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Chapter 5 
 

 

1. We are only concerned with horizontal forces in this problem (gravity plays no direct 

role). We take East as the +x direction and North as +y. This calculation is efficiently 

implemented on a vector-capable calculator, using magnitude-angle notation (with SI 

units understood). 

 




a
F

m
 

    
  

9 0 0 8 0 118

30
2 9 53

. .

.
.

b g b g b g  
 

Therefore, the acceleration has a magnitude of 2.9 m/s
2
. 

 

2. We apply Newton’s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force 

applied on the chopping block is 
  
F F Fnet  1 2 , where the vector addition is done using 

unit-vector notation. The acceleration of the block is given by 
  
a F F m 1 2d i / .  

 

(a) In the first case 

 

       1 2
ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j 0F F           

   
 

so 

a  0 . 

 

(b) In the second case, the acceleration  

a  equals 

 

         
21 2

ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j
ˆ(4.0m/s ) j.

2.0kg

F F

m

   
   

 

(c) In this final situation, 

a  is 

 

         
21 2

ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j
ˆ(3.0m/s )i.

2.0 kg

F F

m

   
   

 

3. We apply Newton’s second law (specifically, Eq. 5-2). 

 

(a) We find the x component of the force is 

 

   2cos 20.0 1.00kg 2.00m/s cos 20.0 1.88N.x xF ma ma     

 

(b) The y component of the force is 
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   2sin 20.0 1.0kg 2.00m/s sin 20.0 0.684N.y yF ma ma     

 

(c) In unit-vector notation, the force vector is 

 
ˆ ˆ ˆ ˆi j (1.88 N)i (0.684 N)j .x yF F F     

 

4. Since 

v  = constant, we have 


a = 0, which implies 

    
F F F manet    1 2 0 .  

 

Thus, the other force must be 

 

2 1
ˆ ˆ( 2 N) i (6 N) j .F F      

 

5. The net force applied on the chopping block is 
   
F F F Fnet   1 2 3 , where the vector 

addition is done using unit-vector notation. The acceleration of the block is given by 
   
a F F F m  1 2 3d i / . 

 

(a) The forces exerted by the three astronauts can be expressed in unit-vector notation as 

follows: 

 

 
 

    

1

2

3

ˆ ˆ ˆˆ(32 N) cos 30 i sin 30 (27.7 N) i (16 N ) jj

ˆ ˆˆ(55 N) cos 0 i sin 0 (55 N) ij

ˆ ˆ ˆˆ(41 N) cos 60 i sin 60 (20.5 N) i (35.5 N) j.j

F

F

F

     

    

       

 

 

The resultant acceleration of the asteroid of mass m = 120 kg is therefore 

 

     
2 2

ˆ ˆ ˆ ˆ ˆ27.7 i 16 j N 55i N 20.5i 35.5j N
ˆ ˆ(0.86 m/s )i (0.16 m/s )j .

120 kg
a

   
    

 

(b) The magnitude of the acceleration vector is 

 

 
2

2 2 2 2 2 2(0.86 m/s ) 0.16 m/s 0.88 m/s .x ya a a       

 

(c) The vector 

a  makes an angle  with the +x axis, where 

 
2

1 1

2

0.16 m/s
tan tan 11 .

0.86 m/s

y

x

a

a
     
       

  
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6. Since the tire remains stationary, by Newton’s second law, the net force must be zero: 

 

net 0.A B CF F F F ma      

 

From the free-body diagram shown on the right, we have  

 

 
net,

net,

0 cos cos

0 sin sin

x C A

y A C B

F F F

F F F F

 

 

  

   




 

 

To solve for 
BF , we first compute .  With 220 NAF  , 

170 NCF  , and 47 ,   we get  

 

 
cos (220 N)cos 47.0

cos 0.883 28.0
170 N

A

C

F

F


 


       

 

Substituting the value into the second force equation, we find  

 

sin sin (220 N)sin 47.0 (170 N)sin 28.0 241 N.B A CF F F       

 

7. THINK A box is under acceleration by two applied forces. We use Newton’s second 

law to solve for the unknown second force.  

 

EXPRESS We denote the two forces as 
 
F F1 2and . According to Newton’s second law, 

1 2 ,F F ma  so the second force is 2 1.F ma F   Note that since the acceleration is in 

the third quadrant, we expect 2F  to be in the third quadrant as well. 

 

ANALYZE (a) In unit vector notation 

F1 20 0 . N ib g  and 

 

       2 2 2 2ˆ ˆ ˆˆ12.0 sin 30.0 m/s i 12.0 cos 30.0 m/s 6.00 m/s i 10.4 m/s j.ja        

 

Therefore, we find the second force to be 

       

   

2 1

2 2ˆ ˆ ˆ2.00 kg 6.00 m/s i 2.00 kg 10.4 m/s j 20.0 N i

ˆ ˆ32.0 N i 20.8 N j.

F ma F 

    

  

 

 

(b) The magnitude of 

F2  is 2 2 2 2

2 2 2| | ( 32.0 N) ( 20.8 N) 38.2 N.x yF F F        

 

(c) The angle that 

F2  makes with the positive x-axis is found from  
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2

2

20.8 N
tan 0.656

32.0 N

y

x

F

F


  
   

 
. 

 

Consequently, the angle is either 33.0° or 33.0° + 180° = 213°. Since both the x and y 

components are negative, the correct result is  = 213° from the +x-axis. An alternative 

answer is 213 360 147 .      

 

LEARN The result is shown in the figure on the right. 

The calculation confirms our expectation that 

F2  lies in 

the third quadrant (same as a ). The net force is  

 

 
     

   

net 1 2
ˆ ˆ ˆ20.0 N i 32.0 N i 20.8 N j

ˆ ˆ12.0 N i 20.8 N j

F F F       
 

  
 

 

which points in the same direction as a .  

 

8. We note that m a    


  = (–16 N) i
^
  + (12 N) j

^
 .  With the other forces as specified in the 

problem, then Newton’s second law gives the third force as  

 

F3  
  

 = m a    


 – F1  
  

 – F2  
  

 = (–34 N) i
^
  (12 N) j

^
. 

 

9. To solve the problem, we note that acceleration is the second time derivative of the 

position function; it is a vector and can be determined from its components. The net force 

is related to the acceleration via Newton’s second law. Thus, differentiating 
3( ) 15.0 2.00 4.00x t t t     twice with respect to t, we get  

  
2

2

2
2.00 12.0 , 24.0

dx d x
t t

dt dt
     

 

Similarly, differentiating 2( ) 25.0 7.00 9.00y t t t    twice with respect to t yields 

 
2

2
7.00 18.0 , 18.0

dy d y
t

dt dt
     

(a) The acceleration is  

 
2 2

2 2
ˆ ˆ ˆ ˆ ˆ ˆi j i j ( 24.0 )i ( 18.0) j.x y

d x d y
a a a t

dt dt
         

 

At 0.700 st  , we have ˆ ˆ( 16.8)i ( 18.0) ja      with a magnitude of  

 
2 2 2| | ( 16.8) ( 18.0) 24.6 m/s .a a       
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Thus, the magnitude of the force is 2(0.34 kg)(24.6 m/s ) 8.37 N.F ma    

 

(b) The angle F  or /a F m  makes with x  is 

 

 
2

1 1

2

18.0 m/s
tan tan 47.0 or 133 .

