)
(2.0 m/s) 1.7 m/s.

0.30 kg 0.40 kg

f i

f i

m m
v v

m m

m
v v

m m

 
   

 

  
 

 

 

At a rate of motion of 1.7 m/s, 2xw = 140 cm (the distance to the wall and back to x = 0) 

will be traversed by particle 2 in 0.82 s.  At t = 0.82 s, particle 1 is located at  

 

x = (–2/7)(0.82) = –23 cm, 

 

and particle 2 is “gaining” at a rate of (10/7) m/s leftward; this is their relative velocity at 

that time.  Thus, this “gap” of 23 cm between them will be closed after an additional time 

of (0.23 m)/(10/7 m/s) = 0.16 s has passed.  At this time (t = 0.82 + 0.16 = 0.98 s) the two 

particles are at  x = (–2/7)(0.98) = –28 cm. 

 

68. (a) If the collision is perfectly elastic, then Eq. 9-68 applies 

 

v2 =  
2m1

m1+ m2

 v1i =  
2m1

m1+  (2.00)m1

 2gh  = 
2

3
 2gh  

 

where we have used the fact (found most easily from energy conservation) that the speed 

of block 1 at the bottom of the frictionless ramp is 2gh  (where h = 2.50 m).  Next, for 

block 2’s “rough slide” we use Eq. 8-37: 

 
1

2
 m2 v2

2
 =  Eth =  fk d  =  k m2 g d  

 

where k = 0.500.  Solving for the sliding distance d, we find that m2 cancels out and we 

obtain d = 2.22 m. 

(b) In a completely inelastic collision, we apply Eq. 9-53: v2 = 
m1

m1+ m2

 v1i   (where, as 

above, v1i = 2gh ).   Thus, in this case we have v2 = 2gh /3. Now, Eq. 8-37 (using the 

total mass since the blocks are now joined together) leads to a sliding distance of 

0.556 md   (one-fourth of the part (a) answer). 

 

69. (a) We use conservation of mechanical energy to find the speed of either ball after it 

has fallen a distance h. The initial kinetic energy is zero, the initial gravitational potential 

energy is M gh, the final kinetic energy is 1
2

2Mv , and the final potential energy is zero. 

Thus Mgh Mv 1
2

2  and v gh 2 .  The collision of the ball of M with the floor is an 

elastic collision of a light object with a stationary massive object. The velocity of the 

light object reverses direction without change in magnitude. After the collision, the ball is 
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traveling upward with a speed of 2gh . The ball of mass m is traveling downward with 

the same speed. We use Eq. 9-75 to find an expression for the velocity of the ball of mass 

M after the collision: 

 

 
2 2 3

2 2 2  .Mf Mi mi

M m m M m m M m
v v v gh gh gh

M m M m M m M m M m

  
    

    
 

 

For this to be zero, m = M/3. With M = 0.63 kg, we have m = 0.21 kg.  

 

(b) We use the same equation to find the velocity of the ball of mass m after the collision: 

 

v
m M

M m
gh

M

M m
gh

M m

M m
ghmf  












2

2
2

3
2  

 

which becomes (upon substituting M = 3m) v ghmf  2 2  .  We next use conservation of 

mechanical energy to find the height h' to which the ball rises. The initial kinetic energy 

is 1
2

2mvm f , the initial potential energy is zero, the final kinetic energy is zero, and the final 

potential energy is mgh'. Thus, 

 

1

2 2
42

2

mv mgh h
v

g
hm f

m f
   ' ' . 

 

With h = 1.8 m, we have 7.2 mh  .  

 

70. We use Eqs. 9-67, 9-68, and 4-21 for the elastic collision and the subsequent 

projectile motion. We note that both pucks have the same time-of-fall t (during their 

projectile motions).  Thus, we have 

x2 = v2 t     where x2 = d  and  v2  =  
2m1

m1+ m2

 v1i 

 

x1 = v1 t     where x1 = 2d  and  v1  =  
m1  m2

m1+ m2

 v1i  . 

Dividing the first equation by the second, we arrive at  

 

d

2d
  =   

2m1

m1 + m2
 v1i t

m1 m2

 m1 + m2
 v1i t

  . 

 

After canceling v1i , t, and d, and solving, we obtain m2 = 1.0 kg. 

 

71. We apply the conservation of linear momentum to the x and y axes respectively. 
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1 1 1 1 1 2 2 2

1 1 1 2 2 2

cos cos

      0 sin sin .

i f f

f f

m v m v m v

m v m v

 

 

 

 
 

 

We are given 5

2 1.20 10 m/sfv   , 1 64.0   and 2 51.0 .   Thus, we are left with two 

unknowns and two equations, which can be readily solved. 

 

(a) We solve for the final alpha particle speed using the y-momentum equation: 

 

     

   

5

2 2 2 5

1

1 1

16.0 1.20 10 sin 51.0sin
4.15 10  m/s

sin 4.00 sin 64.0

f

f

m v
v

m





 
   


. 

 

(b) Plugging our result from part (a) into the x-momentum equation produces the initial 

alpha particle speed: 

           

1 1 1 2 2 2

1

1

5 5

5

cos cos

4.00 4.15 10 cos 64.0 16.0 1.2 10 cos 51.0

4.00

        4.84 10  m/s .

f f

i

i

m v m v
v

m

 


    


 

 

 

72. We orient our +x axis along the initial direction of motion, and specify angles in the 

“standard” way — so  = –90° for the particle B, which is assumed to scatter 

“downward” and  > 0 for particle A, which presumably goes into the first quadrant. We 

apply the conservation of linear momentum to the x and y axes, respectively. 

 

cos cos

     0 sin sin

B B B B A A

B B A A

m v m v m v

m v m v

 

 

  

  
 

 

(a) Setting vB  = v and 2Bv v  , the y-momentum equation yields 

m v m
v

A A B sin
2

 

 

and the x-momentum equation yields m v m vA A B cos .  Dividing these two equations, we 

find tan  1
2

, which yields  = 27°.  

 

(b) We can formally solve for Av  (using the y-momentum equation and the fact that 

  1 5 )  

 v
m

m
vA

B

A

5

2
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but lacking numerical values for v and the mass ratio, we cannot fully determine the final 

speed of A. Note: substituting cos 2 5 ,   into the x-momentum equation leads to 

exactly this same relation (that is, no new information is obtained that might help us 

determine an answer).  

 

73. Suppose the objects enter the collision along lines 

that make the angles  > 0 and  > 0 with the x axis, as 

shown in the diagram that follows. Both have the same 

mass m and the same initial speed v. We suppose that 

after the collision the combined object moves in the 

positive x direction with speed V. 

 

Since the y component of the total momentum of the two-

object system is conserved,  

mv sin  – mv sin  = 0. 

 
This means  = . Since the x component is conserved,  

 

2mv cos  = 2mV. 

 

We now use V v 2  to find that cos . 1 2  This means  = 60°. The angle between the 

initial velocities is 120°.  

 

74. (a) Conservation of linear momentum implies  

 

A A B B A A B Bm v m v m v m v    . 

 

Since mA = mB = m = 2.0 kg, the masses divide out and we obtain  

 

 
ˆ ˆ ˆ ˆ ˆ ˆ (15i 30j) m/s ( 10i 5j) m/s ( 5i 20 j) m/s

ˆ ˆ(10i 15 j) m/s .

B A B Av v v v           

 
 

 

(b) The final and initial kinetic energies are 

 

K mv mv

K mv mv

f A B

i A B

        

        

1

2

1

2

1

2
2 0 5 20 10 15 8 0 10

1

2

1

2

1

2
2 0 15 30 10 5 13 10

2 2 2 2 2 2 2

2 2 2 2 2 2 3

' ' ( . ) ( ) .

( . ) ( ) .

c h

c h

 J

  J .

