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Chapter 7 
 

 

 

1. THINK As the proton is being accelerated, its speed increases, and so does its kinetic 

energy.  

 

EXPRESS To calculate the speed of the proton at a later time, we use the equation 

v v a x2

0

2 2    from Table 2-1. The change in kinetic energy is then equal to  

 

 2 21
( )

2
f iK m v v   . 

 

ANALYZE (a) With 3.5 cm 0.035 mx    and 15 23.6 10 m/s ,a    we find the 

proton speed to be   

 

    
2

2 7 15 2 7

0 2 2.4 10 m/s 2 3.6 10 m/s 0.035 m 2.9 10 m/s.v v a x          

 

(b) The initial kinetic energy is 

 

  
2

2 27 7 13

0

1 1
 1.67 10 kg 2.4 10 m/s 4.8 10 J,

2 2
iK mv         

 

and the final kinetic energy is 

 

   
2

2 27 7 131 1
 1.67 10 kg 2.9 10 m/s 6.9 10 J.

2 2
fK mv         

 

Thus, the change in kinetic energy is  

 

K = f iK K 6.9  10
–13

 J – 4.8  10
–13

 J = 2.1  10
–13

 J. 

 

LEARN The change in kinetic energy can be rewritten as 

 

2 21 1
( ) (2 )

2 2
f iK m v v m a x ma x F x W           

 

which, according to the work-kinetic energy theorem, is simply the work done on the 

particle. 
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2. With speed v = 11200 m/s, we find 

 

2 5 2 131 1
(2.9 10 kg) (11200 m/s) 1.8 10  J.

2 2
K mv      

 

3. (a) The change in kinetic energy for the meteorite would be 

 

  
2

2 6 3 141 1
4 10 kg 15 10 m/s 5 10 J

2 2
f i i i iK K K K m v              , 

 

or 14| | 5 10  JK   . The negative sign indicates that kinetic energy is lost. 

 

(b) The energy loss in units of megatons of TNT would be 

 

 14

15

1 megaton TNT
5 10 J    0.1megaton TNT.

4.2 10 J
K

 
    

 
 

 

(c) The number of bombs N that the meteorite impact would correspond to is found by 

noting that megaton = 1000 kilotons and setting up the ratio: 

 

0.1 1000kiloton TNT
8.

13kiloton TNT
N


   

4. (a) We set up the ratio 

50

1

1 3

 km

1 km  megaton

F
HG

I
KJ

E
/

 

 

and find E = 50
3
  1  10

5
 megatons of TNT. 

 

(b) We note that 15 kilotons is equivalent to 0.015 megatons. Dividing the result from 

part (a) by 0.013 yields about ten million (10
7
) bombs. 

 

5. We denote the mass of the father as m and his initial speed vi. The initial kinetic energy 

of the father is 

K Ki 
1

2
son  

 

and his final kinetic energy (when his speed is vf = vi + 1.0 m/s) is K Kf  son .  We use 

these relations along with Eq. 7-1 in our solution. 

 

(a) We see from the above that K Ki f 1
2

, which (with SI units understood) leads to 
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 
221 1 1

  1.0 m/s
2 2 2

i imv m v
 

  
 

. 

 

The mass cancels and we find a second-degree equation for vi : 
1

2

1

2
02v vi i   .  The 

positive root (from the quadratic formula) yields vi = 2.4 m/s. 

 

(b) From the first relation above K Ki 
1
2 sonb g , we have 

 

2 2

son

1 1 1
  ( /2) 

2 2 2
imv m v

 
  

 
 

 

and (after canceling m and one factor of 1/2) are led to v vison = 2 = 4.8 m s.  

 

6. We apply the equation 21
0 0 2

( )x t x v t at   , found in Table 2-1. Since at t = 0 s, x0 = 0, 

and 
0 12 m/sv  , the equation becomes (in unit of meters) 

 

 21
2

( ) 12x t t at  . 

 

With 10 mx  when 1.0 st  , the acceleration is found to be 24.0 m/sa   . The fact 

that 0a  implies that the bead is decelerating. Thus, the position is described by 
2( ) 12 2.0x t t t  . Differentiating x with respect to t then yields  

 

 ( ) 12 4.0
dx

v t t
dt

   . 

 

Indeed at t =3.0 s, ( 3.0) 0v t   and the bead stops momentarily. The speed at 10 st  is 

( 10) 28 m/sv t    , and the corresponding kinetic energy is  

 

2 2 21 1
(1.8 10 kg)( 28 m/s) 7.1 J.

2 2
K mv       

 

7. Since this involves constant-acceleration motion, we can apply the equations of Table 

2-1, such as x v t at 0
1
2

2  (where x0 0 ). We choose to analyze the third and fifth 

points, obtaining 

2

0

2

0

1
0.2m (1.0 s)  (1.0 s)

2

1
0.8m (2.0 s)  (2.0 s) .

2

v a

v a

 

 
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Simultaneous solution of the equations leads to 0 0v   and a  0 40. m s2 . We now have 

two ways to finish the problem. One is to compute force from F = ma and then obtain the 

work from Eq. 7-7. The other is to find K  as a way of computing W (in accordance 

with Eq. 7-10). In this latter approach, we find the velocity at 2.0 st  from 

0 (so 0.80m s)v v at v   . Thus, 

21
(3.0kg)(0.80m/s) 0.96 J.

2
W K     

 

8. Using Eq. 7-8 (and Eq. 3-23), we find the work done by the water on the ice block: 

 

3

ˆ ˆ ˆ ˆ(210 N) i (150 N) j (15 m) i (12 m) j (210 N)(15 m) ( 150 N)( 12 m)

5.0 10 J.

W F d             
   

 

 

9. By the work-kinetic energy theorem, 

 

 2 2 2 21 1 1
(2.0kg) (6.0m/s) (4.0m/s) 20 J.

2 2 2
f iW K mv mv        

 

We note that the directions of 

v f  and 


vi  play no role in the calculation. 

 

10. Equation 7-8 readily yields  

 

W =  Fx x + Fy y  =(2.0 N)cos(100º)(3.0 m) + (2.0 N)sin(100º)(4.0 m) = 6.8 J. 

 

11. Using the work-kinetic energy theorem, we have  

 

 cosK W F d Fd      . 

 

In addition, 12 NF  and 2 2 2(2.00 m) ( 4.00 m) (3.00 m) 5.39 md      . 

 

(a) If 30.0 JK   , then 

 

 1 1 30.0 J
cos cos 62.3

(12.0 N)(5.39 m)

K

Fd
     
     

   
. 

 

(b) 30.0 JK   , then 

1 1 30.0 J
cos cos 118

(12.0 N)(5.39 m)

K

Fd
      
     

   
. 

 

12. (a) From Eq. 7-6, F = W/x = 3.00 N (this is the slope of the graph). 
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(b) Equation 7-10 yields K = Ki + W = 3.00 J + 6.00 J = 9.00 J. 

 

13. We choose +x as the direction of motion (so 

a  and 


F  are negative-valued). 

 

(a) Newton’s second law readily yields 2(85kg)( 2.0m/s )F    so that  

 
2| | 1.7 10 NF F   . 

 

(b) From Eq. 2-16 (with v = 0) we have 

 

 

2

2 2

0 2

37 m/s
0 2     3.4 10 m

2 2.0m/s
v a x x        


. 

 

Alternatively, this can be worked using the work-energy theorem. 

 

(c) Since 

F  is opposite to the direction of motion (so the angle   between 


F  and 


d x   is 180°) then Eq. 7-7 gives the work done as 45.8 10 JW F x      . 

 

(d) In this case, Newton’s second law yields   285kg 4.0m/sF    so that 

2| | 3.4 10 NF F   . 

 

(e) From Eq. 2-16, we now have 

 

 

2

2

2

37m/s
1.7 10 m.

2 4.0m/s
x    


 

 

(f) The force 

F  is again opposite to the direction of motion (so the angle  is again 180°) 

so that Eq. 7-7 leads to 45.8 10 J.W F x       The fact that this agrees with the result 

of part (c) provides insight into the concept of work. 

 

14. The forces are all constant, so the total work done by them is given by W F x net , 

where Fnet is the magnitude of the net force and x  is the magnitude of the displacement. 