16.8 m/s

y

x

a

a
     
        

  
 

 

We choose the latter ( 133  ) since F is in the third quadrant. 

 

(c) The direction of travel is the direction of a tangent to the path, which is the direction 

of the velocity vector: 

 

2ˆ ˆ ˆ ˆ ˆ ˆ( ) i j i j (2.00 12.0 )i (7.00 18.0 ) j.x y

dx dy
v t v v t t

dt dt
         

 

At 0.700 st  , we have ˆ ˆ( 0.700 s) ( 3.88 m/s)i ( 5.60 m/s)j.v t       Therefore, the angle 

v  makes with x  is 

1 1 5.60 m/s
tan tan 55.3 or 125 .

3.88 m/s

y

v

x

v

v
     

        
  

 

 

We choose the latter ( 125  ) since v is in the third quadrant. 

 

10. To solve the problem, we note that acceleration is the second time derivative of the 

position function, and the net force is related to the acceleration via Newton’s second 

law. Thus, differentiating  

 
2 3( ) 13.00 2.00 4.00 3.00x t t t t      

 

twice with respect to t, we get  
2

2

2
2.00 8.00 9.00 , 8.00 18.0

dx d x
t t t

dt dt
      

  

The net force acting on the particle at  3.40 st   is  

 

  
2

2
ˆ ˆ ˆi (0.150) 8.00 18.0(3.40) i ( 7.98 N)i

d x
F m

dt
      

 

11. The velocity is the derivative (with respect to time) of given function x, and the 

acceleration is the derivative of the velocity.  Thus, a = 2c – 3(2.0)(2.0)t, which we use in 

Newton’s second law:  F = (2.0 kg)a = 4.0c – 24t (with SI units understood).  At t = 3.0 s, 

we are told that F =  –36 N.  Thus, –36 = 4.0c – 24(3.0) can be used to solve for c.  The 

result is c = +9.0 m/s
2
. 
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12. From the slope of the graph we find ax = 3.0 m/s
2
.  Applying Newton’s second law to 

the x axis (and taking  to be the angle between F1 and F2), we have 

 

F1 + F2 cos  =  m ax           = 56. 

 

13. (a) From the fact that T3 = 9.8 N, we conclude the mass of disk D is 1.0 kg.  Both this 

and that of disk C cause the tension T2 = 49 N, which allows us to conclude that disk C 

has a mass of 4.0 kg.  The weights of these two disks plus that of disk B determine the 

tension T1 = 58.8 N, which leads to the conclusion that mB = 1.0 kg.  The weights of all 

the disks must add to the 98 N force described in the problem; therefore, disk A has mass 

4.0 kg. 

 

(b) mB = 1.0 kg, as found in part (a). 

 

(c) mC = 4.0 kg, as found in part (a). 

 

(d) mD = 1.0 kg, as found in part (a). 

 

14. Three vertical forces are acting on the block: the earth pulls down on the block with 

gravitational force 3.0 N; a spring pulls up on the block with elastic force 1.0 N; and, the 

surface pushes up on the block with normal force FN. There is no acceleration, so 

 

   0 1.0 N 3.0 Ny NF F      

yields FN = 2.0 N.  

 

(a) By Newton’s third law, the force exerted by the block on the surface has that same 

magnitude but opposite direction: 2.0 N. 

 

(b) The direction is down. 

 

15. THINK We have a piece of salami hung to a spring scale in various ways. The 

problem is to explore the concept of weight. 

 

EXPRESS We first note that the reading on the spring scale is proportional to the weight 

of the salami. In all three cases (a) – (c) depicted in Fig. 5-34, the scale is not 

accelerating, which means that the two cords exert forces of equal magnitude on it. The 

scale reads the magnitude of either of these forces. In each case the tension force of the 

cord attached to the salami must be the same in magnitude as the weight of the salami 

because the salami is not accelerating. Thus the scale reading is mg, where m is the mass 

of the salami.  

 

ANALYZE In all three cases (a) – (c), the reading on the scale is   

 

w = mg =  (11.0 kg) (9.8 m/s
2
) = 108 N. 
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LEARN The weight of an object is measured when the object is not accelerating 

vertically relative to the ground. If it is, then the weight measured is called the apparent 

weight.  

 

16. (a) There are six legs, and the vertical component of the tension force in each leg is 

sinT   where 40   . For vertical equilibrium (zero acceleration in the y direction) then 

Newton’s second law leads to 

6
6

T mg T
mg

sin
sin




    

 

which (expressed as a multiple of the bug’s weight mg) gives roughly / 0.26T mg  0. 

 

(b) The angle  is measured from horizontal, so as the insect “straightens out the legs”   

will increase (getting closer to 90 ), which causes sin to increase (getting closer to 1) 

and consequently (since sin is in the denominator) causes T to decrease. 

 

17. THINK A block attached to a cord is resting on an incline plane. We apply Newton’s 

second law to solve for the tension in the cord and the normal force on the block. 

 

EXPRESS The free-body diagram of the problem 

is shown to the right. Since the acceleration of the 

block is zero, the components of Newton’s second 

law equation yield 

 

T – mg sin   = 0 

FN – mg cos   = 0, 

 

where T is the tension in the cord, and FN is the 

normal force on the block.  

 
 

  

ANALYZE (a) Solving the first equation for the tension in the string, we find 

 

T mg   sin . . sin 85 9 8 30 422kg m / s N .b gc h  

 

(b) We solve the second equation above for the normal force FN: 

 

  2cos 8.5 kg 9.8 m/s cos 30 72 N.NF mg      

 

(c) When the cord is cut, it no longer exerts a force on the block and the block 

accelerates. The x component of the second law becomes –mg sin = ma, so the 

acceleration becomes 

 
2 2sin (9.8 m/s )sin30 4.9 m/s .a g       
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The negative sign indicates the acceleration is down the plane. The magnitude of the 

acceleration is 4.9 m/s
2
. 

 

LEARN The normal force 
NF  on the block must be equal to cosmg   so that the block 

is in contact with the surface of the incline at all time.  When the cord is cut, the block 

has an acceleration sina g   , which in the limit 90    becomes g , as in the case 

of a free fall.  

 

18. The free-body diagram of the cars is shown on the right. The force exerted by John 

Massis is  

 
22.5 2.5(80 kg)(9.8 m/s ) 1960 NF mg   . 

 

Since the motion is along the horizontal x-axis, using Newton’s 

second law, we have cos ,xFx F Ma   where M  is the total 

mass of the railroad cars. Thus, the acceleration of the cars is 

 

 2

5 2

cos (1960 N)cos30
0.024 m/s .

(7.0 10 N / 9.8 m/s )
x

F
a

M

 
  


 

 

Using Eq. 2-16, the speed of the car at the end of the pull is  

 

 22 2(0.024 m/s )(1.0 m) 0.22 m/s.x xv a x     

 

19. THINK In this problem we’re interested in the force applied to a rocket sled to 

accelerate it from rest to a given speed in a given time interval.   