 

 

The change kinetic energy is then K = –5.0  10
2
 J (that is, 500 J of the initial kinetic 

energy is lost). 
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75. We orient our +x axis along the initial direction of motion, and specify angles in the 

“standard” way — so  = +60° for the proton (1), which is assumed to scatter into the 

first quadrant and  = –30° for the target proton (2), which scatters into the fourth 

quadrant (recall that the problem has told us that this is perpendicular to ). We apply the 

conservation of linear momentum to the x and y axes, respectively. 

 

1 1 1 1 2 2

1 1 2 2

  cos cos

    0  sin sin .

m v m v m v

m v m v

 

 

  

  
 

 

We are given v1 = 500 m/s, which provides us with two unknowns and two equations, 

which is sufficient for solving. Since m1 = m2 we can cancel the mass out of the equations 

entirely. 

 

(a) Combining the above equations and solving for 2v  we obtain 

 

1
2

sin (500 m/s)sin(60 )
433 m/s.

sin ( ) sin (90 )

v
v



 


   

 
 

 

We used the identity sin cos – cos sin = sin (– ) in simplifying our final 

expression. 

 

(b) In a similar manner, we find 

 

1
1

sin (500 m/s)sin( 30 )
250 m/s .

sin ( ) sin ( 90 )

v
v



 

 
   

  
 

 

76. We use Eq. 9-88. Then 

 

 rel

6090 kg
ln 105 m/s (253 m/s) ln 108 m/s.

6010 kg

i
f i

f

M
v v v

M

   
        

  

 

 

77. THINK The mass of the faster barge is increasing at a constant rate. Additional force 

must be provided in order to maintain a constant speed.   

 

EXPRESS We consider what must happen to the coal that lands on the faster barge 

during a time interval t. In that time, a total of m of coal must experience a change of 

velocity (from slow to fast) fast slow ,v v v    where rightwards is considered the positive 

direction. The rate of change in momentum for the coal is therefore 

 

fast slow

( )
( )

p m m
v v v

t t t

   
    

   
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which, by Eq. 9-23, must equal the force exerted by the (faster) barge on the coal. The 

processes (the shoveling, the barge motions) are constant, so there is no ambiguity in 

equating 




p

t
 with 

dp

dt
.  Note that we ignore the transverse speed of the coal as it is 

shoveled from the slower barge to the faster one.  

 

ANALYZE (a) With fast 20 km/h 5.56 m/sv   , slow 10 km/h 2.78 m/sv    and the 

rate of mass change ( / ) 1000 kg/min (16.67 kg/s)m t    , the force that must be 

applied to the faster barge is 

 

fast fast slow( ) (16.67 kg/s)(5.56 m/s 2.78 m/s) 46.3N
m

F v v
t

 
     

 
 

 

(b) The problem states that the frictional forces acting on the barges does not depend on 

mass, so the loss of mass from the slower barge does not affect its motion (so no extra 

force is required as a result of the shoveling). 

 

LEARN The force that must be applied to the faster barge in order to maintain a constant 

speed is equal to the rate of change of momentum of the coal.  

 

78. We use Eq. 9-88 and simplify with vi = 0, vf = v, and vrel = u. 

 

v v v
M

M

M

M
ef i

i

f

i

f

v u   rel ln /  

(a) If v = u we obtain 
M

M
ei

f

 1 2 7. .  

(b) If v = 2u we obtain 
M

M
ei

f

 2 7 4. .  

 

79. THINK As fuel is consumed, both the mass and the speed of the rocket will change.   

 

EXPRESS The thrust of the rocket is given by T = Rvrel where R is the rate of fuel 

consumption and vrel is the speed of the exhaust gas relative to the rocket. On the other 

hand, the mass of fuel ejected is given by Mfuel = R t ,  where t  is the time interval of 

the burn. Thus, the mass of the rocket after the burn is  

 

Mf = Mi – Mfuel . 

 

ANALYZE (a) Given that R = 480 kg/s and vrel = 3.27  10
3
 m/s, we find the thrust to be 

 

  3 6

rel 480kg s 3.27 10 m s 1.57 10 N.T Rv      
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(b) With the mass of fuel ejected given by Mfuel = R t   (480 kg/s)(250 s) = 1.2010
5
 kg, 

the final mass of the rocket is  

 

Mf = Mi – Mfuel = (2.55  10
5
 kg ) – (1.20  10

5
 kg) = 1.35 10

5
 kg. 

 

(c) Since the initial speed is zero, the final speed of the rocket is 

 

 
5

3 3

rel 5

2.55 10 kg
ln 3.27 10 m/s ln 2.08 10 m s.

1.35 10 kg

i
f

f

M
v v

M

 
     

 
 

 

LEARN The speed of the rocket continues to rise as the fuel is consumed. From the first 

rocket equation given in Eq. 9-87, the thrust of the rocket is related to the acceleration by 

T Ma . Using this equation, we find the initial acceleration to be 

  

 
6

2

5

1.57 10 N
6.16 m/s .

2.55 10 kg
i

i

T
a

M


  


 

 

80. The velocity of the object is  

 

 ˆ ˆ ˆ ˆ(3500 160 ) i 2700 j 300k (160 m/s)i.
dr d

v t
dt dt

        

 

(a) The linear momentum is    4ˆ ˆ250 kg 160 m/s i ( 4.0 10 kg m/s) i.p mv        

 

(b) The object is moving west (our – î  direction).  

 

(c) Since the value of 

p  does not change with time, the net force exerted on the object is 

zero, by Eq. 9-23.  

 

81. We assume no external forces act on the system composed of the two parts of the last 

stage. Hence, the total momentum of the system is conserved. Let mc be the mass of the 

rocket case and mp the mass of the payload. At first they are traveling together with 

velocity v. After the clamp is released mc has velocity vc and mp has velocity vp. 

Conservation of momentum yields  

 

(mc + mp)v = mcvc + mpvp. 

 

(a) After the clamp is released the payload, having the lesser mass, will be traveling at the 

greater speed. We write vp = vc + vrel, where vrel is the relative velocity. When this 

expression is substituted into the conservation of momentum condition, the result is 

 

m m v m v m v m vc p c c p c p   d i rel .  

Therefore, 
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       rel 290.0 kg 150.0 kg 7600 m/s 150.0 kg 910.0 m/s

290.0 kg 150.0 kg

7290 m/s.

c p p

c

c p

m m v m v
v

m m

   
 

 



 

 

(b) The final speed of the payload is vp = vc + vrel = 7290 m/s + 910.0 m/s = 8200 m/s. 

 

(c) The total kinetic energy before the clamp is released is 

 

K m m vi c p     
1

2

1

2
290 0 7600 1271 102 2 10d i b gb g. .kg 150.0 kg m / s J.  

 

(d) The total kinetic energy after the clamp is released is 

 

 
     

2 22 2

10

1 1 1 1
290.0 kg 7290 m/s 150.0 kg 8200 m/s

2 2 2 2

1.275 10 J.

f c c p pK m v m v   

 

 

 

The total kinetic energy increased slightly. Energy originally stored in the spring is 

converted to kinetic energy of the rocket parts. 

 

82. Let m be the mass of the higher floors. By energy conservation, the speed of the 

higher floors just before impact is  

 21
2 .

2
mgd mv v gd    

 

The magnitude of the impulse during the impact is 

 

2 2
| | | | 2

d d
J p m v mv m gd mg W

g g
         

 

where W mg  represents the weight of the higher floors. Thus, the average force exerted 

on the lower floor is  

avg

2J W d
F

t t g
 
 

 

  

With avgF sW , where s is the safety factor, we have 

 

2

3 2

1 2 1 2(4.0 m)
6.0 10 .

1.5 10 s 9.8 m/s

d
s

t g 
   
 

 

 

83. (a) Momentum conservation gives 
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mR vR + mL vL  = 0       (0.500 kg) vR + (1.00 kg)(1.20 m/s)  =  0 

 

which yields vR = 2.40 m/s. Thus, x = vR t = (2.40 m/s)(0.800 s) = 1.92 m. 