We add the three vectors, finding the x and y components of the net force: 

 

net 1 2 3

net 2 3

sin 50.0 cos35.0 3.00 N (4.00 N)sin 35.0 (10.0 N)cos35.0

2.13N

cos50.0 sin 35.0 (4.00 N) cos50.0 (10.0 N)sin 35.0

3.17 N.

x

y

F F F F

F F F

         



       



 

 

The magnitude of the net force is 
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2 2 2 2

net net net (2.13 N) (3.17 N) 3.82 N.x yF F F      

 

The work done by the net force is 

 

net (3.82N)(4.00m) 15.3 JW F d    

 

where we have used the fact that 
 
d F net||  (which follows from the fact that the canister 

started from rest and moved horizontally under the action of horizontal forces — the 

resultant effect of which is expressed by 

Fnet ). 

 

15. (a) The forces are constant, so the work done by any one of them is given by 

W F d 
 

, where 

d  is the displacement. Force 


F1  is in the direction of the displacement, 

so 

1 1 1cos (5.00N)(3.00m)cos0 15.0 J.W Fd      

 

Force 

F2  makes an angle of 120° with the displacement, so 

 

2 2 2cos (9.00N)(3.00m)cos120 13.5 J.W F d       

 

Force 

F3  is perpendicular to the displacement, so  

 

W3 = F3d cos 3 = 0 since cos 90° = 0. 

 

The net work done by the three forces is 

 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W         

 

(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 

displacement. 

 

16. The change in kinetic energy can be written as 

 

 2 21 1
( ) (2 )

2 2
f iK m v v m a x ma x        

 

where we have used  2 2 2f iv v a x    from Table 2-1. From the figure, we see that 

(0 30) J 30 JK     when 5 mx   . The acceleration can then be obtained as 

 

 2( 30 J)
0.75 m/s .

(8.0 kg)(5.0 m)

K
a

m x

 
   


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The negative sign indicates that the mass is decelerating. From the figure, we also see 

that when 5 mx  the kinetic energy becomes zero, implying that the mass comes to rest 

momentarily. Thus, 

 
2 2 2 2 2

0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x       , 

 

or 0 2.7 m/sv  . The speed of the object when x = 3.0 m is  

 

 2 2 2 2

0 2 7.5 m /s 2( 0.75 m/s )( 3.0 m) 12 m/s 3.5 m/sv v a x         . 

 

17. THINK The helicopter does work to lift the astronaut upward against gravity. The 

work done on the astronaut is converted to the kinetic energy of the astronaut.   

 

EXPRESS We use 

F  to denote the upward force exerted by the cable on the astronaut. 

The force of the cable is upward and the force of gravity is mg downward. Furthermore, 

the acceleration of the astronaut is a = g/10 upward. According to Newton’s second law, 

the force is given by 

11
( ) ,

10
F mg ma F m g a mg       

 

in the same direction as the displacement. On the other hand, the force of gravity has 

magnitude gF mg  and is opposite in direction to the displacement. 

 

ANALYZE (a) Since the force of the cable

F  and the displacement 


d  are in the same 

direction, the work done by 

F  is 

 
2

4 411 11 (72 kg)(9.8 m/s )(15 m)
1.164 10  J 1.2 10  J

10 10
F

mgd
W Fd       . 

 

(b) Using Eq. 7-7, the work done by gravity is 

 
2 4 4 (72 kg)(9.8 m/s )(15 m) 1.058 10  J 1.1 10  J.g gW F d mgd             

 

(c) The total work done is the sum of the two works: 

 
4 4 3 3

net 1.164 10 J 1.058 10 J 1.06 10 J 1.1 10 JF gW W W          . 

 

Since the astronaut started from rest, the work-kinetic energy theorem tells us that this is 

her final kinetic energy. 

(d) Since K mv 1
2

2 ,  her final speed is 
32 2(1.06 10 J)

5.4 m/s
72 kg

K
v

m


   . 
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LEARN For a general upward acceleration a, the net work done is  

 

net ( ) .F g gW W W Fd F d m g a d mgd mad         

 

Since 2

net / 2W K mv    by the work-kinetic energy theorem, the speed of the astronaut 

would be 2v ad , which is independent of the mass of the astronaut. In our case, 

22(9.8 m/s /10)(15 m) 5.4 m/sv   , which agrees with that calculated in (d). 

 

18. In both cases, there is no acceleration, so the lifting force is equal to the weight of the 

object. 

 

(a) Equation 7-8 leads to (360kN)(0.10m) 36 kJ.W F d     

 

(b) In this case, we find W = (4000 N)(0.050 m) 22.0 10  J  . 

 

19. Equation 7-15 applies, but the wording of the problem suggests that it is only 

necessary to examine the contribution from the rope (which would be the “Wa” term in 

Eq. 7-15):  

Wa = (50 N)(0.50 m) = 25 J 

 

(the minus sign arises from the fact that the pull from the rope is anti-parallel to the 

direction of motion of the block).  Thus, the kinetic energy would have been 25 J greater 

if the rope had not been attached (given the same displacement). 

 

20. From the figure, one may write the kinetic energy (in units of J) as a function of x as 

 

 20 40 20sK K x x    . 

 

Since xW K F x    , the component of the force along the force along +x is 

/ 20 N.xF dK dx    The normal force on the block is N yF F , which is related to the 

gravitational force by  

 2 2( )x ymg F F   . 

 

(Note that NF  points in the opposite direction of the component of the gravitational force.) 

With an initial kinetic energy 40.0 JsK   and 0 4.00 m/sv  , the mass of the block is 

 

 
2 2

0

2 2(40.0 J)
5.00 kg.

(4.00 m/s)

sK
m

v
    

Thus, the normal force is  

 

 
2 2 2 2 2 2( ) (5.0 kg) (9.8 m/s ) (20 N) 44.7 N 45 N.y xF mg F       
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21. THINK In this problem the cord is doing work on the block so that it does not 

undergo free fall.    

 

EXPRESS We use F to denote the magnitude of the force of the cord on the block. This 

force is upward, opposite to the force of gravity (which has magnitude 
gF Mg ), to 

prevent the block from undergoing free fall. The acceleration is 

a g / 4 downward. 

Taking the downward direction to be positive, then Newton’s second law yields 

 
 
F ma Mg F M

g
net       

F
HG
I
KJ4 , 

 

so F = 3Mg/4, in the opposite direction of the displacement. On the other hand, the force 

of gravity gF mg  is in the same direction to the displacement. 

 

ANALYZE (a) Since the displacement is downward, the work done by the cord’s force 

is, using Eq. 7-7,  

3
.

4
FW Fd Mgd     

 

(b) Similarly, the work done by the force of gravity is .g gW F d Mgd   

 

(c) The total work done on the block is simply the sum of the two works: 

 

net

3 1

4 4
F gW W W Mgd Mgd Mgd      . 

 

Since the block starts from rest, we use Eq. 7-15 to conclude that this M gd 4b g  is the 

block’s kinetic energy K at the moment it has descended the distance d. 

 

(d) With 21
2

,K Mv  the speed is 

v
K

M

Mgd

M

gd
  

2 2 4

2

( / )
 

 

at the moment the block has descended the distance d. 

 

LEARN For a general downward acceleration a, the force exerted by the cord is 

( )F m g a  , so that the net work done on the block is net net .W F d mad   The speed of 

the block after falling a distance d is 2 .v ad  In the special case where the block hangs 

still, 0a  , F mg  and 0v  . In our case, / 4,a g  and 2( / 4) / 2,v g d gd   

which agrees with that calculated in (d). 
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22. We use d to denote the magnitude of the spelunker’s displacement during each stage. 

The mass of the spelunker is m = 80.0 kg. The work done by the lifting force is denoted 

Wi where i = 1, 2, 3 for the three stages. We apply the work-energy theorem, Eq. 17-15. 

 

(a) For stage 1, W mgd K mv v1 1
1
2 1

2

1 500    , . where  m/ s . This gives 

 

2 2 2 3

1 1

1 1
(80.0 kg)(9.80 m/s )(10.0 m) (80.0 kg)(5.00 m/s) 8.84 10  J.

2 2
W mgd mv       

 

(b) For stage 2, W2 – mgd = K2 = 0, which leads to 

 
2 3

2 (80.0 kg)(9.80 m/s )(10.0 m) 7.84 10  J.W mgd     

 

(c) For stage 3, W mgd K mv3 3
1
2 1

2    . We obtain 

 

2 2 2 3

3 1

1 1
(80.0 kg)(9.80 m/s )(10.0 m) (80.0 kg)(5.00 m/s) 6.84 10  J.