 

EXPRESS In terms of magnitudes, Newton’s second law is F = ma, where F = 

Fnet , 

| |a a , and m is the (always positive) mass. The magnitude of the acceleration can be 

found using constant acceleration kinematics (Table 2-1). Solving v = v0 + at for the case 

where it starts from rest, we have a = v/t (which we interpret in terms of magnitudes, 

making specification of coordinate directions unnecessary). Thus, the required force is  

/F ma mv t  . 

 

ANALYZE Expressing the velocity in SI units as  

 

v = (1600 km/h) (1000 m/km)/(3600 s/h) = 444 m/s, 

 

we find the force to be  

  5444m s
500kg 1.2 10 N.

1.8s

v
F m

t
     

 



 

  

203 

LEARN From the expression / ,F mv t  we see that the shorter the time to attain a given 

speed, the greater the force required.  

 

20. The stopping force 

F  and the path of the passenger are horizontal. Our +x axis is in 

the direction of the passenger’s motion, so that the passenger’s acceleration 

(‘‘deceleration” ) is negative-valued and the stopping force is in the –x direction: 

îF F  . Using Eq. 2-16 with  

 

v0 = (53 km/h)(1000 m/km)/(3600 s/h) = 14.7 m/s 

 

and v = 0, the acceleration is found to be  

 

 

2 2
2 2 20

0

(14.7 m/s)
2 167 m/s

2 2 0.65 m

v
v v a x a

x
         


. 

 

Assuming there are no significant horizontal forces other than the stopping force, Eq. 5-1 

leads to 
 
F ma F    41 167kg m s2b g c h  

 

which results in F = 6.8  10
3
 N. 

 

21. (a) The slope of each graph gives the corresponding component of acceleration.  

Thus, we find ax = 3.00 m/s
2
 and ay = –5.00 m/s

2
.  The magnitude of the acceleration 

vector is therefore  
2 2 2 2 2(3.00 m/s ) ( 5.00 m/s ) 5.83 m/sa     , 

 

and the force is obtained from this by multiplying with the mass (m = 2.00 kg). The result 

is F = ma =11.7 N. 

 

(b) The direction of the force is the same as that of the acceleration:  

 

 = tan
–1

 [(–5.00 m/s
2
)/(3.00 m/s

2
)] = –59.0. 

 

22. (a) The coin undergoes free fall. Therefore, with respect to ground, its acceleration is  

 

 2

coin
ˆ( 9.8 m/s ) j.a g    

 

(b) Since the customer is being pulled down with an acceleration of 
2

customer
ˆ1.24 ( 12.15 m/s )j,a g     the acceleration of the coin with respect to the 

customer is  
2 2 2

rel coin customer
ˆ ˆ ˆ( 9.8 m/s ) j ( 12.15 m/s )j ( 2.35 m/s )j.a a a         
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(c) The time it takes for the coin to reach the ceiling is  

 

 
2

rel

2 2(2.20 m)
1.37 s.

2.35 m/s

h
t

a
    

 

(d) Since gravity is the only force acting on the coin, the actual force on the coin is  

 
3 2 3

coin coin
ˆ ˆ(0.567 10 kg)( 9.8 m/s ) j ( 5.56 10 N)j.F ma mg           

 

(e) In the customer’s frame, the coin travels upward at a constant acceleration. Therefore, 

the apparent force on the coin is  

 
3 2 3

app rel
ˆ ˆ(0.567 10 kg)( 2.35 m/s ) j ( 1.33 10 N)j.F ma          

 

23. We note that the rope is 22.0° from vertical, and therefore 68.0° from horizontal. 

 

(a) With T = 760 N, then its components are 

 
ˆ ˆ ˆ ˆcos 68.0 i+ sin 68.0 j=(285N) i+(705N) jT T T   . 

 

(b) No longer in contact with the cliff, the only other force on Tarzan is due to earth’s 

gravity (his weight). Thus, 

 

net
ˆ ˆ ˆ ˆ ˆ(285 N) i+(705 N) j (820 N) j (285N) i (115 N) j.F T W       

 

 (c) In a manner that is efficiently implemented on a vector-capable calculator, we 

convert from rectangular (x, y) components to magnitude-angle notation: 

 

   net 285, 115 307 22.0F       

 

so that the net force has a magnitude of 307 N. 

 

(d) The angle (see part (c)) has been found to be 22.0°, or 22.0° below horizontal (away 

from the cliff). 

 

(e) Since 
 
a F m net  where m = W/g = 83.7 kg, we obtain 


a  367. m s2 . 

 

(f) Eq. 5-1 requires that neta F  so that the angle is also 22.0°, or 22.0° below horizontal 

(away from the cliff). 

 

24. We take rightward as the +x direction. Thus, 1
ˆ(20 N)iF  . In each case, we use 

Newton’s second law 
  
F F ma1 2   where m = 2.0 kg. 
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(a) If  2 ˆ( 10 m/s ) ia   , then the equation above gives 

F2 0 .  

 

(b) If , 2 ˆ( 20m/s ) i,a     then that equation gives  
2

ˆ(20N)i.F   

 

(c) If  

a  0,   then the equation gives 

2
ˆ( 20N) i.F    

 

(d) If 2 ˆ( 10 m/s ) i,a    the equation gives 
2

ˆ( 40N) i.F    

 

(e) If  2 ˆ( 20 m/s ) i,a     the equation gives  
2

ˆ( 60N) i.F    

 

25. (a) The acceleration is 

a
F

m
  

20
0 022

 N

900kg
m s2. . 

 

(b) The distance traveled in 1 day (= 86400 s) is 

 

s at   
1

2

1

2
0 0222 86400 8 3 102 2 7. .m s s m .2c h b g  

 

(c) The speed it will be traveling is given by 

 

  2 30.0222 m s 86400 s 1.9 10 m s .v at     

 

26. Some assumptions (not so much for realism but rather in the interest of using the 

given information efficiently) are needed in this calculation: we assume the fishing line 

and the path of the salmon are horizontal. Thus, the weight of the fish contributes only 

(via Eq. 5-12) to information about its mass (m = W/g = 8.7 kg). Our +x axis is in the 

direction of the salmon’s velocity (away from the fisherman), so that its acceleration 

(‘‘deceleration”) is negative-valued and the force of tension is in the –x direction: 
T T  . We use Eq. 2-16 and SI units (noting that v = 0). 

 

 

2 2
2 2 20

0

(2.8 m/s)
2 36 m/s

2 2 0.11 m

v
v v a x a

x
         


. 

 

Assuming there are no significant horizontal forces other than the tension, Eq. 5-1 leads 

to 
 
T ma T    8 7 36. kg m s2b gc h  

 

which results in T = 3.1  10
2
 N. 
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27. THINK An electron moving horizontally is under the influence of a vertical force. Its 

path will be deflected toward the direction of the applied force.  

 

EXPRESS The setup is shown in the figure below. The acceleration of the electron is 

vertical and for all practical purposes the only force acting on it is the electric force. The 

force of gravity is negligible. We take the +x axis to be in the direction of the initial 

velocity v0 and the +y axis to be in the direction of the electrical force, and place the 

origin at the initial position of the electron. 