 

(b) Now we have  mR vR + mL (vR   1.20 m/s)  =  0, which yields 

 

(1.2 m/s) (1.20 m/s)(1.00 kg)
0.800 m/s.

1.00 kg 0.500 kg

L
R

L R

m
v

m m
  

 
 

 

Consequently, x = vR t = 0.640 m. 

 

84. (a) This is a highly symmetric collision, and when we analyze the y-components of 

momentum we find their net value is zero.  Thus, the stuck-together particles travel along 

the x axis. 

 

(b) Since it is an elastic collision with identical particles, the final speeds are the same as 

the initial values.  Conservation of momentum along each axis then assures that the 

angles of approach are the same as the angles of scattering.  Therefore, one particle 

travels along line 2, the other along line 3. 

 

(c) Here the final speeds are less than they were initially.  The total x-component cannot 

be less, however, by momentum conservation, so the loss of speed shows up as a 

decrease in their y-velocity-components.  This leads to smaller angles of scattering.  

Consequently, one particle travels through region B, the other through region C; the paths 

are symmetric about the x-axis.  We note that this is intermediate between the final states 

described in parts (b) and (a). 

 

(d) Conservation of momentum along the x-axis leads (because these are identical 

particles) to the simple observation that the x-component of each particle remains 

constant:   

vf x = v cos = 3.06 m/s. 

 

(e) As noted above, in this case the speeds are unchanged; both particles are moving at 

4.00 m/s in the final state. 

 

85. Using Eq. 9-67 and Eq. 9-68, we have after the first collision 

 

1 2 1 1
1 1 1 1

1 2 1 1

1 1
2 1 1 1

1 2 1 1

2 1

2 3

2 2 2
.

2 3

f i i i

f i i i

m m m m
v v v v

m m m m

m m
v v v v

m m m m

 
   

 

  
 

 

 

After the second collision, the velocities are 
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v2 ff  = 
m2  m3

m2+ m3

 v2 f  =  
m2

3m2

 
2

3
 v1i  =   

2

9
 v1i 

 

v3 ff  = 
2m2

m2+ m3

 v2 f   =  
2m2

3m2

 
2

3
 v1i  =  

4

9
 v1i  . 

 

(a) Setting v1i  = 4 m/s, we find v3 ff   1.78 m/s. 

 

(b) We see that v3 ff  is less than v1i . 

 

(c) The final kinetic energy of block 3 (expressed in terms of the initial kinetic energy of 

block 1) is 
2

2 2

3 3 3 1 1 1

1 1 4 64
(4 )

2 2 9 81
ff i iK m v m v K

 
   

 
. 

 

We see that this is less than K1i . 

 

(d) The final momentum of block 3 is  p3ff = m3 v3 ff   = (4m1)( )
16

9
v1 > m1v1. 

 

86. (a) We use Eq. 9-68 twice: 

 

                                v2 =  
2m1

m1 + m2

 v1i  =  
2m1

1.5m1 

 (4.00 m/s) =  
16

3
 m/s 

 

            v3 =  
2m2

m2 + m3

 v2  =  
2m2

1.5m2

 (16/3 m/s) =  
64

9
 m/s  = 7.11 m/s . 

 

(b) Clearly, the speed of block 3 is greater than the (initial) speed of block 1. 

 

(c) The kinetic energy of block 3 is  
3 2

2 2

3 3 3 1 1 1

1 1 16 64

2 2 9 81
f i iK m v m v K

   
     

   
. 

 

We see the kinetic energy of block 3 is less than the (initial) K of block 1.  In the final 

situation, the initial K is being shared among the three blocks (which are all in motion), 

so this is not a surprising conclusion. 

 

(d) The momentum of block 3 is   
2

3 3 3 1 1 1

1 16 4

2 9 9
f i ip m v m v p

   
     

   
 

 

and is therefore less than the initial momentum (both of these being considered in 

magnitude, so questions about  sign do not enter the discussion).  
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87. We choose our positive direction in the direction of the rebound (so the ball’s initial 

velocity is negative-valued 

vi  52. m s ). 

 

(a) The speed of the ball right after the collision is 

 
22 2( / 2) / 2

3.7 m/s.
2

f i i i
f

K K mv v
v

m m m
      

 

(b) With m = 0.15 kg, the impulse-momentum theorem (Eq. 9-31) yields 

 

     0.15 kg 3.7 m/s 0.15 kg 5.2 m/s 1.3 N s.f iJ mv mv         

 

(c) Equation 9-35 leads to Favg = J/t = 1.3/0.0076 = 1.8  10
2
 N. 

 

88. We first consider the 1200 kg part. The impulse has magnitude J and is (by our 

choice of coordinates) in the positive direction. Let m1 be the mass of the part and v1 be 

its velocity after the bolts are exploded. We assume both parts are at rest before the 

explosion. Then J = m1v1, so 

v
J

m
1

1

300

1200
0 25 




N s

kg
m s. .  

 

The impulse on the 1800 kg part has the same magnitude but is in the opposite direction, 

so – J = m2v2, where m2 is the mass and v2 is the velocity of the part. Therefore, 

 

v
J

m
2

2

300

1800
0167   


 

N s

kg
m s. .  

 

Consequently, the relative speed of the parts after the explosion is  

 

u = 0.25 m/s – (–0.167 m/s) = 0.417 m/s. 

 

89. THINK The momentum of the car changes as it turns and collides with a tree. 

 

EXPRESS Let the initial and final momenta of the car be i ip mv  and f fp mv , 

respectively. The impulse on it equals the change in its momentum:  

 

( )f i f iJ p p p m v v      . 

 

The average force over the duration t is given by avg /F J t  . 

 

ANALYZE (a) The initial momentum of the car is 
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 
p mvi i   1400 53kg m s j 7400kg m s jb gb g b g.    

 

and the final momentum after making the turn is  ˆ7400kg m s ifp    (note that the 

magnitude remains the same, only the direction is changed). Thus, the impulse is 

 

  3 ˆ ˆ7.4 10 N s i j .f iJ p p       

 

(b) The initial momentum of the car after the turn is  ˆ7400kg m s iip    and the final 

momentum after colliding with a tree is 0.fp   The impulse acting on it is 

 
3 ˆ( 7.4 10 N s)i.f iJ p p         

 

(c) The average force on the car during the turn is 

 

  
  avg

ˆ ˆ7400kg m s i j
ˆ ˆ1600 N i j

4.6 s

p J
F

t t

 
    
 

 

 

and its magnitude is  

  3

avg 1600N 2 2.3 10 N.F     

 

(d) The average force during the collision with the tree is 

 

 
 4

avg 3

ˆ7400kg m s i ˆ2.1 10 N i
350 10 s

J
F

t 

 
     

 
 

 

and its magnitude is 4

avg 2.1 10 N.F    

 

(e) As shown in (c), the average force during the turn, in unit vector notation, is  

  avg
ˆ ˆ1600 N i jF   . The force is 45° below the positive x axis. 

 

 

LEARN During the turn, the average force 

avgF  is in the same direction as J , or p . 

Its x and y components have equal 

magnitudes. The x component is positive 

and the y component is negative, so the 

force is 45° below the positive x axis. 
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90. (a) We find the momentum 

pn r  of the residual nucleus from momentum conservation. 

 

 22 23ˆ ˆ0 ( 1.2 10 kg m/s) i ( 6.4 10 kg m/s) jn i e v n r n rp p p p p               

 

Thus, 22 23ˆ ˆ(1.2 10 kg m/s) i (6.4 10 kg m/s) jn rp        .  Its magnitude is 

 

   
2 2

22 23 22| | 1.2 10 kg m/s 6.4 10 kg m/s 1.4 10 kg m/s.n rp             

 

(b) The angle measured from the +x axis to 

pn r  is 

23
1

22

6.4 10 kg m/s
tan 28 .