2 2
W mgd mv       

 

23. The fact that the applied force aF causes the box to move up a frictionless ramp at a 

constant speed implies that there is no net change in the kinetic energy: 0K  . Thus, 

the work done by aF  must be equal to the negative work done by gravity: a gW W  . 

Since the box is displaced vertically upward by 0.150 mh  , we have  

 

 2(3.00 kg)(9.80 m/s )(0.150 m) 4.41 JaW mgh     

 

24. (a) Using notation common to many vector-capable calculators, we have (from Eq. 7-

8) W = dot([20.0,0] + [0, (3.00)(9.8)], [0.500  30.0º]) =  +1.31 J , where “dot” stands 

for dot product. 

 

(b) Eq. 7-10 (along with Eq. 7-1) then leads to v = 2(1.31 J)/(3.00 kg)  =  0.935 m/s. 

 

25. (a) The net upward force is given by 

 

 ( ) ( )NF F m M g m M a      

 

where m = 0.250 kg is the mass of the cheese, M = 900 kg is the mass of the elevator cab, 

F is the force from the cable, and 3.00 NNF   is the normal force on the cheese.  On the 

cheese alone, we have  

 

 
2

23.00 N (0.250 kg)(9.80 m/s )
2.20 m/s

0.250 kg
NF mg ma a


     . 
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Thus the force from the cable is 4( )( ) 1.08 10 NNF m M a g F      , and the work 

done by the cable on the cab is 

 

 4 4

1 (1.80 10 N)(2.40 m) 2.59 10  J.W Fd      

 

(b) If 92.61 kJW  and 2 10.5 md  , the magnitude of the normal force is  

 

 
4

2

2

9.261 10  J
( ) (0.250 kg 900 kg)(9.80 m/s ) 2.45 N.

10.5 m
N

W
F m M g

d


        

 

26. We make use of Eq. 7-25 and Eq. 7-28 since the block is stationary before and after 

the displacement. The work done by the applied force can be written as 

 

 2 21
( )

2
a s f iW W k x x    . 

 

The spring constant is 3(80 N) /(2.0 cm)=4.0 10 N/m.k   With 4.0 J,aW   and 

2.0 cmix   , we have 

 

 2 2

3

2 2(4.0 J)
( 0.020 m) 0.049 m 4.9 cm.

(4.0 10  N/m)

a
f i

W
x x

k
          


 

 

27. From Eq. 7-25, we see that the work done by the spring force is given by 

 

 2 21
( )

2
s i fW k x x  . 

 

The fact that 360 N of force must be applied to pull the block to x = + 4.0 cm implies that 

the spring constant is  

 3360 N
90 N/cm 9.0 10  N/m

4.0 cm
k     . 

 

(a) When the block moves from 5.0 cmix   to 3.0 cmx   , we have  

 

 3 2 21
(9.0 10  N/m)[(0.050 m) (0.030 m) ] 7.2 J.

2
sW      

 

(b) Moving from 5.0 cmix   to 3.0 cmx   , we have 

 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.030 m) ] 7.2 J.

2
sW       
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(c) Moving from 5.0 cmix   to 5.0 cmx   , we have 

 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.050 m) ] 0 J.

2
sW       

 

(d) Moving from 5.0 cmix   to 9.0 cmx   , we have 

 

3 2 21
(9.0 10  N/m)[(0.050 m) ( 0.090 m) ] 25 J.

2
sW        

 

28. The spring constant is k = 100 N/m and the maximum elongation is xi = 5.00 m. 

Using Eq. 7-25 with xf = 0, the work is found to be 

 

2 2 31 1
(100 N/m)(5.00 m) 1.25 10  J.

2 2
iW kx     

 

29. The work done by the spring force is given by Eq. 7-25: 2 21
( )

2
s i fW k x x  . The 

spring constant k can be deduced from the figure which shows the amount of work done 

to pull the block from 0 to x = 3.0 cm. The parabola 2 / 2aW kx contains (0,0), (2.0 cm, 

0.40 J) and (3.0 cm, 0.90 J). Thus, we may infer from the data that 32.0 10  N/mk   . 

 

(a) When the block moves from 5.0 cmix   to 4.0 cmx   , we have  

 

 3 2 21
(2.0 10  N/m)[(0.050 m) (0.040 m) ] 0.90 J.

2
sW      

 

(b) Moving from 5.0 cmix   to 2.0 cmx   , we have 

 

3 2 21
(2.0 10  N/m)[(0.050 m) ( 0.020 m) ] 2.1 J.

2
sW       

 

(c) Moving from 5.0 cmix   to 5.0 cmx   , we have 

 

3 2 21
(2.0 10  N/m)[(0.050 m) ( 0.050 m) ] 0 J.

2
sW       

 

30. Hooke’s law and the work done by a spring is discussed in the chapter. We apply the 

work-kinetic energy theorem, in the form of K W Wa s  , to the points in the figure at x 

= 1.0 m and x = 2.0 m, respectively. The “applied” work Wa is that due to the constant 

force 

P . 
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2

2

1
4 J (1.0 m) (1.0 m)

2
1

0 (2.0 m) (2.0 m) .
2

P k

P k

 

 

 

 

(a) Simultaneous solution leads to P = 8.0 N. 

 

(b) Similarly, we find k = 8.0 N/m. 

 

31. THINK The applied force varies with x, so an integration is required to calculate the 

work done on the body. 

 

EXPRESS As the body moves along the x axis from xi = 3.0 m to xf = 4.0 m the work 

done by the force is 

2 2 2 2 6  3( ) 3 (4.0 3.0 ) 21 J.
f f

i i

x x

x f i
x x

W F dx x dx x x          

 

According to the work-kinetic energy theorem, this gives the change in the kinetic energy: 

W K m v vf i  
1

2

2 2d i  
 

where vi is the initial velocity (at xi) and vf is the final velocity (at xf). Given iv , we can 

readily calculate .fv  

 

ANALYZE (a) The work-kinetic theorem yields 

 

2 22 2( 21 J)
(8.0 m/s) 6.6 m/s.

2.0 kg
f i

W
v v

m


      

 

(b) The velocity of the particle is vf = 5.0 m/s when it is at x = xf. The work-kinetic energy 

theorem is used to solve for xf. The net work done on the particle is  2 23 f iW x x   , so 

the theorem leads to 

   2 2 2 21
3  .

2
f i f iW K x x m v v        

Thus, 

   2 2 2 2 2 22.0 kg
(5.0 m/s) (8.0 m/s) (3.0 m) 4.7 m.

6 6 N/m
f f i i

m
x v v x          

 

LEARN Since f ix x , 
2 23( ) 0f iW x x    , i.e., the work done by the force is negative. 

From the work-kinetic energy theorem, this implies 0K  . Hence, the speed of the 

particle will continue to decrease as it moves in the +x-direction. 
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32. The work done by the spring force is given by Eq. 7-25: 2 21
( )

2
s i fW k x x  . Since 

xF kx  , the slope in Fig. 7-37 corresponds to the spring constant k. Its value is given 

by 380 N/cm=8.0 10  N/mk   .  

 

(a) When the block moves from 8.0 cmix   to 5.0 cmx   , we have 

 

 3 2 21
(8.0 10  N/m)[(0.080 m) (0.050 m) ] 15.6 J 16 J.

2
sW       

 

(b) Moving from 8.0 cmix   to 5.0 cmx   , we have 

 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.050 m) ] 15.6 J 16 J.

2
sW        

 

(c) Moving from 8.0 cmix   to 8.0 cmx   , we have 

 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.080 m) ] 0 J.

2
sW       

 

(d) Moving from 8.0 cmix   to 10.0 cmx   , we have 

 

3 2 21
(8.0 10  N/m)[(0.080 m) ( 0.10 m) ] 14.4 J 14 J.

2
sW          

 

33. (a) This is a situation where Eq. 7-28 applies, so we have  

 

              Fx =  
1

2
 kx

2
    (3.0 N) x = 

1

2
 (50 N/m)x

2 

 

which (other than the trivial root) gives x =  (3.0/25) m = 0.12 m.  