 

 
Since the force and acceleration are constant, we use the equations from Table 2-1: 

0x v t  and 

2 21 1
.

2 2

F
y at t

m

 
   

 
 

 

ANALYZE The time taken by the electron to travel a distance x (= 30 mm) horizontally 

is t = x/v0 and its deflection in the direction of the force is 

 
2 2

16 3
3

31 7

0

1 1 4.5 10 N 30 10  m
1.5 10 m.

2 2 9.11 10 kg 1.2 10 m/s

F x
y

m v

 




     
       

    
 

 

LEARN Since the applied force is constant, the acceleration in the y-direction is also 

constant and the path is parabolic with 2.y x  

 

28. The stopping force 

F  and the path of the car are horizontal. Thus, the weight of the 

car contributes only (via Eq. 5-12) to information about its mass (m = W/g = 1327 kg). 

Our +x axis is in the direction of the car’s velocity, so that its acceleration 

(‘‘deceleration”) is negative-valued and the stopping force is in the –x direction: 

îF F  . 

 

(a) We use Eq. 2-16 and SI units (noting that v = 0 and v0 = 40(1000/3600) = 11.1 m/s). 

 

 

2 2
2 2 0

0

(11.1m/s)
2

2 2 15 m

v
v v a x a

x
      


 

 

which yields a = – 4.12 m/s
2
. Assuming there are no significant horizontal forces other 

than the stopping force, Eq. 5-1 leads to 
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 
F ma F    1327 412kg m s2b g c h.  

 

which results in F = 5.5  10
3
 N. 

 

(b) Equation 2-11 readily yields t = –v0/a = 2.7 s. 

 

(c) Keeping F the same means keeping a the same, in which case (since v = 0) Eq. 2-16 

expresses a direct proportionality between x  and v0

2 . Therefore, doubling v0 means 

quadrupling x . That is, the new over the old stopping distances is a factor of 4.0. 

 

(d) Equation 2-11 illustrates a direct proportionality between t and v0 so that doubling one 

means doubling the other. That is, the new time of stopping is a factor of 2.0 greater than 

the one found in part (b). 

 

29. We choose up as the +y direction, so 2 ˆ( 3.00 m/s ) ja    (which, without the unit-

vector, we denote as a since this is a 1-dimensional problem in which Table 2-1 applies). 

From Eq. 5-12, we obtain the firefighter’s mass: m = W/g = 72.7 kg. 

 

(a) We denote the force exerted by the pole on the firefighter f p fp  ̂jF F  and apply Eq.  

5-1. Since netF ma , we have 

 

 2

fp fp 712 N (72.7 kg)( 3.00 m/s )gF F ma F       

 

which yields Ffp = 494 N.  

 

(b) The fact that the result is positive means fpF  points up. 

 

(c) Newton’s third law indicates f p pfF F  , which leads to the conclusion that 

pf| | 494 NF  . 

 

(d) The direction of pfF is down. 

 

30. The stopping force 

F  and the path of the toothpick are horizontal. Our +x axis is in 

the direction of the toothpick’s motion, so that the toothpick’s acceleration 

(‘‘deceleration”) is negative-valued and the stopping force is in the –x direction: 

îF F  . Using Eq. 2-16 with v0 = 220 m/s and v = 0, the acceleration is found to be  

 

 

2 2
2 2 6 20

0

(220 m/s)
2 1.61 10  m/s .

2 2 0.015 m

v
v v a x a

x
          


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Thus, the magnitude of the force exerted by the branch on the toothpick is 

 

 4 6 2 2| | (1.3 10 kg)(1.61 10  m/s ) 2.1 10 N.F m a        

 

31. THINK In this problem we analyze the motion of a block sliding up an inclined 

plane and back down.  

 

EXPRESS The free-body diagram is shown below. 
NF  is the normal force of the plane 

on the block and mg


 is the force of gravity on the block. We take the +x direction to be 

up the incline, and the +y direction to be in the direction of the normal force exerted by 

the incline on the block. 

 
 

The x component of Newton’s second law is then mg sin  = ma; thus, the acceleration 

is a =  g sin . Placing the origin at the bottom of the plane, the kinematic equations 

(Table 2-1) for motion along the x axis which we will use are v v ax2

0

2 2   and 

v v at 0 . The block momentarily stops at its highest point, where v = 0; according to 

the second equation, this occurs at time 0 .t v a    

 

ANALYZE (a) The position where the block stops is 

 

 

2 2 2
2 0 0 0

0 0 2

1 1 1 1 (3.50 m/s)
1.18 m

2 2 2 2 9.8 m/s sin 32.0

v v v
x v t at v a

a a a

     
                  

. 

 

(b) The time it takes for the block to get there is 

 

0 0

2

3.50m/s
0.674 s.

sin (9.8m/s )sin 32.0

v v
t

a g 
   

  
 

 

(c) That the return speed is identical to the initial speed is to be expected since there are 

no dissipative forces in this problem. In order to prove this, one approach is to set x = 0 

and solve x v t at 0
1
2

2  for the total time (up and back down) t. The result is 
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 0 0

2

2 3.50 m/s2 2
1.35 s.

sin (9.8 m/s )sin 32.0

v v
t

a g 
      

  
 

 

The velocity when it returns is therefore 

 

 2

0 0 sin 3.50 m/s (9.8 m/s ) 1.35 s sin32 3.50 m/s.v v at v gt         

 

The negative sign indicates the direction is down the plane. 

 

LEARN As expected, the speed of the block when it gets back to the bottom of the 

incline is the same as its initial speed. As we shall see in Chapter 8, this is a consequence 

of energy conservation. If friction is present, then the return speed will be smaller than 

the initial speed.  

 

32. (a) Using notation suitable to a vector-capable calculator, the Fnet  
   

 = 0 condition 

becomes  

F1  
  

 + F2  
  

 + F3  
  

  =   (6.00  150º)  +  (7.00  60.0º)  +  F3  
  

  = 0 . 

 

Thus, F3  
  

  =  (1.70 N) i
^
 + (3.06 N)j

^
. 

 

(b) A constant velocity condition requires zero acceleration, so the answer is the same. 

 

(c) Now, the acceleration is  
2 2ˆ ˆ(13.0 m/s ) i (14.0 m/s ) ja   . 

 

Using Fnet  
   

 = m a  


  (with m = 0.025 kg) we now obtain 

 

F3  
  

  = (2.02 N) i
^
 + (2.71 N) j

^
. 

 

33. The free-body diagram is shown below. Let

T  be the tension of the cable and mg


 be 

the force of gravity. If the upward direction is positive, then Newton’s second law is T – 

mg = ma, where a is the acceleration. 

 

Thus, the tension is T = m(g + a). We use constant acceleration kinematics (Table 2-1) to 

find the acceleration (where v = 0 is the final velocity, v0 = – 12 m/s is the initial velocity, 

and 42 my   is the coordinate at the stopping point). Consequently, 

v v ay2

0

2 2  leads to 

 

 

22
20

12 m/s
1.71 m/s

2 2 42 m

v
a

y


    


. 