1.2 10 kg m/s







  
   

  
 

 

 (c) Combining the two equations p = mv and K mv 1
2

2 , we obtain (with p = pn r and  

m = mn r) 

 
 

2
222

19

26

1.4 10 kg m/s
1.6 10 J.

2 2 5.8 10 kg

p
K

m







 
   


 

 

91. No external forces with horizontal components act on the cart-man system and the 

vertical forces sum to zero, so the total momentum of the system is conserved. Let mc be 

the mass of the cart, v be its initial velocity, and vc be its final velocity (after the man 

jumps off). Let mm be the mass of the man. His initial velocity is the same as that of the 

cart and his final velocity is zero. Conservation of momentum yields (mm + mc)v = mcvc. 

Consequently, the final speed of the cart is  

 

v
v m m

m
c

m c

c








b g b gb g2 3 75 39

39
6 7

.
.

 m / s kg kg

kg
m / s.  

 

The cart speeds up by 6.7 m/s – 2.3 m/s = + 4.4 m/s. In order to slow himself, the man 

gets the cart to push backward on him by pushing forward on it, so the cart speeds up.  

 

92. The fact that they are connected by a spring is not used in the solution. We use Eq.  

9-17 for 

vcom:  

     com 1 1 2 2 21.0 kg 1.7 m/s 3.0 kgMv m v m v v     

 

which yields 

v2 057 . m / s. The direction of 


v2  is opposite that of 


v1  (that is, they are 

both headed toward the center of mass, but from opposite directions). 

 

93. THINK A completely inelastic collision means that the railroad freight car and the 

caboose car move together after the collision. The motion is one-dimensional.  
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EXPRESS Let mF be the mass of the freight car and vF be its initial velocity. Let mC be 

the mass of the caboose and v be the common final velocity of the two when they are 

coupled. Conservation of the total momentum of the two-car system leads to  

 

mFvF = (mF + mC)v     F F

F C

m v
v

m m



. 

The initial kinetic energy of the system is K m vi F F
1

2

2  and the final kinetic energy is 

 

K m m v m m
m v

m m

m v

m m
f F C F C

F F

F C

F F

F C

   





1

2

1

2

1

2

2
2 2

2

2 2

b g b g b g b g .  
 

Since 27% of the original kinetic energy is lost, we have Kf = 0.73Ki. Combining with the 

two equations above allows us to solve for Cm , the mass of the caboose.    

 

ANALYZE With Kf = 0.73Ki, or  

 

 
 

2 2
21 1

0.73
2 2

F F
F F

F C

m v
m v

m m

 
  

  
 

 

we obtain m m mF F C b g 0 73. ,  which we use in solving for the mass of the caboose: 

 

m m mC F F     
0 27

0 73
0 37 0 37 318 10 118 104 4.

.
. . . . .b gc hkg kg  

 

LEARN Energy is lost during an inelastic collision, but momentum is still conserved 

because there’s no external force acting on the two-car system.  

 

94. Let mc be the mass of the Chrysler and vc be its velocity. Let mf be the mass of the 

Ford and vf be its velocity. Then the velocity of the center of mass is 

 

v
m v m v

m m

c c f f

c f

com

kg km / h kg km / h

kg kg
km / h











2400 80 1600 60

2400 1600
72

b gb g b gb g
.  

 

We note that the two velocities are in the same direction, so the two terms in the 

numerator have the same sign. 

 

95. THINK A billiard ball undergoes glancing collision with another identical billiard 

ball. The collision is two-dimensional.   
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EXPRESS The mass of each ball is m, and the initial speed of one of the balls is 

1 2.2m s.iv   We apply the conservation of linear momentum to the x and y axes 

respectively: 

1 1 1 2 2

1 1 2 2

cos cos

   0 sin sin

i f f

f f

mv mv mv

mv mv

 

 

 

 
 

 

The mass m cancels out of these equations, and we are left with two unknowns and two 

equations, which is sufficient to solve.  

 

ANALYZE (a) Solving the simultaneous equations leads to  

 

 2 1
1 1 2 1

1 2 1 2

sin sin
,

sin( ) sin( )
f i f iv v v v

 

   
 

 
 

 

Since 2 1 / 2 1.1m/sf iv v   and 2 60   , we have  

 

1
1

1

sin 1 1
tan

sin( 60 ) 2 3





  

 
 

 

or 1 30   . Thus, the speed of ball 1 after collision is 

 

 2
1 1 1 1

1 2

sin sin 60 3 3
(2.2 m/s) 1.9 m/s

sin( ) sin(30 60 ) 2 2
f i i iv v v v



 


    

  
. 

 

(b) From the above, we have  = 30°, measured clockwise from the +x-axis, or 

equivalently, 30°, measured counterclockwise from the +x-axis. 

 

(c) The kinetic energy before collision is 2

1

1

2
i iK mv . After the collision, we have 

 2 2

1 2

1

2
f f fK m v v   

Substituting the expressions for 1 fv  and 2 fv  found above gives 

 
2 2

22 1
12 2

1 2 1 2

sin sin1

2 sin ( ) sin ( )
f iK m v

 

   

 
  

  
 

 

Since 1 30    and 2 60 ,    1 2sin( ) 1    and 2 2 2 2

1 2 1 1sin sin sin cos 1       , 

and indeed, we have 2

1

1

2
f i iK mv K  , which means that energy is conserved.  
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LEARN One may verify that when two identical masses collide elastically, they will 

move off perpendicularly to each other with 1 2 90 .     

 

 96. (a) We use Eq. 9-87. The thrust is 

 

   24 4

rel 4.0 10 kg 2.0m s 8.0 10 N.Rv Ma      

 

(b) Since vrel = 3000 m/s, we see from part (a) that R  27 kg/s. 

 

97. The diagram below shows the situation as the incident ball (the left-most ball) makes 

contact with the other two.  

 

 
 

It exerts an impulse of the same magnitude on each ball, along the line that joins the 

centers of the incident ball and the target ball. The target balls leave the collision along 

those lines, while the incident ball leaves the collision along the x axis. The three dashed 

lines that join the centers of the balls in contact form an equilateral triangle, so both of the 

angles marked  are 30°. Let v0 be the velocity of the incident ball before the collision 

and V be its velocity afterward. The two target balls leave the collision with the same 

speed. Let v represent that speed. Each ball has mass m. Since the x component of the 

total momentum of the three-ball system is conserved, 

 

mv mV mv0 2  cos  

 

and since the total kinetic energy is conserved,  

 

1

2

1

2
2

1

2
0

2 2 2mv mV mv 
F
HG
I
KJ .  

 

We know the directions in which the target balls leave the collision so we first eliminate 

V and solve for v. The momentum equation gives V = v0 – 2v cos , so  

 
2V  2 2 2

0 04 cos 4 cosv v v v    
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and the energy equation becomes 2

0v  2 2 2 2

0 04 cos 4 cos 2 .v v v v v     Therefore,  

 

v
v







 


2

1 2

2 10 30

1 2 30
6 930

2 2

cos

cos

( cos

cos
. .





 m s)
 m s  

 

(a) The discussion and computation above determines the final speed of ball 2 (as labeled 

in Fig. 9-76) to be 6.9 m/s. 

 

(b) The direction of ball 2 is at 30° counterclockwise from the +x axis.  

 

(c) Similarly, the final speed of ball 3 is 6.9 m/s. 

 

(d) The direction of ball 3 is at 30° counterclockwise from the +x axis.  

 

(e) Now we use the momentum equation to find the final velocity of ball 1:  

 

V v v     0 2 10 2 693 30 2 0cos ( . cos .  m s  m s) m s.  

 

So the speed of ball 1 is | |V  2.0 m/s. 

 

(f) The minus sign indicates that it bounces back in the – x direction. The angle is 180°. 