 

(b) The work done by the applied force is Wa = Fx = (3.0 N)(0.12 m)  = 0.36 J. 

 

(c) Eq. 7-28 immediately gives Ws = –Wa = –0.36 J. 

 

(d) With Kf = K considered variable and Ki = 0, Eq. 7-27 gives K = Fx –  
1

2
 kx

2
.  We take 

the derivative of K with respect to x and set the resulting expression equal to zero, in 

order to find the position xc taht corresponds to a maximum value of K:   

 

xc =  
F

k
  =  (3.0/50) m  = 0.060 m. 

 

We note that xc is also the point where the applied and spring forces “balance.” 
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(e) At xc we find K = Kmax = 0.090 J. 

 

34. According to the graph the acceleration a varies linearly with the coordinate x. We 

may write a = x, where  is the slope of the graph. Numerically, 

 

   20

8 0
2 5 2 m / s

 m
 s

2

.
. .  

 

The force on the brick is in the positive x direction and, according to Newton’s second 

law, its magnitude is given by .F ma m x   If xf is the final coordinate, the work done 

by the force is 
2

2 2 2

0 0

(10 kg)(2.5 s )
  (8.0 m) 8.0 10  J.

2 2

f fx x

f

m
W F dx m x dx x






        

 

35. THINK We have an applied force that varies with x. An integration is required to 

calculate the work done on the particle.  

 

EXPRESS Given a one-dimensional force ( )F x , the work done is simply equal to the 

area under the curve: ( ) 
f

i

x

x
W F x dx  . 

ANALYZE (a) The plot of F(x) is shown to 

the right. Here we take x0 to be positive. The 

work is negative as the object moves from 

x x x 0 0 to  and positive as it moves from 

x x x x 0 02 to .  

 

Since the area of a triangle is (base)(altitude)/2, 

the work done from x x x 0 0 to  is  

1 0 0( )( ) / 2W x F  and the work done from 

x x x x 0 02 to  is 

2 0 0 0 0 0(2 )( ) / 2 ( )( ) / 2W x x F x F    

 

 

The total work is the sum of the two:  

1 2 0 0 0 0

1 1
0

2 2
W W W F x F x      . 

(b) The integral for the work is 
0

0

2
2

2

0 0
0

0 0 0

1  0.
2

x

x x x
W F dx F x

x x

   
       

   
  

 

LEARN If the particle starts out at x = 0 with an initial speed iv , with a negative work 

1 0 0 / 2 0W F x   , its speed at 0x x  will decrease to  
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2 2 0 012
i i i

F xW
v v v v

m m
     , 

 

but return to 
iv  again at 

02x x  with a positive work 
2 0 0 / 2 0W F x  . 

 

36. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. 

Finding that area (in terms of rectangular [length  width] and triangular 

[ 1
2

 base height] areas) we obtain 

 

0 2 2 4 4 6 6 8 (20 10 0 5) J 25 J.x x x xW W W W W                 

 

37. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the 

applied force.  Now, adding the triangular and rectangular “areas” in the graph (for 0  x 

 4) gives 42 J for the work done. 

 

(b) Counting the “areas” under the axis as negative contributions, we find (for 0  x  7) 

the work to be 30 J at x = 7.0 m. 

 

(c) And at x = 9.0 m, the work is 12 J. 

 

(d) Equation 7-10 (along with Eq. 7-1) leads to speed v = 6.5 m/s at x = 4.0 m.  Returning 

to the original graph (where a was plotted) we note that (since it started from rest) it has 

received acceleration(s) (up to this point) only in the +x direction and consequently must 

have a velocity vector pointing in the +x direction at x = 4.0 m.  

 

(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed 

is 5.5 m/s at x = 7.0 m.  Although it has experienced some deceleration during the 0  x  

7 interval, its velocity vector still points in the +x direction. 

 

(f) Finally, using the result of part (c) and Eq. 7-10 (along with Eq. 7-1) we find its speed 

v = 3.5 m/s at x = 9.0 m.  It certainly has experienced a significant amount of deceleration 

during the 0  x  9 interval; nonetheless, its velocity vector still points in the +x 

direction. 

 

38. (a) Using the work-kinetic energy theorem 

 
2.0

2 3

0

1
(2.5 ) 0 (2.5)(2.0) (2.0) 2.3 J.

3
f iK K x dx        

 

(b) For a variable end-point, we have Kf as a function of x, which could be differentiated 

to find the extremum value, but we recognize that this is equivalent to solving F = 0 for x: 

 
20  2.5  0F x    . 
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Thus, K is extremized at   2.5 1.6 mx    and we obtain 

 
2.5

2 3

0

1
(2.5 ) 0 (2.5)( 2.5)  ( 2.5) 2.6 J.

3
f iK K x dx        

 

Recalling our answer for part (a), it is clear that this extreme value is a maximum. 

 

39. As the body moves along the x axis from xi = 0 m to xf = 3.00 m the work done by the 

force is 
3

2 2 3 2 3

0

 ( 3.00 ) (3.00) (3.00)
2 2

4.50 27.0.

f f

i i

x x

x
x x

c c
W F dx cx x dx x x

c

 
       

 

 

   

 

However, (11.0 20.0) 9.00 JW K      from the work-kinetic energy theorem. 

Thus,  

 4.50 27.0 9.00c    

or 4.00 N/mc  . 

 

40. Using Eq. 7-32, we find 

W e dxx     0.21 J
0.25

1.25

 z 4 2

 

 

where the result has been obtained numerically. Many modern calculators have that 

capability, as well as most math software packages that a great many students have 

access to. 

 

41. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the 

initial and final kinetic energies, we need the speeds, so 

 

v
dx

dt
t t   30 8 0 30 2. . .  

 

in SI units. Thus, the initial speed is vi = 3.0 m/s and the speed at t = 4 s is vf = 19 m/s. 

The change in kinetic energy for the object of mass m = 3.0 kg is therefore 

 

 2 21
 528 J

2
f iK m v v     

 

which we round off to two figures and (using the work-kinetic energy theorem) conclude 

that the work done is 25.3 10 J.W    

 

42. We solve the problem using the work-kinetic energy theorem, which states that the 

change in kinetic energy is equal to the work done by the applied force, K W  . In our 
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problem, the work done is W Fd , where F is the tension in the cord and d is the length 

of the cord pulled as the cart slides from x1 to x2. From the figure, we have 

 

 
2 2 2 2 2 2 2 2

1 2 (3.00 m) (1.20 m) (1.00 m) (1.20 m)

3.23 m 1.56 m 1.67 m

d x h x h       

  
 

 

which yields (25.0 N)(1.67 m) 41.7 J.K Fd     

 

43. THINK This problem deals with the power and work done by a constant force.  

 

EXPRESS The power done by a constant force F is given by P = Fv and the work done 

by F from time 
1t  to time 2t  is  

2 2

1 1

  
t t

t t
W P dt Fv dt    

 

Since F is the magnitude of the net force, the magnitude of the acceleration is a = F/m. 

Thus, if the initial velocity is v0 0 , then the velocity of the body as a function of time is 

given by v v at F m t  0 ( ) .  Substituting the expression for v into the equation above, 

the work done during the time interval 1 2( , )t t  becomes 

  

 
2

1

2
2 2 2

2 1( / )  .
2

t

t

F
W F m t dt t t

m
    

 

ANALYZE (a) For t1 0  and 2 1.0 s,t   
2

21 (5.0 N)
[(1.0 s) 0]  0.83 J.

2 15 kg
W

 
   

 
 

 

(b) For 1 1.0s,t   and 2 2.0 s,t   
2

2 21 (5.0 N)
[(2.0 s) (1.0 s) ] 2.5 J.

2 15 kg
W

 
   

 
 

 

(c) For 1 2.0 st   and 2 3.0 s,t   
2

2 21 (5.0 N)
[(3.0 s) (2.0 s) ] 4.2 J.

2 15 kg
W

 
   

 
 

 

(d) Substituting v = (F/m)t into P = Fv we obtain P F t m 2  for the power at any time t. 

At the end of the third second, the instantaneous power is  

 

P  
(5.0 N)  (3.0 s)

15 kg
  5.0 W.

2


F
HG

I
KJ   

 

LEARN The work done here is quadratic in t. Therefore, from the definition /P dW dt  

for the instantaneous power, we see that P increases linearly with t.   