 

We now return to calculate the tension: 
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T m g a 

 

 

b g
b g c h1600 9 8 171

18 10

2 2

4

kg m / s m / s

N

. .

. .

 

 
 

34. We resolve this horizontal force into appropriate components. 

 

(a) Newton’s second law applied to the x-axis 

produces 

 

F mg macos sin .    

 

For a = 0, this yields F = 566 N. 

 

(b) Applying Newton’s second law to the y axis (where there is no acceleration), we have 

 

sin cos 0NF F mg     

 

which yields the normal force FN = 1.13  10
3
 N. 

 

35. The acceleration vector as a function of time is  

 

  2 2ˆ ˆ ˆ ˆ8.00 i 3.00 j m/s (8.00 i 6.00 j) m/s .
dv d

a t t t
dt dt

      

 

(a) The magnitude of the force acting on the particle is  

 
2 2 2| | (3.00) (8.00) (6.00 ) (3.00) 64.0 36.0 N.F ma m a t t       

 

Thus, 35.0 NF   corresponds to 1.415 s,t   and the acceleration vector at this instant is 

  
2 2 2ˆ ˆ ˆ ˆ[8.00 i 6.00(1.415) j] m/s (8.00 m/s ) i (8.49 m/s )j.a      

 

The angle a  makes with +x is  

 
2

1 1

2

8.49 m/s
tan tan 46.7 .

8.00 m/s

y

a

x

a

a
     

      
  

 

 

(b) The velocity vector at 1.415 st   is 
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2ˆ ˆ ˆ ˆ8.00(1.415) i 3.00(1.415) j m/s (11.3 m/s) i (6.01m/s) j.v     
 

 

 

Therefore, the angle v  makes with +x is  

 

1 1 6.01 m/s
tan tan 28.0 .

11.3 m/s

y

v

x

v

v
     

      
  

 

 

36. (a) Constant velocity implies zero acceleration, so the “uphill” force must equal (in 

magnitude) the “downhill”  force: T = mg sin . Thus, with m = 50 kg and 8.0   ,the 

tension in the rope equals 68 N. 

 

(b) With an uphill acceleration of 0.10 m/s
2
, Newton’s second law (applied to the x axis) 

yields 

 

     2 2sin 50 kg 9.8 m/s sin8.0 50 kg 0.10 m/sT mg ma T       

 

which leads to T = 73 N. 

 

37. (a) Since friction is negligible the force of the girl is the only horizontal force on the 

sled. The vertical forces (the force of gravity and the normal force of the ice) sum to zero. 

The acceleration of the sled is 

a
F

m
s

s

  
52

0 62
.

. .
N

8.4 kg
m s2  

 

(b) According to Newton’s third law, the force of the sled on the girl is also 5.2 N. Her 

acceleration is 

a
F

m
g

g

  
52

013
.

. .
N

40kg
m s2  

 

(c) The accelerations of the sled and girl are in opposite directions. Assuming the girl 

starts at the origin and moves in the +x direction, her coordinate is given by 21
2g gx a t . 

The sled starts at x0 = 15 m and moves in the –x direction. Its coordinate is given by 
21

0 2s sx x a t  . They meet when g sx x , or  

 

2 2

0

1 1
.

2 2
g sa t x a t   

This occurs at time 

t
x

a ag s




2 0 .  

By then, the girl has gone the distance 
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  2

02

2 2

15 m 0.13 m/s1
2.6 m.

2 0.13 m/s 0.62 m/s

g

g g

g s

x a
x a t

a a
   

 
 

 

38. We label the 40 kg skier “m,” which is represented as a block in the figure shown. 

The force of the wind is denoted 

Fw  and might be either “uphill” or “downhill”  (it is 

shown uphill in our sketch). The incline angle  is 10°. The x direction is downhill. 

 

 
 

(a) Constant velocity implies zero acceleration; thus, application of Newton’s second law 

along the x axis leads to mg Fwsin .   0 This yields Fw = 68 N (uphill). 

 

(b) Given our coordinate choice, we have a =| a |= 1.0 m/s
2
. Newton’s second law 

 

mg F mawsin     

 

now leads to Fw = 28 N (uphill). 

  

(c) Continuing with the forces as shown in our figure, the equation 

 

mg F mawsin     

 

will lead to Fw = – 12 N when | a | = 2.0 m/s
2
. This simply tells 

us that the wind is opposite to the direction shown in our sketch; 

in other words, 12 NwF   downhill. 

 

39. The solutions to parts (a) and (b) have been combined here. 

The free-body diagram is shown to the right, with the tension of 

the string 

T , the force of gravity mg


, and the force of the air 


F . Our coordinate system is shown. Since the sphere is 

motionless the net force on it is zero, and the x and the y 

components of the equations are: 

 

  T sin  – F = 0 

T cos  – mg = 0, 

 

where  = 37°. We answer the questions in the reverse order. Solving T cos  – mg = 0 

for the tension, we obtain  
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T = mg/ cos  = (3.0  10
–4

 kg) (9.8 m/s
2
) / cos 37° = 3.7  10

–3
 N. 

 

Solving T sin  – F = 0 for the force of the air:  

 

F = T sin  = (3.7  10
–3

 N) sin 37° = 2.2  10
–3

 N. 

 

40. The acceleration of an object (neither pushed nor pulled by any force other than 

gravity) on a smooth inclined plane of angle  is a = –g sin.  The slope of the graph 

shown with the problem statement indicates a = –2.50 m/s
2
.  Therefore, we find 

14.8   . Examining the forces perpendicular to the incline (which must sum to zero 

since there is no component of acceleration in this direction) we find FN = mgcos, where 

m = 5.00 kg.   Thus, the normal (perpendicular) force exerted at the box/ramp interface is 

47.4 N. 

 

41. The mass of the bundle is m = (449 N)/(9.80 m/s
2
) = 45.8 kg and we choose +y 

upward. 

 

(a) Newton’s second law, applied to the bundle, leads to 

 

387 N 449 N

45.8 kg
T mg ma a


     

 

which yields a = –1.4 m/s
2
 (or |a| = 1.4 m/s

2
) for the acceleration. The minus sign in the 

result indicates the acceleration vector points down. Any downward acceleration of 

magnitude greater than this is also acceptable (since that would lead to even smaller 

values of tension). 

 

(b) We use Eq. 2-16 (with x replaced by y = –6.1 m). We assume 0 = 0. 

 

  22 2 1.35 m/s 6.1 m 4.1 m/s.v a y       

 

For downward accelerations greater than 1.4 m/s
2
, the speeds at impact will be larger than 

4.1 m/s. 

 

42. The direction of motion (the direction of the barge’s acceleration) is î , and j  is 

chosen so that the pull hF  from the horse is in the first quadrant. The components of the 

unknown force of the water are denoted simply Fx and Fy. 

 

(a) Newton’s second law applied to the barge, in the x and y directions, leads to 

 

 

 

7900N cos 18

7900N sin 18 0

x

y

F ma

F

  

  
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respectively. Plugging in a = 0.12 m/s
2
 and m = 9500 kg, we obtain Fx =   6.4  10

3
 N 

and Fy =  2.4  10
3
 N. The magnitude of the force of the water is therefore 

 

F F Fx ywater N.   2 2 368 10.  