 

98. (a) The momentum change for the 0.15 kg object is  

 

 p 


  = (0.15)[2 i
^
 + 3.5 j

^
 –3.2 k

^
 – (5 i

^
 +6.5 j

^
 +4 k

^
 )] = (–0.450i

^
 – 0.450j

^
 – 1.08k

^
) kg m/s . 

 

(b) By the impulse-momentum theorem (Eq. 9-31), J  


 =  p 


 , we have 

 

J  


 = (–0.450i
^
 – 0.450j

^
 – 1.08k

^
) N s . 

 

(c) Newton’s third law implies Jwall  
    

 = – Jball  
    

 (where Jball  
    

 is the result of part (b)), so 

 

Jwall  
    

 = (0.450i
^
 + 0.450j

^
 + 1.08k

^
) N s . 

 

99. (a) We place the origin of a coordinate system at the center of the pulley, with the x 

axis horizontal and to the right and with the y axis downward. The center of mass is 

halfway between the containers, at x = 0 and y = ,  where   is the vertical distance from 

the pulley center to either of the containers. Since the diameter of the pulley is 50 mm, 

the center of mass is at a horizontal distance of 25 mm from each container.  

 

(b) Suppose 20 g is transferred from the container on the left to the container on the right. 

The container on the left has mass m1 = 480 g and is at x1 = –25 mm. The container on 



 CHAPTER 9 462 

the right has mass m2 = 520 g and is at x2 = +25 mm. The x coordinate of the center of 

mass is then  

x
m x m x

m m
com

 g  mm  g  mm

 g 520 g
 mm.






 


1 1 2 2

1 2

480 25 520 25

480
10

b gb g b gb g
.  

 

The y coordinate is still  . The center of mass is 26 mm from the lighter container, along 

the line that joins the bodies. 

 

(c) When they are released the heavier container moves downward and the lighter 

container moves upward, so the center of mass, which must remain closer to the heavier 

container, moves downward.  

 

(d) Because the containers are connected by the string, which runs over the pulley, their 

accelerations have the same magnitude but are in opposite directions. If a is the 

acceleration of m2, then –a is the acceleration of m1. The acceleration of the center of 

mass is  

a
m a m a

m m
a

m m

m m
com 

 








1 2

1 2

2 1

1 2

b g
.  

 

We must resort to Newton’s second law to find the acceleration of each container. The 

force of gravity m1g, down, and the tension force of the string T, up, act on the lighter 

container. The second law for it is m1g – T = –m1a. The negative sign appears because a 

is the acceleration of the heavier container. The same forces act on the heavier container 

and for it the second law is m2g – T = m2a. The first equation gives T = m1g + m1a. This is 

substituted into the second equation to obtain m2g – m1g – m1a = m2a, so  

 

a = (m2 – m1)g/(m1 + m2). 

Thus,  

a
g m m

m m
com

2

2
 m / s  g  g

 g
 m / s









  2 1

2

1 2

2

2

2

2
9 8 520 480

480 520 g
16 10

b g
b g

c hb g
b g

.
. .  

 

The acceleration is downward. 

 

100. (a) We use Fig. 9-21 of the text (which treats both angles as positive-valued, even 

though one of them is in the fourth quadrant; this is why there is an explicit minus sign in 

Eq. 9-80 as opposed to it being implicitly in the angle). We take the cue ball to be body 1 

and the other ball to be body 2. Conservation of the x and the components of the total 

momentum of the two-ball system leads to:  

 

mv1i = mv1f cos 1 + mv2f cos 2 
 

       0 = –mv1f sin 1 + mv2f sin 2. 

 

The masses are the same and cancel from the equations. We solve the second equation for 

sin 2: 
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sin sin
.

.
sin . . 2

1

2

1

350

2 00
22 0 0 656 

F
HG

I
KJ 

v

v

f

f

 m / s

 m / s
 .  

 

Consequently, the angle between the second ball and the initial direction of the first is 2 

= 41.0°. 

 

(b) We solve the first momentum conservation equation for the initial speed of the cue 

ball. 

1  1 1 2 2cos cos (3.50 m/s)cos 22.0 (2.00 m/s)cos41.0 4.75 m/s .i f fv v v        

 

(c) With SI units understood, the initial kinetic energy is  

 

K mv m mi i  
1

2

1

2
4 75 1132 2( . ) .  

and the final kinetic energy is 

 

K mv mv m mf f f    
1

2

1

2

1

2
350 2 00 811

2

2

2 2 2( . ) ( . ) . .c h  

 

Kinetic energy is not conserved. 

 

101. This is a completely inelastic collision, followed by projectile motion. In the 

collision, we use momentum conservation. 

 

 shoes together (3.2 kg)(3.0 m/s) (5.2 kg)p p v    

 

Therefore, 

v 1.8 m/ s  toward the right as the combined system is projected from the 

edge of the table. Next, we can use the projectile motion material from Ch. 4 or the 

energy techniques of Ch. 8; we choose the latter. 

 

                                                              

 kg) (1.8 m / s) (5.2 kg) (9.8 m / s  m) 0

edge edge floor floor

2 2

floor

K U K U

K

  

  
1

2
52 0 40( . ) ( .

 

 

Therefore, the kinetic energy of the system right before hitting the floor is Kfloor = 29 J. 

 

102. (a) Since the center of mass of the man-balloon system does not move, the balloon 

will move downward with a certain speed u relative to the ground as the man climbs up 

the ladder.  

 

(b) The speed of the man relative to the ground is vg = v – u. Thus, the speed of the center 

of mass of the system is 
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v
mv Mu

M m

m v u Mu

M m

g

com 





 




b g
0.  

This yields  

 
(80 kg)(2.5 m/s)

0.50 m/s.
320 kg + 80 kg

mv
u

M m
  


 

 

 (c) Now that there is no relative motion within the system, the speed of both the balloon 

and the man is equal to vcom, which is zero. So the balloon will again be stationary. 

 

103. The velocities of m1 and m2 just after the collision with each other are given by Eq. 

9-75 and Eq. 9-76 (setting v1i = 0): 

2 2 1
1 2 2 2

1 2 1 2

2
,f i f i

m m m
v v v v

m m m m


 

 
 

 

After bouncing off the wall, the velocity of m2 becomes –v2f. In these terms, the problem 

requires 1 2f fv v  , or  

2 2 1
2 2

1 2 1 2

2
i i

m m m
v v

m m m m


 

 
 

which simplifies to 

2
3

2 2 1 2
1m m m m

m
    b g  . 

 

With m1 = 6.6 kg, we have m2 = 2.2 kg. 

 

104. We treat the car (of mass m1) as a “point-mass” (which is initially 1.5 m from the 

right end of the boat).  The left end of the boat (of mass m2) is initially at x = 0 (where the 

dock is), and its left end is at x = 14 m.  The boat’s center of mass (in the absence of the 

car) is initially at x = 7.0 m. We use Eq. 9-5 to calculate the center of mass of the system: 

 

xcom = 
m1x1 + m2x2

 m1 + m2 
  =  

(1500 kg)(14 m – 1.5 m) + (4000 kg)(7 m)

 1500 kg + 4000 kg
  =  8.5 m. 

 

In the absence of external forces, the center of mass of the system does not change.  Later, 

when the car (about to make the jump) is near the left end of the boat (which has moved 

from the shore an amount x), the value of the system center of mass is still 8.5 m.  The 

car (at this moment) is thought of as a “point-mass” 1.5 m from the left end, so we must 

have  

       xcom = 
m1x1 + m2x2

 m1 + m2 
  =  

(1500 kg)(x + 1.5 m) + (4000 kg)(7 m + x)

 1500 kg + 4000 kg
  =  8.5 m. 

 

Solving this for x, we find x = 3.0 m. 