 



 

  

319 

44. (a) Since constant speed implies K  0,  we require W Wa g  , by Eq. 7-15. Since 

Wg  is the same in both cases (same weight and same path), then 29.0 10aW    J just as it 

was in the first case. 

 

(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. 

Using Eq. 7-42, and noting that average power is the power when the work is being done 

at a steady rate, we have 

2900 J
 1.1 10  W.

8.0 s

W
P

t
   


 

 

(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 

7-42, with average power replaced by power, we have 

 

900 J

4.0 s

W
P

t
 


= 225 W 22.3 10  W  . 

 

45. THINK A block is pulled at a constant speed by a force directed at some angle with 

respect to the direction of motion. The quantity we’re interested in is the power, or the 

time rate at which work is done by the applied force.    

 

EXPRESS The power associated with force 

F  is given by cos ,P F v Fv     where 


v  is the velocity of the object on which the force acts, and  is the angle between 


F  and 

v .   

 

ANALYZE With 122 NF  , 5.0 m/sv   and 37.0   , we find the power to be 

 
2cos (122 N)(5.0 m/s)cos37.0 4.9 10  W. P Fv       

 

LEARN From the expression cos ,P Fv   we see that the power is at a maximum 

when 

F  and 


v  are in the same direction ( 0  ), and is zero when they are 

perpendicular of each other. In addition, we’re told that the block moves at a constant 

speed, so 0K  , and the net work done on it must also be zero by the work-kinetic 

energy theorem. Thus, the applied force here must be compensating another force (e.g., 

friction) for the net rate to be zero.       

 

46. Recognizing that the force in the cable must equal the total weight (since there is no 

acceleration), we employ Eq. 7-47: 

P Fv mg
x

t
   cos     

F
HG
I
KJ




 

 

where we have used the fact that   0  (both the force of the cable and the elevator’s 

motion are upward). Thus, 
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3 2 5210 m
(3.0 10 kg)(9.8 m/s ) 2.7 10  W.

23 s
P

 
    

 
 

 

47. (a) Equation 7-8 yields  

 

W =  Fx x + Fy y + Fz z  

    = (2.00 N)(7.5 m – 0.50 m) + (4.00 N)(12.0 m – 0.75 m) + (6.00 N)(7.2m – 0.20 m)  

    =101 J   1.0  10
2
 J. 

 

(b) Dividing this result by 12 s (see Eq. 7-42) yields P = 8.4 W. 

 

48. (a) Since the force exerted by the spring on the mass is zero when the mass passes 

through the equilibrium position of the spring, the rate at which the spring is doing work 

on the mass at this instant is also zero. 

 

(b) The rate is given by ,P F v Fv     where the minus sign corresponds to the fact 

that 

F  and 


v  are anti-parallel to each other. The magnitude of the force is given by 

 

F = kx = (500 N/m)(0.10 m) = 50 N, 

 

while v is obtained from conservation of energy for the spring-mass system: 

 

2 2 2 21 1 1 1
10 J (0.30 kg) (500 N/m)(0.10 m)

2 2 2 2
E K U mv kx v        

 

which gives v = 7.1 m/s. Thus, 

 
2(50 N)(7.1 m/s) 3.5  10  W.P Fv     

 

49. THINK We have a loaded elevator moving upward at a constant speed. The forces 

involved are: gravitational force on the elevator, gravitational force on the counterweight, 

and the force by the motor via cable.  

 

EXPRESS The total work is the sum of the work done by gravity on the elevator, the 

work done by gravity on the counterweight, and the work done by the motor on the 

system:  

 e c mW W W W   . 

 

Since the elevator moves at constant velocity, its kinetic energy does not change and 

according to the work-kinetic energy theorem the total work done is zero, i.e., 

0.W K     

 

ANALYZE The elevator moves upward through 54 m, so the work done by gravity on it 

is 
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2 5(1200 kg)(9.80 m/s )(54 m) 6.35  10  J.e eW m gd     

 

The counterweight moves downward the same distance, so the work done by gravity on it 

is 
2 5(950 kg)(9.80 m/s )(54 m) 5.03 10  J.c cW m gd     

 

Since W = 0, the work done by the motor on the system is 

 
5 5 56.35 10  J  5.03 10  J  1.32 10  J.m e cW W W         

 

This work is done in a time interval of 3.0 min 180 s,t    so the power supplied by 

the motor to lift the elevator is 
5

21.32  10  J
7.4  10  W.

180 s

mW
P

t


   


 

 

LEARN In general, the work done by the motor is ( ) .m e cW m m gd   So when the 

counterweight mass balances the total mass, c em m , no work is required by the motor.  

 

50. (a) Using Eq. 7-48 and Eq. 3-23, we obtain 

 

(4.0N)( 2.0 m/s) (9.0 N)(4.0 m/s) 28 W.P F v       

 

(b) We again use Eq. 7-48 and Eq. 3-23, but with a one-component velocity: 

v v  j.   

 

12 W ( 2.0 N) .P F v v      

which yields v = 6 m/s. 

 

51. (a) The object’s displacement is 

 
ˆ ˆ ˆ( 8.00 m) i (6.00 m)j (2.00 m)k .f id d d       

Thus, Eq. 7-8 gives 

 

(3.00 N)( 8.00 m) (7.00 N)(6.00 m) (7.00 N)(2.00 m) 32.0 J.W F d        

 

(b) The average power is given by Eq. 7-42: 

 

avg

32.0
8.00 W.

4.00

W
P

t
    

 

(c) The distance from the coordinate origin to the initial position is 
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2 2 2(3.00 m) ( 2.00 m) (5.00 m) 6.16 m,id       

 

and the magnitude of the distance from the coordinate origin to the final position is 

 

2 2 2( 5.00 m) (4.00 m) (7.00 m) 9.49 mfd      . 

 

Their scalar (dot) product is 

 
2(3.00 m)( 5.00 m) ( 2.00 m)(4.00 m) (5.00 m)(7.00 m) 12.0 m .i fd d        

 

Thus, the angle between the two vectors is 

 

1 1 12.0
cos cos 78.2 .

(6.16)(9.49)

i f

i f

d d

d d
  

   
          

 

 

52. According to the problem statement, the power of the car is 

 

 21
constant.

2

dW d dv
P mv mv

dt dt dt

 
    

 
 

 

The condition implies /dt mvdv P , which can be integrated to give 

 

 
2

0 0 2

TT v
Tmvmvdv

dt T
P P

     

 

where Tv  is the speed of the car at .t T  On the other hand, the total distance traveled 

can be written as 

 
3

2

0 0 0
.

3

T TT v v
Tmvmvdv m

L vdt v v dv
P P P

       

 

By squaring the expression for L and substituting the expression for T, we obtain 

 
2 3

3 2 3
2 8 8

3 9 2 9

T Tmv mvP PT
L

P m P m

   
     
   

 

which implies that  

3 29
constant.

8
PT mL   

Differentiating the above equation gives 3 23 0,dPT PT dT   or .
3

T
dT dP

P
   
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53. (a) Noting that the x component of the third force is F3x = (4.00 N)cos(60º), we apply 

Eq. 7-8 to the problem:  

 

W = [5.00 N – 1.00 N + (4.00 N)cos 60º](0.20 m) = 1.20 J. 

 

(b) Equation 7-10 (along with Eq. 7-1) then yields v = 2W/m  = 1.10 m/s. 

 

54. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. We 

find the area in terms of rectangular [length  width] and triangular [ 1
2

base  height] 

areas and use the work-kinetic energy theorem appropriately. The initial point is taken to 

be x = 0, where v0 = 4.0 m/s. 

 

(a) With K mvi  1
2 0

2 16 J,  we have 

 

3 0 0 1 1 2 2 3 4.0 Jx x xK K W W W           

 

so that K3 (the kinetic energy when x = 3.0 m) is found to equal 12 J. 

 

(b) With SI units understood, we write 
3  as ( 4.0 N)( 3.0 m)

fx x x fW F x x      and apply 

the work-kinetic energy theorem: 

 

K K W

K x

x x x

x f f

f f
 

   

 3 3

12 4 30( )( . )
 

 

so that the requirement 8.0 JxfK   leads to x f  4 0.  m.  