 

(b) Its angle measured from î  is either 

 

1tan 21 or201 .
y

x

F

F

  
    

 
 

 

The signs of the components indicate the latter is correct, so 

Fwater  is at 201  measured 

counterclockwise from the line of motion (+x axis). 

 

43. THINK A chain of five links is accelerated vertically upward by an external force. 

We are interested in the forces exerted by one link on its adjacent one.   

 

EXPRESS The links are numbered from bottom to top. The forces on the first link are 

the force of gravity mg


, downward, and the force 

F2 1on  of link 2, upward, as shown in 

the free-body diagram below (not drawn to scale). Take the positive direction to be 

upward. Then Newton’s second law for the first link is 2on1 1 1 .F m g m a   The equations 

for the other links can be written in a similar manner (see below). 

 

 

ANALYZE (a) Given that 22.50 m/sa  , from 2on1 1 1F m g m a  , the force exerted by 

link 2 on link 1 is 

 
2 2

2on1 1( ) (0.100 kg)(2.5 m/s 9.80 m/s ) 1.23 N.F m a g      

 

(b) From the free-body diagram above, we see that the forces on the second link are the 

force of gravity 2m g , downward, the force 

F1 2on  of link 1, downward, and the force 


F3 2on  
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of link 3, upward. According to Newton’s third law 1on2F  has the same magnitude as 

2on1.F  Newton’s second law for the second link is  

 

3on2 1on2 2 2F F m g m a    

so 

F3on2 = m2(a + g) + F1on2 = (0.100 kg) (2.50 m/s
2
 + 9.80 m/s

2
) + 1.23 N = 2.46 N. 

 

(c) Newton’s second law equation for link 3 is F4on3 – F2on3 – m3g = m3a, so  

 

F4on3 = m3(a + g) + F2on3 = (0.100 N) (2.50 m/s
2
 + 9.80 m/s

2
) + 2.46 N = 3.69 N, 

 

where Newton’s third law implies F2on3 = F3on2 (since these are magnitudes of the force 

vectors). 

 

(d) Newton’s second law for link 4 is  

 

F5on4 – F3on4 – m4g = m4a, 

so  

F5on4 = m4(a + g) + F3on4 = (0.100 kg) (2.50 m/s
2
 + 9.80 m/s

2
) + 3.69 N = 4.92 N, 

 

where Newton’s third law implies F3on4 = F4on3. 

 

(e) Newton’s second law for the top link is F – F4on5 – m5g = m5a, so  

 

F = m5(a + g) + F4on5 = (0.100 kg) (2.50 m/s
2
 + 9.80 m/s

2
) + 4.92 N = 6.15 N, 

 

where F4on5 = F5on4 by Newton’s third law. 

 

(f) Each link has the same mass ( 1 2 3 4 5m m m m m m     ) and the same acceleration, 

so the same net force acts on each of them:  

 

Fnet = ma = (0.100 kg) (2.50 m/s
2
) = 0.250 N. 

 

LEARN In solving this problem we have used both Newton’s second and third laws. 

Each pair of links constitutes a third-law force pair, with i on j j on iF F  .  

 

44. (a) The term “deceleration”  means the acceleration vector is in the direction opposite 

to the velocity vector (which the problem tells us is downward). Thus (with +y upward) 

the acceleration is a = +2.4 m/s
2
. Newton’s second law leads to 

 

T mg ma m
T

g a
   


 

which yields m = 7.3 kg for the mass. 
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(b) Repeating the above computation (now to solve for the tension) with a = +2.4 m/s
2
 

will, of course, lead us right back to T = 89 N. Since the direction of the velocity did not 

enter our computation, this is to be expected. 

 

45. (a) The mass of the elevator is m = (27800/9.80) = 2837 kg and (with +y upward) the 

acceleration is a = +1.22 m/s
2
. Newton’s second law leads to 

 

T mg ma T m g a    b g  
 

which yields T = 3.13  10
4
 N for the tension. 

 

(b) The term “deceleration” means the acceleration vector is in the direction opposite to 

the velocity vector (which the problem tells us is upward). Thus (with +y upward) the 

acceleration is now a = –1.22 m/s
2
, so that the tension  is 

 

T = m (g + a) = 2.43  10
4
 N . 

 

46. With ace meaning “the acceleration of the coin relative to the elevator” and aeg 

meaning “the acceleration of the elevator relative to the ground,” we have 

 

ace + aeg = acg        –8.00 m/s
2
 + aeg = –9.80 m/s

2
 

 

which leads to aeg = –1.80 m/s
2
.  We have chosen upward as the positive y direction.  

Then Newton’s second law (in the “ground” reference frame) yields T – m g = m aeg, or 

 

T  = m g + m aeg = m(g  + aeg) = (2000 kg)(8.00 m/s
2
) = 16.0 kN. 

 

47. Using Eq. 4-26, the launch speed of the projectile is  

 

 
2

0

(9.8 m/s )(69 m)
26.52 m/s

sin 2 sin 2(53 )

gR
v


  


. 

 

The horizontal and vertical components of the speed are  

 

 
0

0

cos (26.52 m/s)cos53 15.96 m/s

sin (26.52 m/s)sin53 21.18 m/s.

x

y

v v

v v





   

   
 

 

Since the acceleration is constant, we can use Eq. 2-16 to analyze the motion. The 

component of the acceleration in the horizontal direction is 

 

 
2 2

2(15.96 m/s)
40.7 m/s ,

2 2(5.2 m)cos53

x
x

v
a

x
  


 

 

and the force component is 
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2(85 kg)(40.7 m/s ) 3460 N.x xF ma    

 

Similarly, in the vertical direction, we have 
2 2

2(21.18 m/s)
54.0 m/s .

2 2(5.2 m)sin53

y

y

v
a

y
  


 

and the force component is  

 
2 2(85 kg)(54.0 m/s 9.80 m/s ) 5424 N.y yF ma mg      

 

Thus, the magnitude of the force is 

 

 2 2 2 2 3(3460 N) (5424 N) 6434 N 6.4 10 N,x yF F F        

 

to two significant figures.  

 

48. Applying Newton’s second law to cab B (of mass m) we have  

 

a = 
T

m
   g = 4.89 m/s

2
. 

 

Next, we apply it to the box (of mass mb) to find the normal force: 

 

FN = mb(g + a) = 176 N. 

 

 

49. The free-body diagram (not to scale) for the block is shown to 

the right. NF  is the normal force exerted by the floor and mg


 is 

the force of gravity. 

 

(a) The x component of Newton’s second law is F cos = ma, 

where m is the mass of  the block and a is the x component of its 

acceleration. We obtain 

 

a
F

m
 




cos . cos .

.
. .

 12 0 250

500
218

N

kg
m / s2b g

 

 

This is its acceleration provided it remains in contact with the floor. Assuming it does, we 

find the value of FN (and if FN is positive, then the assumption is true but if FN is negative 

then the block leaves the floor). The y component of Newton’s second law becomes  

 

FN + F sin – mg = 0, 

so  

FN = mg – F sin = (5.00 kg)(9.80 m/s
2
) – (12.0 N)sin 25.0= 43.9 N. 
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Hence the block remains on the floor and its acceleration is a = 2.18 m/s
2
. 