 

105. THINK Both momentum and energy are conserved during an elastic collision.  
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EXPRESS Let m1 be the mass of the object that is originally moving, v1i be its velocity 

before the collision, and v1f be its velocity after the collision. Let 2m M  be the mass of 

the object that is originally at rest and v2f  be its velocity after the collision. Conservation 

of linear momentum gives 1 1 1 1 2 2 .i f fm v m v m v   Similarly, the total kinetic energy is 

conserved and we have 

2 2 2

1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v  . 

Solving for 
1 fv and 2 fv , we obtain: 

1 2 1
1 1 2 1

1 2 1 2

2
,f i f i

m m m
v v v v

m m m m


 

 
 

The second equation can be inverted to give 1
2 1

2

2
1i

f

v
m m

v

 
   

 

.  

 

ANALYZE With m1 = 3.0 kg, v1i = 8.0 m/s and v2f = 6.0 m/s, the above expression leads 

to  

1
2 1

2

2 2(8.0 m/s)
1 (3.0 kg) 1 5.0 kg

6.0 m/s

i

f

v
m M m

v

   
         

  

 

 

LEARN Our analytic expression for 
2m  shows that if the two masses are equal, then 

2 1f iv v , and the pool player’s result is recovered.  

 

106. We denote the mass of the car as M and that of the sumo wrestler as m. Let the 

initial velocity of the sumo wrestler be v0 > 0 and the final velocity of the car be v. We 

apply the momentum conservation law.  

 

(a) From mv0 =  (M + m)v we get  

 

v
mv

M m






0 242

2140 242
054

(
. .

 kg)(5.3 m / s)

 kg  kg
 m / s  

 

(b) Since vrel = v0, we have  

 

mv Mv m v v mv M m v0 0     relb g b g , 

 

and obtain v = 0 for the final speed of the flatcar.  

 

(c) Now mv0 = Mv + m (v – vrel), which leads to  

 

v
m v v

m M












0 242 53 53

242
11

rel kg m / s m / s

kg 2140 kg
m / s

b g b gb g. .
. .  
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107. THINK To successfully launch a rocket from the ground, fuel is consumed at a rate 

that results in a thrust big enough to overcome the gravitational force.  

 

EXPRESS The thrust of the rocket is given by T = Rvrel where R is the rate of fuel 

consumption and vrel is the speed of the exhaust gas relative to the rocket. 

 

ANALYZE (a) The exhaust speed is vrel = 1200 m/s. For the thrust to equal the weight 

Mg where M = 6100 kg, we must have  

 

 
2

rel

rel

(6100 kg)(9.8 m/s )
49.8 kg/s 50 kg/s

1200 m/s

Mg
T Rv Mg R

v
       . 

 

(b) Using Eq. 9-42 with the additional effect due to gravity, we have 

 

Rv Mg Marel    

so that requiring a = 21 m/s
2
 leads to  

 
2 2

2

rel

( ) (6100 kg)(9.8 m/s 21m/s )
156.6 kg/s 1.6 10 kg/s

1200 m/s

M g a
R

v

 
     . 

 

LEARN A greater upward acceleration requires a greater fuel consumption rate. To be 

launched from Earth’s surface, the initial acceleration of the rocket must exceed 
29.8 m/sg  . This means that the rate R must be greater than 50 kg/s.  

 

108. Conservation of momentum leads to  

 

(900 kg)(1000 m/s) = (500 kg)(vshuttle – 100 m/s) + (400 kg)(vshuttle) 

 

which yields vshuttle = 1055.6 m/s for the shuttle speed and vshuttle – 100 m/s =  955.6 m/s 

for the module speed (all measured in the frame of reference of the stationary main 

spaceship).  The fractional increase in the kinetic energy is 

 
2 2

3

2

(500 kg)(955.6 m/s) / 2 (400 kg)(1055.6 m/s) / 2
1 2.5 10 .

(900 kg)(1000 m/s) / 2

f

i i

KK

K K

 
      

 

109. THINK In this problem, we are asked to locate the center of mass of the Earth-

Moon system. 

 

EXPRESS We locate the coordinate origin at the center of Earth.  Then the distance rcom 

of the center of mass of the Earth-Moon system is given by 

 

com
M ME

M E

m r
r

m m



 

where mM is the mass of the Moon, mE is the mass of Earth, and rME is their separation.  
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ANALYZE (a) With 245.98 10 kgEm   , 227.36 10 kgMm    and 83.82 10 mMEr    

(these values are given in Appendix C), we find the center of mass to be at  

 

 
  22 8

6 3

com 22 24

7.36 10 kg 3.82 10 m
4.64 10 m 4.6 10  km.

7.36 10 kg 5.98 10 kg
r

 
    

  
 

 

(b) The radius of Earth is RE = 6.37  10
6
 m, so com / 0.73 73%Er R   . 

 

LEARN The center of mass of the Earth-Moon system is located inside the Earth!  

 

110. (a) The magnitude of the impulse is equal to the change in momentum: 

 

J = mv – m(–v) = 2mv = 2(0.140 kg)(7.80 m/s) = 2.18 kg m/s 

 

(b) Since in the calculus sense the average of a function is the integral of it divided by the 

corresponding interval, then the average force is the impulse divided by the time t.  

Thus, our result for the magnitude of the average force is 2mv/t. With the given values, 

we obtain 

Favg = 
2(0.140 kg)(7.80 m/s)

0.00380 s
   = 575 N . 

 

111. THINK The water added to the sled will move at the same speed as the sled.  

 

EXPRESS Let the mass of the sled be sm and its initial speed be iv . If the total mass of 

water being scooped up is wm , then by momentum conservation, ( )s i s w fm v m m v  , 

where fv  is the final speed of the sled-water system.     

 

ANALYZE With 2900 kgsm  , 920 kgwm   and 250 m/siv  , we obtain  

 

  2900 kg 250 m/s
189.8 m/s 190 m/s

2900 kg 920 kg

s i
f

s w

m v
v

m m
   

 
. 

 

LEARN The water added to the sled can be regarded as undergoing completely inelastic 

collision with the sled. Some kinetic energy is converted into other forms of energy 

(thermal, sound, etc.) and the final speed of the sled-water system is smaller than the 

initial speed of the sled alone.    

 

112. THINK The pellets that were fired carry both kinetic energy and momentum. Force 

is exerted by the rigid wall in stopping the pellets.  

 

EXPRESS Let m be the mass of a pellet and v be its velocity as it hits the wall, then its 

momentum is p = mv, toward the wall. The kinetic energy of a pellet is 2 / 2.K mv  The 
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force on the wall is given by the rate at which momentum is transferred from the pellets 

to the wall. Since the pellets do not rebound, each pellet that hits transfers p. If N pellets 

hit in time t, then the average rate at which momentum is transferred would 

be  avg /F p N t   . 

 

ANALYZE (a) With m = 2.0  10
–3

 kg and v = 500 m/s, the momentum of a pellet is  

 

p = mv = (2.0  10
–3

 kg)(500 m/s) = 1.0 kg ∙ m/s. 

 

(b) The kinetic energy of a pellet is K mv    1

2

1

2
2 0 10 500 2 5 102 3 2 2. .kg m s J .c hb g  

 

(c) With ( / ) 10/ s,N t    the average force on the wall from the stream of pellets is 

 

  1

avg 1.0kg m s 10s 10 N.
N

F p
t

 
    

 
 

 

The force on the wall is in the direction of the initial velocity of the pellets. 

 

(d) If t is the time interval for a pellet to be brought to rest by the wall, then the 

average force exerted on the wall by a pellet is 

 

3

avg 3

1.0kg m s
1.7 10 N.

0.6 10 s

p
F

t 


    

 
 

 

The force is in the direction of the initial velocity of the pellet. 

 

(e) In part (d) the force is averaged over the time a pellet is in contact with the wall, while 

in part (c) it is averaged over the time for many pellets to hit the wall. Hence, avg avgF F  .   