 

(c) As long as the work is positive, the kinetic energy grows. The graph shows this 

situation to hold until x = 1.0 m. At that location, the kinetic energy is 

 

1 0 0 1 16 J 2.0 J 18 J.xK K W        

 

55. THINK A horse is doing work to pull a cart at a constant speed. We’d like to know 

the work done during a time interval and the corresponding average power.  

 

EXPRESS The horse pulls with a force 

F . As the cart moves through a displacement d , 

the work done by 

F  is cos ,W F d Fd     where  is the angle between 


F  and d .   

 

ANALYZE (a) In 10 min the cart moves a distance 

 

mi 5280 ft/mi
6.0 (10 min) 5280 ft

h 60 min/h
d v t

  
     

  
 

so that Eq. 7-7 yields 
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5cos (40 lb)(5280 ft) cos 30 1.8 10  ft lb.W Fd        

 

(b) The average power is given by Eq. 7-42. With 10 min 600 st   , we obtain 

 
5

avg

1.8 10  ft lb
305 ft lb/s,

600 s

W
P

t

 
   


 

 

which (using the conversion factor 1hp 550 ft lb/s   found on the inside back cover) 

converts to Pavg = 0.55 hp. 

 

LEARN The average power can also be calculate by using Eq. 7-48: 
avg cosP Fv  . 

Converting the speed to 
5280 ft/mi

(6.0 mi/h) 8.8 ft/s
3600 s/h

v
 

  
 

, we get  

 

avg cos (40 lb)(8.8 ft/s)cos30 305 ft lb 0.55 hpP Fv        

 

which agrees with that found in (b).  

 

56. The acceleration is constant, so we may use the equations in Table 2-1. We choose 

the direction of motion as +x and note that the displacement is the same as the distance 

traveled, in this problem. We designate the force (assumed singular) along the x direction 

acting on the m = 2.0 kg object as F. 

 

(a) With v0 = 0, Eq. 2-11 leads to a = v/t. And Eq. 2-17 gives x vt  1
2

 . Newton’s 

second law yields the force F = ma. Equation 7-8, then, gives the work: 

 

21 1

2 2

v
W F x m vt mv

t

  
     

  
 

 

as we expect from the work-kinetic energy theorem. With v = 10 m/s, this yields 
21.0 10  JW   . 

 

(b) Instantaneous power is defined in Eq. 7-48. With t = 3.0 s, we find 

 

67 W.
v

P Fv m v
t

 
   

 
 

 

(c) The velocity at 1.5st   is 5.0 m sv at   . Thus, 33 W.P Fv    
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57. (a) To hold the crate at equilibrium in the final situation, 

F  must have the same 

magnitude as the horizontal component of the rope’s tension T sin  , where   is the 

angle between the rope (in the final position) and vertical: 

 

 
F
HG
I
KJ  sin

.

.
. .1 4 00

12 0
19 5  

 

But the vertical component of the tension supports against the weight: T cos   mg . 

Thus, the tension is  

T = (230 kg)(9.80 m/s
2
)/cos 19.5° = 2391 N 

 

and  F = (2391 N) sin 19.5° = 797 N. 

 

An alternative approach based on drawing a vector triangle (of forces) in the final 

situation provides a quick solution. 

 

(b) Since there is no change in kinetic energy, the net work on it is zero. 

 

(c) The work done by gravity is W F d mghg g   
 

, where h = L(1 – cos  ) is the 

vertical component of the displacement. With L = 12.0 m, we obtain Wg = –1547 J, which 

should be rounded to three significant figures: –1.55 kJ. 

 

(d) The tension vector is everywhere perpendicular to the direction of motion, so its work 

is zero (since cos 90° = 0). 

 

(e) The implication of the previous three parts is that the work due to 

F  is –Wg (so the 

net work turns out to be zero). Thus, WF = –Wg = 1.55 kJ. 

 

(f) Since 

F does not have constant magnitude, we cannot expect Eq. 7-8 to apply. 

 

58. (a) The force of the worker on the crate is constant, so the work it does is given by 

W F d FdF   
 

cos , where 

F  is the force, 


d  is the displacement of the crate, and  is 

the angle between the force and the displacement. Here F = 210 N, d = 3.0 m, and  = 

20°. Thus,  

WF = (210 N) (3.0 m) cos 20° = 590 J. 

 

(b) The force of gravity is downward, perpendicular to the displacement of the crate. The 

angle between this force and the displacement is 90° and cos 90° = 0, so the work done 

by the force of gravity is zero. 

 

(c) The normal force of the floor on the crate is also perpendicular to the displacement, so 

the work done by this force is also zero. 

 

(d) These are the only forces acting on the crate, so the total work done on it is 590 J. 
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59. The work done by the applied force 
aF  is given by cosa aW F d F d    . From the 

figure, we see that 25 JW  when 0  and 5.0 cmd  . This yields the magnitude of 

aF : 

 225 J
5.0 10  N

0.050 m
a

W
F

d
    . 

 

(a) For 64   , we have 2cos (5.0 10 N)(0.050 m)cos64 11 J.aW F d       

 

(b) For 147   , we have 2cos (5.0 10 N)(0.050 m)cos147 21 J.aW F d        

 

60. (a) In the work-kinetic energy theorem, we include both the work due to an applied 

force Wa and work done by gravity Wg in order to find the latter quantity. 

 

     30 J (100 N)(1.8 m)cos 180a g gK W W W       

 

leading to 22.1 10  JgW   . 

  

(b) The value of Wg obtained in part (a) still applies since the weight and the path of the 

child remain the same, so 22.1 10  JgW    . 

 

61. One approach is to assume a “path” from 

ri  to 


rf  and do the line-integral accordingly. 

Another approach is to simply use Eq. 7-36, which we demonstrate: 

 
4 3

2 3
(2 ) (3) 

f f

i i

x y

x y
x y

W F dx F dy x dx dy
 

        

 

with SI units understood. Thus, we obtain W = 12 J – 18 J = – 6 J. 

 

62. (a) The compression of the spring is d = 0.12 m. The work done by the force of 

gravity (acting on the block) is, by Eq. 7-12, 

 

W mgd1 0 25 0 29  ( . . kg) 9.8 m/ s  (0.12 m)  J.2c h  

 

(b) The work done by the spring is, by Eq. 7-26, 

 

W kd2

21

2

1

2
250 18       N / m) (0.12 m)  J.2( .  

  

(c) The speed vi of the block just before it hits the spring is found from the work-kinetic 

energy theorem (Eq. 7-15): 
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K mv W Wi   0
1

2

2

1 2  

which yields 

1 2( 2)( ) ( 2)(0.29 J 1.8 J)
3.5 m/s.

0.25 kg
i

W W
v

m

   
    

 

(d) If we instead had 7m/siv  , we reverse the above steps and solve for d  . Recalling 

the theorem used in part (c), we have 

 

 2 2

1 2

1 1
0

2 2
imv W W mgd kd          

 

which (choosing the positive root) leads to 

 

 
  

d
mg m g mkv

k

i

2 2 2

 

 

which yields d´ = 0.23 m. In order to obtain this result, we have used more digits in our 

intermediate results than are shown above (so 12.048 m/s 3.471 m/siv    and iv  = 

6.942 m/s). 

 

63. THINK A crate is being pushed up a frictionless inclined plane. The forces involved 

are: gravitational force on the crate, normal force on the crate, and the force applied by 

the worker.   

 

EXPRESS The work done by a force

F  on an object as it moves through a displacement 

d is cos ,W F d Fd     where  is the angle between 

F  and d . 

 

ANALYZE (a) The applied force is parallel to the inclined plane. Thus, using Eq. 7-6, 

the work done on the crate by the worker’s applied force is   

 

 cos0 (209 N)(1.50 m) 314 J.aW Fd     

 

(b) Using Eq. 7-12, we find the work done by the gravitational force to be  

 

2

cos(90 25 ) cos115

(25.0 kg)(9.8 m/s )(1.50 m)cos115

155 J.

g gW F d mgd    

 

 

 

 

(c) The angle between the normal force and the direction of motion remains 90º at all 

times, so the work it does is zero: 

cos90 0.N NW F d    
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(d) The total work done on the crate is the sum of all three works: 

 

 314 J ( 155 J) 0 J 158 Ja g NW W W W        . 

 

LEARN By work-kinetic energy theorem, if the crate is initially at rest ( 0iK  ), then its 

kinetic energy after having moved 1.50 m up the incline would be 158 JfK W  , and 

the speed of the crate at that instant is  

 

2 / 2(158 J) / 25.0 kg 3.56 m/s.fv K m    

 

64. (a) The force 

F  of the incline is a combination of normal and friction force, which is 

serving to “cancel” the tendency of the box to fall downward (due to its 19.6 N weight). 