 

(b) If F is the minimum force for which the block leaves the floor, then FN = 0 and the y 

component of the acceleration vanishes. The y component of the second law becomes   

 

F sin – mg = 0       
  25.00 kg 9.80 m/s

116 N.
sin sin 25.0

mg
F


  


 

 

(c) The acceleration is still in the x direction and is still given by the equation developed 

in part (a): 

2cos (116 N) cos 25.0
21.0m/s .

5.00 kg

F
a

m

 
    

 

50. (a) The net force on the system (of total mass M = 80.0 kg) is the force of gravity 

acting on the total overhanging mass (mBC = 50.0 kg).  The magnitude of the acceleration 

is therefore a = (mBC g)/M = 6.125 m/s
2
.  Next we apply Newton’s second law to block C 

itself (choosing down as the +y direction) and obtain   

 

mC g – TBC   = mC a. 

This leads to TBC  = 36.8 N. 

 

(b) We use Eq. 2-15 (choosing rightward as the +x direction): x = 0 + 
1

2
 at

2
 = 0.191 m. 

 

51. The free-body diagrams for 1m and 2m are shown in the figures below. The only 

forces on the blocks are the upward tension T and the downward gravitational forces 

1 1F m g and 2 2F m g . Applying Newton’s second law, we obtain: 

 

 
1 1

2 2

T m g m a

m g T m a

 

 

 

 

which can be solved to yield 

 

 2 1

2 1

m m
a g

m m

 
  

 
 

 
Substituting the result back, we have 

 1 2

1 2

2m m
T g

m m

 
  

 
 

 

(a) With 1 1.3 kgm  and 2 2.8 kgm  , the acceleration becomes  
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 2 2 22.80 kg 1.30 kg
(9.80 m/s ) 3.59 m/s 3.6 m/s .

2.80 kg 1.30 kg
a

 
   

 
 

 

(b) Similarly, the tension in the cord is  

 

22(1.30 kg)(2.80 kg)
(9.80 m/s ) 17.4 N 17 N.

1.30 kg 2.80 kg
T   


 

 

52. Viewing the man-rope-sandbag as a system means that we should be careful to 

choose a consistent positive direction of motion (though there are other ways to proceed, 

say, starting with individual application of Newton’s law to each mass). We take down as 

positive for the man’s motion and up as positive for the sandbag’s motion and, without 

ambiguity, denote their acceleration as a. The net force on the system is the different 

between the weight of the man and that of the sandbag. The system mass is msys = 85 kg 

+ 65 kg = 150 kg. Thus, Eq. 5-1 leads to 

 
2 2

sys(85 kg)(9.8 m/s ) (65 kg)(9.8 m/s ) m a   

 

which yields a = 1.3 m/s
2
. Since the system starts from rest, Eq. 2-16 determines the 

speed (after traveling  y = 10 m) as follows: 

 
22 2(1.3 m/s )(10 m) 5.1 m/s.v a y     

 

53. We apply Newton’s second law first to the three blocks as a single system and then to 

the individual blocks. The +x direction is to the right in Fig. 5-48. 

 

(a) With msys = m1 + m2 + m3 = 67.0 kg, we apply Eq. 5-2 to the x motion of the system, 

in which case, there is only one force
 
T T3 3  i . Therefore,  

 

 3 sys 65.0N (67.0kg)T m a a    

 

which yields a = 0.970 m/s
2
 for the system (and for each of the blocks individually). 

 

(b) Applying Eq. 5-2 to block 1, we find 

 

  2

1 1 12.0kg 0.970m/s 11.6N.T m a    

 

(c) In order to find T2, we can either analyze the forces on block 3 or we can treat blocks 

1 and 2 as a system and examine its forces. We choose the latter. 

 

    2

2 1 2 12.0 kg 24.0 kg 0.970 m/s 34.9 N .T m m a      
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54. First, we consider all the penguins (1 through 4, counting left to right) as one system, 

to which we apply Newton’s second law: 

 

   4 1 2 3 4 2222N 12kg 15kg 20kg .T m m m m a m a          

 

Second, we consider penguins 3 and 4 as one system, for which we have 

 

 
 

4 2 3 4

2111N 15 kg 20kg    3.2 m/s .

T T m m a

a a

  

   
 

 

Substituting the value, we obtain m2 = 23 kg.  

 

55. THINK In this problem a horizontal force is applied to block 1 which then pushes 

against block 2. Both blocks move together as a rigid connected system.  

 

EXPRESS The free-body diagrams for the two blocks in (a) are shown below. 

F  is the 

applied force and 
1on2F  is the force exerted by block 1 on block 2. We note that 


F  is 

applied directly to block 1 and that block 2 exerts a force 
2on1 1on2F F   on block 1 

(taking Newton’s third law into account). 

 

 
 

Newton’s second law for block 1 is 2on1 1 ,F F m a   where a is the acceleration. The 

second law for block 2 is 1on2 2 .F m a  Since the blocks move together they have the same 

acceleration and the same symbol is used in both equations.  

 

ANALYZE (a) From the second equation we obtain the expression 1on2 2/a F m , which 

we substitute into the first equation to get 2on1 1 1on2 2/ .F F m F m   Since 2on1 1on2F F  

(same magnitude for third-law force pair), we obtain 

 

 2
2on1 1on2

1 2

1.2 kg
3.2 N 1.1 N.

2.3 kg 1.2 kg

m
F F F

m m
   

 
 

 

(b) If 

F  is applied to block 2 instead of block 1 (and in the opposite direction), the free-

body diagrams would look like the following: 
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The corresponding force of contact between the blocks would be  

 

 1
2on1 1on2

1 2

2.3 kg
3.2 N 2.1 N.

2.3 kg 1.2 kg

m
F F F

m m
    

 
 

 

(c) We note that the acceleration of the blocks is the same in the two cases. In part (a), the 

force 1on2F  is the only horizontal force on the block of mass m2 and in part (b) 2on1F    is 

the only horizontal force on the block with m1 > m2. Since 1on2 2F m a  in part (a) and 

2on1 1F m a   in part (b), then for the accelerations to be the same, 2on1 1on2F F  , i.e., force 

between blocks must be larger in part (b). 

 

LEARN This problem demonstrates that when two blocks are being accelerated together 

under an external force, the contact force between the two blocks is greater if the smaller 

mass is pushing against the bigger one, as in part (b). In the special case where the two 

masses are equal,  1 2m m m  , 2on1 2on1 / 2.F F F     

 

56. Both situations involve the same applied force and the same total mass, so the 

accelerations must be the same in both figures.   

 

(a) The (direct) force causing B to have this acceleration in the first figure is twice as big 

as the (direct) force causing A to have that acceleration.  Therefore, B has the twice the 

mass of A.  Since their total is given as 12.0 kg then B has a mass of mB = 8.00 kg and A 

has mass mA = 4.00 kg.  Considering the first figure, (20.0 N)/(8.00 kg) = 2.50 m/s
2
.  Of 

course, the same result comes from considering the second figure ((10.0 N)/(4.00 kg) = 

2.50 m/s
2
). 