 

LEARN During the majority of this time, no pellet is in contact with the wall, so the 

average force in part (c) is much less than the average force in part (d). 

 

113. We convert mass rate to SI units: R = (540 kg/min)/(60 s/min) = 9.00 kg/s. In the 

absence of the asked-for additional force, the car would decelerate with a magnitude 

given by Eq. 9-87: relRv M a , so that if a = 0 is desired then the additional force must 

have a magnitude equal to R vrel (so as to cancel that effect): 

 

  rel 9.00 kg / s 3.20 m/s 28.8N.F Rv    

 

114. First, we imagine that the small square piece (of mass m) that was cut from the large 

plate is returned to it so that the large plate is again a complete 6 m  6 m (d =1.0 m) 

square plate (which has its center of mass at the origin). Then we “add” a square piece of 
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“negative mass” (–m) at the appropriate location to obtain what is shown in the figure. If 

the mass of the whole plate is M, then the mass of the small square piece cut from it is 

obtained from a simple ratio of areas: 

m M M m
F
HG
I
KJ  

2 0

6 0
9

2

.

.
.

m

m
 

 

(a) The x coordinate of the small square piece is x = 2.0 m (the middle of that square 

“gap” in the figure). Thus the x coordinate of the center of mass of the remaining piece is 

 

x
m x

M m

m

m m
com

m
m



 




 

b g
b g

b g2 0

9
0 25

.
. .  

 

(b) Since the y coordinate of the small square piece is zero, we have ycom = 0. 

 

115. THINK We have two forces acting on two masses separately. The masses will 

move according to Newton’s second law.   

 

EXPRESS Let 
1F  be the force acting on m1, and 

2F  the force acting on m2. According to 

Newton’s second law, their displacements are 

 

 2 2 2 21 2
1 1 2 2

1 2

1 1 1 1
,

2 2 2 2

F F
d a t t d a t t

m m

   
         

   

 

 

The corresponding displacement of the center of mass is 

 

2 2 21 1 2 2 1 1 2 2 1 2
cm

1 2 1 2 1 1 2 2 1 2

1 1 1

2 2 2

m d m d m F m F F F
d t t t

m m m m m m m m m m

      
                     

. 

 

ANALYZE (a) The two masses are 3

1 2.00 10 kgm   and 3

2 4.00 10 kg.m    With 

the forces given by 1
ˆ ˆ( 4.00 N)i (5.00 N)jF    and 2

ˆ ˆ(2.00 N)i (4.00 N)jF   , and 
32.00 10 st   , we obtain 

 

 

2 3 21 2
cm 3 3

1 2

4 4

ˆ ˆ1 1 ( 4.00 N 2.00 N)i (5.00 N 4.00 N)j
(2.00 10 s)

2 2 2.00 10 kg 4.00 10 kg

ˆ ˆ( 6.67 10  m)i (3.33 10  m) j.

F F
d t

m m



 

 

     
        

    

 

 

The magnitude of cmd  is  

 
4 2 4 2 4

cm ( 6.67 10  m) (3.33 10  m) 7.45 10  md           
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or 0.745 mm. 

 

(b) The angle of 
cmd  is given by  

 
4

1 1

4

3.33 10  m 1
tan tan 153 ,

6.67 10  m 2



 



   
       

    
 

 

measured counterclockwise from +x-axis.  

 

(c) The velocities of the two masses are 

 

1 2
1 1 2 2

1 2

,
Ft F t

v a t v a t
m m

    , 

 

and the velocity of the center of mass is 

 

1 1 2 2 1 1 2 2 1 2
cm

1 2 1 2 1 1 2 2 1 2

m v m v m Ft m F t F F
v t

m m m m m m m m m m

      
                     

. 

 

The corresponding kinetic energy of the center of mass is 

 

 
2

2 21 2
cm 1 2 cm

1 2

| |1 1
( )

2 2

F F
K m m v t

m m


  


 

  

With 1 2
ˆ ˆ| | | ( 2.00 N)i (1.00 N)j| 5 NF F     , we get   

 
2 2

2 3 2 31 2
cm 3 3

1 2

| |1 1 ( 5 N)
(2.00 10 s) 1.67 10  J.

2 2 2.00 10 kg 4.00 10 kg

F F
K t

m m

 

 


    

   
 

 

LEARN The motion of the center of the mass could be analyzed as though a force 

1 2F F F   is acting on a mass 1 2M m m  .  Thus, the acceleration of the center of the 

mass is 1 2
cm

1 2

F F
a

m m





. 

 

116. (a) The center of mass does not move in the absence of external forces (since it was 

initially at rest). 

 

(b) They collide at their center of mass.  If the initial coordinate of P is x = 0 and the 

initial coordinate of Q is x = 1.0 m, then Eq. 9-5 gives 
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xcom  =  
m1x1 + m2x2

 m1 + m2 
 =  

0 + (0.30 kg)(1.0 m)

0.1 kg  +  0.3 kg
 = 0.75 m. 

 

Thus, they collide at a point 0.75 m from P’s original position. 

 

117. This is a completely inelastic collision, but Eq. 9-53 (V = 
m1

m1+ m2

 v1i) is not easily 

applied since that equation is designed for use when the struck particle is initially 

stationary.  To deal with this case (where particle 2 is already in motion), we return to the 

principle of momentum conservation: 

 
1 1 2 2 1 2

ˆ ˆ ˆ ˆ2(4i 5j) 4(6i 2j)
( )

2 4
m v m v m m V V

  
    


. 

 

(a) In unit-vector notation, then, V 


= (2.67 m/s)i
^
 + (3.00 m/s)j

^
 . 

 

(b) The magnitude of V 


 is | |V  4.01 m/s. 

 

(c) The direction of V 


 is 48.4 (measured clockwise from the +x axis). 

 

118. We refer to the discussion in the textbook (Sample Problem – “Elastic collision, two 

pendulums,” which uses the same notation that we use here) for some important details in 

the reasoning. We choose rightward in Fig. 9-20 as our +x direction. We use the notation 
v  when we refer to velocities and v when we refer to speeds (which are necessarily 

positive). Since the algebra is fairly involved, we find it convenient to introduce the 

notation m = m2 – m1 (which, we note for later reference, is a positive-valued quantity). 

 

(a) Since 

v ghi1 12   where h1 = 9.0 cm, we have 

 


v

m m

m m
v

m

m m
ghf i1

1 2

1 2

1

1 2

12



 




 

 

which is to say that the speed of sphere 1 immediately after the collision is 

 

v m m m ghf1 1 2 12  b gc h  

 

and that 

v f1  points in the –x direction. This leads (by energy conservation 

m gh m vf f1 1
1
2 1 1

2 ) to 

h
v

g

m

m m
hf

f

1

1

2

1 2

2

1
2

 


F
HG

I
KJ


.  

 

With m1 = 50 g and m2 = 85 g, this becomes 1 0.60 cmfh  . 
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(b) Equation 9-68 gives 

v
m

m m
v

m

m m
ghf i2

1

1 2

1
1

1 2

1

2 2
2





 

 

which leads (by energy conservation m gh m vf f2 2
1
2 2 2

2 ) to 

 

h
v

g

m

m m
hf

f

2

2

2

1

1 2

2

1
2

2
 



F
HG

I
KJ .  

 

With m1 = 50 g and m2 = 85 g, this becomes  h f2 4 9 . cm . 

 

(c) Fortunately, they hit again at the lowest point (as long as their amplitude of swing was 

“small,” this is further discussed in Chapter 16). At the risk of using cumbersome 

notation, we refer to the next set of heights as h1ff and h2ff. At the lowest point (before this 

second collision) sphere 1 has velocity  2 1gh f  (rightward in Fig. 9-20) and sphere 2 

has velocity  2 1gh f  (that is, it points in the –x direction). Thus, the velocity of sphere 

1 immediately after the second collision is, using Eq. 9-75, 
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This can be greatly simplified (by expanding (m)
2
 and (m1 + m2)

2
) to arrive at the 

conclusion that the speed of sphere 1 immediately after the second collision is simply 

v ghff1 12  and that 

v ff1  points in the –x direction. Energy conservation 

m gh m vff ff1 1
1
2 1 1

2d i  leads to 

h
v

g
hff

ff

1

1

2

1
2

9 0   .  cm . 