Thus, 

F mg    upward. In this part of the problem, the angle   between the belt and 


F  

is 80°. From Eq. 7-47, we have 

 

 cos (19.6 N)(0.50 m/s) cos 80P Fv     = 1.7 W. 

 

(b) Now the angle between the belt and 

F  is 90°, so that P = 0. 

 

(c) In this part, the angle between the belt and 

F  is 100°, so that  

 

P = (19.6 N)(0.50 m/s) cos 100° = –1.7 W. 

 

65. There is no acceleration, so the lifting force is equal to the weight of the object. We 

note that the person’s pull 

F  is equal (in magnitude) to the tension in the cord. 

 

(a) As indicated in the hint, tension contributes twice to the lifting of the canister: 2T = 

mg. Since 

F T , we find 98N.F   

 

(b) To rise 0.020 m, two segments of the cord (see Fig. 7-47) must shorten by that 

amount. Thus, the amount of string pulled down at the left end (this is the magnitude of 
d , the downward displacement of the hand) is d = 0.040 m. 

 

(c) Since (at the left end) both 

F  and 


d  are downward, then Eq. 7-7 leads to  

 

(98 N)(0.040 m) 3.9 J.W F d     

 

(d) Since the force of gravity 

Fg  (with magnitude mg) is opposite to the displacement 


dc  0 020.  m (up) of the canister, Eq. 7-7 leads to  
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 (196 N)(0.020 m) 3.9 J.g cW F d       

 

This is consistent with Eq. 7-15 since there is no change in kinetic energy. 

 

66. After converting the speed: 120 km/h 33.33 m/sv   , we find  

 

  
22 51 1

1200kg 33.33m/s 6.67 10 J.
2 2

K mv     

 

67. THINK In this problem we have packages hung from the spring. The extent of 

stretching can be determined from Hooke’s law.  

 

EXPRESS According to Hooke’s law, the spring force is given by 

 

0( )xF k x x k x      , 

 

where x  is the displacement from the equilibrium position. Thus, the first two situations 

in Fig. 7-48 can be written as  

0

0

110 N (40 mm )

240 N (60 mm )

k x

k x

   

   
 

 

The two equations allow us to solve for k, the spring constant, as well as 0x , the relaxed 

position when no mass is hung.   

 

ANALYZE (a) The two equations can be added to give 

 

240 N 110 N  (60 mm 40 mm)k    

 

which yields k = 6.5 N/mm. Substituting the result into the first equation, we find  

 

0

110 N 110 N
40 mm 40 mm 23 mm.

6.5 N/mm
x

k
      

 

(b) Using the results from part (a) to analyze that last picture, we find the weight to be   

 

o(30mm ) (6.5 N/mm)(30 mm 23 mm) 45 N.W k x      

 

LEARN An alternative method to calculate W in the third picture is to note that since the 

amount of stretching is proportional to the weight hung, we have 
W x

W x



 

. Applying 

this relation to the second and the third pictures, the weight W is 
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3
2

2

30 mm 23 mm
(240 N) 45 N

60 mm 23 mm

x
W W

x

   
     

   
, 

 

in agreement with the result shown in (b).  

 

68. Using Eq. 7-7, we have W = Fd cos   J . Then, by the work-kinetic energy 

theorem, we find the kinetic energy Kf = Ki + W = 0 + 1504 J. The answer is therefore 

1.5 kJ . 

 

69. The total weight is (100)(660 N) = 6.60  10
4
 N, and the words “raises … at constant 

speed” imply zero acceleration, so the lift-force is equal to the total weight. Thus  

 

P = Fv = (6.60  10
4
)(150 m/60.0 s) = 1.65  10

5
 W. 

 

70. With SI units understood, Eq. 7-8 leads to W = (4.0)(3.0) – c(2.0) = 12 – 2c. 

 

(a) If W = 0, then c = 6.0 N. 

 

(b) If W = 17 J, then c = –2.5 N. 

 

(c) If W =  –18 J, then c = 15 N. 

 

71. Using Eq. 7-8, we find 

 
ˆ ˆ ˆ ˆ( cos  i  sin  j) ( i j) cos sinW F d F F x y Fx Fy            

 

where x = 2.0 m, y = –4.0 m, F = 10 N, and   150 . Thus, we obtain W = –37 J. Note 

that the given mass value (2.0 kg) is not used in the computation. 

 

72. (a) Eq. 7-10 (along with Eq. 7-1 and Eq. 7-7) leads to  

 

vf = (2 
d

m
 F cos )

1/2 
= (cos )

1/2
, 

 

where we have substituted F = 2.0 N, m = 4.0 kg, and d = 1.0 m. 

 

(b) With vi = 1, those same steps lead to vf = (1 + cos )
1/2

. 

 

(c) Replacing  with 180º – , and still using vi = 1, we find  

 

vf = [1 + cos(180º –  )]
1/2

 = (1 – cos )
1/2

. 
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(d) The graphs are shown on the right.  Note 

that as  is increased in parts (a) and (b) the 

force provides less and less of a positive 

acceleration, whereas in part (c) the force 

provides less and less of a deceleration (as its  

value increases).  The highest curve (which 

slowly decreases from 1.4 to 1) is the curve for 

part (b); the other decreasing curve (starting at 

1 and ending at 0) is for part (a).  The rising 

curve is for part (c); it is equal to 1 where   = 

90º. 
 

 

73. (a) The plot of the function (with SI units understood) is shown below. 

 

 
 

Estimating the area under the curve allows for a range of answers.  Estimates from 11 J to 

14 J are typical.   

 

(b) Evaluating the work analytically (using Eq. 7-32), we have 

 

 
22

/ 2 / 2

0
0

10 20 12.6 J 13 J.x xW e dx e       

 

74. (a) Using Eq. 7-8 and SI units, we find 

 
ˆ ˆ ˆ ˆ(2i 4 j) (8i j) 16 4W F d c c         

 

which, if equal zero, implies c = 16/4 = 4 m. 

 

(b) If W > 0 then 16 > 4c, which implies c < 4 m. 

 

(c) If W < 0 then 16 < 4c, which implies c > 4 m. 

 

75. THINK Power must be supplied in order to lift the elevator with load upward at a 

constant speed.  
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EXPRESS For the elevator-load system to move upward at a constant speed (zero 

acceleration), the applied force F must exactly balance the gravitational force on the 

system, i.e., elev load( )gF F m m g   . The power required can then be calculated using 

Eq. 17-48: P Fv . 

 

ANALYZE With elev 4500 kgm  , load 1800 kgm  and 3.80 m/s,v   we find the 

power to be  

 
2

elev load( ) (4500 kg 1800 kg)(9.8 m/s )(3.80 m/s) 235 kW.P Fv m m gv       

 

LEARN The power required is proportional to the speed at which the system moves; the 

greater the speed, the greater the power that must be supplied.  

 

76. (a) The component of the force of gravity exerted on the ice block (of mass m) along 

the incline is mg sin  , where   sin1 0 91 15. .b g  gives the angle of inclination for the 

inclined plane. Since the ice block slides down with uniform velocity, the worker must 

exert a force 

F  “uphill” with a magnitude equal to mg sin . Consequently, 

 

2 20.91m
sin (45 kg)(9.8 m/s ) 2.7 10  N.

1.5m
F mg 

 
    

 
 

 

(b) Since the “downhill” displacement is opposite to 

F , the work done by the worker is 

 

W1

2 22 7 10 4 0 10     . .N  (1.5 m) J.c h  

 

(c) Since the displacement has a vertically downward component of magnitude 0.91 m (in 

the same direction as the force of gravity), we find the work done by gravity to be 

 

W2

2 245 9 8 4 0 10  ( . . kg)  m/ s  (0.91 m) J.c h  

 

(d) Since NF  is perpendicular to the direction of motion of the block, and cos90  = 0, 

work done by the normal force is W3 = 0 by Eq. 7-7. 

 

(e) The resultant force 

Fnet  is zero since there is no acceleration. Thus, its work is zero, as 

can be checked by adding the above results W W W1 2 3 0   . 

 

77. (a) To estimate the area under the curve between x = 1 m and x = 3 m (which should 

yield the value for the work done), one can try “counting squares” (or half-squares or 

thirds of squares) between the curve and the axis.  Estimates between 5 J and 8 J are 

typical for this (crude) procedure. 
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(b) Equation 7-32 gives 

 


3

 1
 
a

x
2  dx = 

a

3
  –  

a

1
 =  6 J 

 

where a = –9 N·m
2
 is given in the problem statement.  

 

78. (a) Using Eq. 7-32, the work becomes W = 
9

2
 x

2
  –  x

3
   (SI units understood).  The plot 

is shown below: 

 
 

(b) We see from the graph that its peak value occurs at x = 3.00 m.  This can be verified 

by taking the derivative of W and setting equal to zero, or simply by noting that this is 

where the force vanishes. 

 

(c) The maximum value is W = 
9

2
 (3.00)

2
 – (3.00)

3
  = 13.50 J. 

 

(d) We see from the graph (or from our analytic expression) that W = 0 at x = 4.50 m. 

 

(e) The case is at rest when 0v  . Since 2 / 2W K mv   , the condition implies 0W  .  

This happens at x = 4.50 m. 

 

79. THINK A box sliding in the +x-direction is slowed down by a steady wind in the –x-

direction. The problem involves graphical analysis. 

 

EXPRESS Fig. 7-51 represents ( ),x t  the position of the lunch box as a function of time. 

It is convenient to fit the curve to a concave-downward parabola:  

 

21 1
( ) (10 ) .

10 10
x t t t t t     

 

By taking one and two derivatives, we find the velocity and acceleration to be 

 

( ) 1
5

dx t
v t

dt
     (in m/s) ,  

2

2

1
0.2

5

d x
a

dt
      (in m/s

2
). 
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The equations imply that the initial speed of the box is (0) 1.0 m/siv v  , and the 

constant force by the wind is  

 
2(2.0 kg)( 0.2 m/s ) 0.40 N.F ma      

 

The corresponding work is given by (SI units understood) 

 

( ) ( ) 0.04 (10 ).W t F x t t t      

 

The initial kinetic energy of the lunch box is  

 

2 21 1
(2.0 kg)(1.0 m/s) 1.0 J.

2 2
i iK mv    

 

With f iK K K W    , the kinetic energy at a later time is given by (in SI units)  

 

( ) 1 0.04 (10 )iK t K W t t      

 

ANALYZE (a) When t = 1.0 s, the above expression gives  

 

(1s) 1 0.04(1)(10 1) 1 0.36 0.64 0.6 JK         

 

where the second significant figure is not to be taken too seriously. 

 

(b) At t = 5.0 s, the above method gives (5.0 s) 1 0.04(5)(10 5) 1 1 0.K        

 

(c) The work done by the force from the wind from t = 1.0 s to t = 5.0 s is 

 

(5.0) (1.0 s) 0 0.6 0.6 J.W K K       

 

LEARN The result in (c) can also be obtained by evaluating ( ) 0.04 (10 )W t t t    

directly at t = 5.0 s and t = 1.0 s, and subtracting: 

 

 (5) (1) 0.04(5)(10 5) 0.04(1)(10 1) 1 ( 0.36) 0.64 0.6 J.W W                

 

Note that at t = 5.0 s, K = 0, the box comes to a stop and then reverses its direction 

subsequently (with x decreasing).  
 

80. The problem indicates that SI units are understood, so the result (of Eq. 7-23) is in 

joules.  Done numerically, using features available on many modern calculators, the 

result is roughly 0.47 J.  For the interested student it might be worthwhile to quote the 

“exact” answer (in terms of the “error function”): 
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         
1.2

 .15
 e-2x²

 dx =  ¼ 2 [erf(6 2 /5) – erf(3 2 /20)] . 

  

81. (a) The work done by the spring force is 2 21
2

( ).s i fW k x x   By energy conservation, 

when the block is at xf = 0, the energy stored in the spring is completed converted to the 

kinetic energy of the block: 21
2

.sW K mv   Solving for v, we obtain 

 

 2 2 21 1 500 N/m
( ) 0.300 m 3.35 m/s

2 2 4.00 kg
i f i

k
k x x mv v x

m
      . 

 

(b) The work done by the spring is 

 

2 21 1
(500 N/m)(0.300 m) 22.5 J

2 2
s iW kx   . 

 

(c) The instantaneous power due to the spring can be written as 

 

  2 2( ) i

k
P Fv kx x x

m
    

 

At the release point xi, the power is zero.  

 

(d) Similarly, at x = 0, we also have P = 0. 

 

(e) The position where the power is maximum can be found by differentiating P with 

respect to x, setting dP/dx = 0:   
2 2 2

2 2

( 2 )
0

( )

i

i

k x xdP

dx k x x

m


 


 

which gives 
(0.300 m)

0.212 m
2 2

ix
x    . 

 

82. (a) Applying Newton’s second law to the x (directed uphill) and y (normal to the 

inclined plane) axes, we obtain 

sin

cos 0.N

F mg ma

F mg





 

 
 

 

The second equation allows us to solve for the angle the inclined plane makes with the 

horizontal:  

 

1 1

2

13.41 N
cos cos 70.0

(4.00 kg)(9.8 m/s )

NF

mg
     
     

   
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From the equation for the x-axis, we find the acceleration of the block to be 

 

2 250 N
sin (9.8 m/s )sin 70.0 3.29 m/s

4.00 kg

F
a g

m
       

 

Using the kinematic equation 2 2

0 2 ,v v ad   the speed of the block when d = 3.00 m is  

 

 22 2(3.29 m/s )(3.00 m) 4.44 m/sv ad    

 

83. (a) The work done by the spring force (with spring constant 18 N/cm 1800 N/mk   ) 

is  

2 2 2 3 2 21 1 1
( ) (1800 N/m)(7.60 10 m) 5.20 10 J

2 2 2
s i f fW k x x kx             

 

(b) For 2 ,f fx x   the work done by the spring force is 2 21 1
2 2

(2 ) ,s f fW kx k x      so the 

additional work done is 

 

2 2 2 21 1 3
(2 ) 3 3( 5.20 10 J) 0.156 J

2 2 2
s s f f f sW W W k x kx kx W  
               

 
 

 

84. (a) The displacement of the object is  

 

 
2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 4.10i 3.30j 5.40 k) (2.70i 2.90j 5.50 k) ( 6.80i 6.20j 0.10 k)r r r               

 

The work done by ˆ ˆ ˆ(2.00i 9.00j 5.30 k)NF     is (in SI units) 

 
ˆ ˆ ˆ ˆ ˆ ˆ(2.00i 9.00j 5.30 k) ( 6.80i 6.20j 0.10 k) 41.7 JW F r           

 

(b) The average power due to the force during the time interval is 

 

 
41.7 J

19.8 W
2.10 s

W
P

t
  


 

 

(c) The magnitudes of the position vectors are (in SI units) 

 
2 2 2

1 1

2 2 2

2 2

| | (2.70) ( 2.90) (5.50) 6.78

| | ( 4.10) (3.30) (5.40) 7.54

r r

r r

     

     
 

 

and their dot product is  
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1 2
ˆ ˆ ˆ ˆ ˆ ˆ(2.70i 2.90j 5.50 k) ( 4.10i 3.30j 5.40 k)

(2.70)( 4.10) ( 2.90)(3.30) (5.50)(5.40) 9.06

r r       

     
 

 

Using 
1 2 1 2 cos ,r r rr   , the angle between 

1r  and 
2r  is  

 

 1 11 2

1 2

9.06
cos cos 79.8

(6.78)(7.54)

r r

r r
     
      

  
 

 

85. The work done by the force is (in SI units) 

 
ˆ ˆ ˆ ˆ ˆ ˆ( 5.00i 5.00j 4.00 k) (2.00i 2.00j 7.00 k) 28 JW F d           

 

By energy conservation, 2 21
2

( ).f iW K m v v     Thus, the final speed of the particle is  

 

2 22 2(28 J)
(4.00 m/s) 6.63 m/s

2.00 kg
f i

W
v v

m
     . 