 

(d) One can reason (energy-wise) that h1 ff = 0 simply based on what we found in part (c). 

Still, it might be useful to see how this shakes out of the algebra. Equation 9-76 gives the 

velocity of sphere 2 immediately after the second collision: 
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which vanishes since ( )( ) ( )( )2 2 01 1m m m m   . Thus, the second sphere (after the 

second collision) stays at the lowest point, which basically recreates the conditions at the 

start of the problem (so all subsequent swings-and-impacts, neglecting friction, can be 

easily predicted, as they are just replays of the first two collisions). 

 

119. (a) Each block is assumed to have uniform density, so that the center of mass of 

each block is at its geometric center (the positions of which are given in the table [see 

problem statement] at t = 0).  Plugging these positions (and the block masses) into Eq. 9-

29 readily gives xcom = –0.50 m (at t = 0). 

 

(b) Note that the left edge of block 2 (the middle of which is still at x = 0) is at x = –2.5 

cm, so that at the moment they touch the right edge of block 1 is at x = –2.5 cm and thus 

the middle of block 1 is at x = –5.5 cm.  Putting these positions (for the middles) and the 

block masses into Eq. 9-29 leads to xcom = –1.83 cm or  –0.018 m (at t = (1.445 m)/(0.75 

m/s) = 1.93 s). 

 

(c) We could figure where the blocks are at t = 4.0 s and use Eq. 9-29 again, but it is 

easier (and provides more insight) to note that in the absence of external forces on the 

system the center of mass should move at constant velocity: 

 

1 1 2 2
com

1 2

m v m v
v

m m





= 0.25 m/s i

^
  

 

as can be easily verified by putting in the values at t = 0.  Thus,  

 

xcom = xcom initial  +  comv t  =  (–0.50 m) +  (0.25 m/s)(4.0 s)  =  +0.50 m . 

 

120. One approach is to choose a moving coordinate system that travels the center of 

mass of the body, and another is to do a little extra algebra analyzing it in the original 

coordinate system (in which the speed of the m = 8.0 kg mass is v0 = 2 m/s, as given). 

Our solution is in terms of the latter approach since we are assuming that this is the 

approach most students would take. Conservation of linear momentum (along the 

direction of motion) requires 

 

 0 1 1 2 2 1 2(8.0)(2.0) (4.0) (4.0)mv m v m v v v      

 

which leads to v v2 14   in SI units (m/s). We require 
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 2 2 2 2 2 2

1 1 2 2 0 1 2

1 1 1 1 1 1
16 (4.0) (4.0) (8.0) (2.0)

2 2 2 2 2 2
K m v m v mv v v

   
          

   
 

 

which simplifies to v v2

2

1

216   in SI units. If we substitute for v2 from above, we find 

 

( )4 161

2

1

2  v v  

 

which simplifies to 2 8 01

2

1v v  , and yields either v1 = 0 or v1 = 4 m/s. If v1 = 0 then v2 = 

4 – v1 = 4 m/s, and if v1 = 4 m/s then v2 = 0.  

 

(a) Since the forward part continues to move in the original direction of motion, the speed 

of the rear part must be zero.  

 

(b) The forward part has a velocity of 4.0 m/s along the original direction of motion. 

 

121. We use m1 for the mass of the electron and m2 = 1840m1 for the mass of the 

hydrogen atom. Using Eq. 9-68, 

v
m

m m
v vf i i2

1

1 1

1 1

2

1840

2

1841



  

 

we compute the final kinetic energy of the hydrogen atom: 
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so we find the fraction to be 1840 4 1841 2 2 102 3b gb g   . ,  or 0.22%. 

 

122. Denoting the new speed of the car as v, then the new speed of the man relative to the 

ground is v – vrel. Conservation of momentum requires 
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w
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v v

F
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F
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I
KJ 
F
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I
KJ 0 relb g.  

 

Consequently, the change of velocity is 

 

rel
0

(915 N)(4.00 m/s)
1.10 m/s.

(2415 N) (915 N)

w v
v v v

W w
     

 
 

 

123. Conservation of linear momentum gives .J f J fmv MV mv MV    Similarly, the 

total kinetic energy is conserved: 
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2 2 2 21 1 1 1

2 2 2 2
J f J fmv MV mv MV   . 

 

Solving for fv and J fV , we obtain: 

 

1

2 2
,f J J f J

m M M m M m
v v V V v V

m M m M m M m M

 
   

   
 

Since ,m M  the above expressions can be simplified to  

 

1 2 ,f J J f Jv v V V V     

 

The velocity of the probe relative to the Sun is 

 

1 2 (10.5 km/s) 2( 13.0 km/s) 36.5 km/sf Jv v V         . 

 

The speed is 1| | 36.5 km/s.fv   

 

124. (a) The change in momentum (taking upwards to be the positive direction) is 

 

 p 


  =  (0.550 kg)[ (3 m/s)j
^
 – (–12 m/s)j

^
 ] =  (+8.25 kg

.
m/s) j

^
 . 

 

(b) By the impulse-momentum theorem (Eq. 9-31) J  


 =  p 


 =  (+8.25 N
.
s) j

^
 . 

 

(c) By Newton’s third law, Jc  
  

 =  – Jb  
  

 = (–8.25 N
.
s) j

^
 . 

 

125. (a) Since the initial momentum is zero, then the final momenta must add (in the 

vector sense) to 0. Therefore, with SI units understood, we have  

 

      
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3 1 2 1 1 2 2

27 6 27 6

19 19

ˆ ˆ16.7 10 6.00 10 i 8.35 10 8.00 10 j

ˆ ˆ1.00 10 i 0.67 10 j kg m/s.

p p p m v m v

 

 

     

       

     

 

 

(b) Dividing by m3 = 11.7  10
– 27

 kg and using the Pythagorean theorem we find the 

speed of the third particle to be v3 = 1.03  10
7
 m/s. The total amount of kinetic energy is  
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2

1

2

1

2
119 101 1

2
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3 3

2 12m v m v m v    . .J  

 

126. Using Eq. 9-67, we have after the elastic collision 
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v1 f  = 
m1  m2

m1+ m2

 v1i = 
200 g

600 g
 v1i = 

1

3
 (3.00 m/s) = 1.00 m/s . 

 

(a) The impulse is therefore  

 

J = m1v1 f  – m1v1i = (0.200 kg)(–1.00 m/s) – (0.200 kg)(3.00 m/s) = – 0.800 N
.
s  

            = – 0.800 kg
.
m/s,  

 

or | J | = –0.800 kg
.
m/s. 

 

(b) For the completely inelastic collision Eq. 9-75 applies  

 

v1 f  = V = 
m1

m1+ m2

 v1i = + 1.00 m/s . 

Now the impulse is   

 

J = m1v1 f  – m1v1i = (0.200 kg)(1.00 m/s ) – (0.200 kg)(3.00 m/s) = 0.400 N
.
s  

              = 0.400 kg
.
m/s. 

 

127. We use Eq. 9-88 and simplify with vf – vi = v, and vrel = u. 
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If  v = 2.2 m/s and u = 1000 m/s, we obtain 
M M

M
e

i f

i


  1 0 00220 0022. . .  

 

128. Using the linear momentum-impulse theorem, we have  

 

 avg ( )f iJ F t p m v v      . 

 

where m is the mass, vi the initial velocity, and vf  the final velocity of the ball. With 

0iv  , we obtain  

3
avg (32 N)(14 10 s)

2.24m s.
0.20kg

f

F t
v

m

 
    