 

(b) Fa = (12.0 kg)(2.50 m/s
2
) = 30.0 N 

 

57. The free-body diagram for each block is shown below. T is the tension in the cord and 

 = 30° is the angle of the incline. For block 1, we take the +x direction to be up the 

incline and the +y direction to be in the direction of the normal force NF  that the plane 

exerts on the block. For block 2, we take the +y direction to be down. In this way, the 

accelerations of the two blocks can be represented by the same symbol a, without 
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ambiguity. Applying Newton’s second law to the x and y axes for block 1 and to the y 

axis of block 2, we obtain 

 
1 1

1

2 2

sin

cos 0N

T m g m a

F m g

m g T m a





 

 

 

 

 

respectively. The first and third of these equations provide a simultaneous set for 

obtaining values of a and T. The second equation is not needed in this problem, since the 

normal force is neither asked for nor is it needed as part of some further computation 

(such as can occur in formulas for friction). 

 

 
 

(a) We add the first and third equations above:  

 

m2g – m1g sin  = m1a + m2a. 

 

Consequently, we find 

 

   2

2 1 2

1 2

[2.30 kg (3.70 kg)sin 30.0 ] 9.80 m/ssin
0.735m/s .

3.70 kg 2.30 kg

m m g
a

m m

  
  

 
 

 

(b) The result for a is positive, indicating that the acceleration of block 1 is indeed up the 

incline and that the acceleration of block 2 is vertically down. 

 

(c) The tension in the cord is 

 

     2 2

1 1 sin 3.70 kg 0.735 m/s 3.70 kg 9.80 m/s sin30.0 20.8N.T m a m g        

 

58. The motion of the man-and-chair is positive if upward. 

 

(a) When the man is grasping the rope, pulling with a force equal to the tension T in the 

rope, the total upward force on the man-and-chair due its two contact points with the rope 

is 2T. Thus, Newton’s second law leads to 

 
2T mg ma   
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so that when a = 0, the tension is T = 466 N. 

 

(b) When a = +1.30 m/s
2
 the equation in part (a) predicts that the tension will be 

527 NT  . 

 

(c) When the man is not holding the rope (instead, the co-worker attached to the ground 

is pulling on the rope with a force equal to the tension T in it), there is only one contact 

point between the rope and the man-and-chair, and Newton’s second law now leads to 

 
T mg ma   

 

so that when a = 0, the tension is T = 931 N. 

 

(d) When a = +1.30 m/s
2
, the equation in (c) yields T = 1.05  10

3
 N. 

 

(e) The rope comes into contact (pulling down in each case) at the left edge and the right 

edge of the pulley, producing a total downward force of magnitude 2T on the ceiling. 

Thus, in part (a) this gives 2T = 931 N. 

 

(f) In part (b) the downward force on the ceiling has magnitude 2T = 1.05  10
3
 N. 

 

(g) In part (c) the downward force on the ceiling has magnitude 2T = 1.86  10
3
 N. 

 

(h) In part (d) the downward force on the ceiling has magnitude 2T = 2.11  10
3
 N. 

 

59. THINK This problem involves the application of Newton’s third law. As the monkey 

climbs up a tree, it pulls downward on the rope, but the rope pulls upward on the monkey.  

 

EXPRESS We take +y to be up for both the monkey and the package. The force the 

monkey pulls downward on the rope has magnitude F.  

 

The free-body diagrams for the monkey and the 

package are shown to the right (not to scale). 

According to Newton’s third law, the rope pulls 

upward on the monkey with a force of the same 

magnitude, so Newton’s second law for forces 

acting on the monkey leads to  

 

F – mmg = mmam, 

 

where mm is the mass of the monkey and am is its 

acceleration.  

 

 

 

Since the rope is massless, F = T is the tension in the rope. The rope pulls upward on the 

package with a force of magnitude F, so Newton’s second law for the package is  
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F + FN – mpg = mpap, 

 

where mp is the mass of the package, ap is its acceleration, and FN is the normal force 

exerted by the ground on it. Now, if F is the minimum force required to lift the package, 

then FN = 0 and ap = 0. According to the second law equation for the package, this means 

F = mpg.  

 

ANALYZE (a) Substituting mpg for F in the equation for the monkey, we solve for am: 

 

    2

2
15 kg 10 kg 9.8 m/s

4.9 m/s .
10 kg

p mm
m

m m

m m gF m g
a

m m


     

 

(b) As discussed, Newton’s second law leads to p p pF m g m a   for the package and 

m m mF m g m a   for the monkey. If the acceleration of the package is downward, then 

the acceleration of the monkey is upward, so .m pa a    Solving the first equation for F 

 

   p p p mF m g a m g a      

and substituting this result into the second equation: 

 

( )p m m m mm g a m g m a    , 

we solve for ma : 

    2

2
15 kg 10 kg 9.8 m/s

2.0 m/s .
15 kg 10 kg

p m

m

p m

m m g
a

m m


   

 
 

 

(c) The result is positive, indicating that the acceleration of the monkey is upward. 

 

(d) Solving the second law equation for the package, the tension in the rope is 

 

    2 215 kg 9.8 m/s 2.0 m/s 120N.p mF m g a      

 

LEARN The situations described in (b)-(d) are similar to that of an Atwood machine. 

With p mm m , the package accelerates downward while the monkey accelerates upward.  

 

 

60. The horizontal component of the acceleration is determined by the net horizontal 

force.  

 

(a) If the rate of change of the angle is  

 

 2 2 4 rad
(2.00 10 ) / s (2.00 10 ) / s 3.49 10 rad/s

180

d

dt

    
         

 
, 
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then, using cosxF F  , we find the rate of change of acceleration to be  

 

 
 4

4 3

cos sin (20.0 N)sin 25.0
3.49 10 rad/s

5.00 kg

5.90 10 m/s .

xda d F F d

dt dt m m dt

   



 
      

 

  

 

 

(b) If the rate of change of the angle is  

 

 2 2 4 rad
(2.00 10 ) / s (2.00 10 ) / s 3.49 10 rad/s

180

d

dt

    
            

 
, 

 

then the rate of change of acceleration would be  

 

 
 4

4 3

cos sin (20.0 N)sin 25.0
3.49 10 rad/s

5.00 kg

5.90 10 m/s .

xda d F F d

dt dt m m dt

   



 
       

 

  

 

 

61. THINK As more mass is thrown out of the hot-air balloon, its upward acceleration 

increases.     

 

EXPRESS The forces on the balloon are the force of gravity mg


 (down) and the force of 

the air 

Fa  (up). We take the +y to be up, and use a to mean the magnitude of the 

acceleration. When the mass is M (before the ballast is thrown out) the acceleration is 

downward and Newton’s second law is  

 

 aMg F Ma   

 

After the ballast is thrown out, the mass is M – m (where m is the mass of the ballast) and 

the acceleration is now upward. Newton’s second law leads to  

 

Fa – (M – m)g = (M – m)a. 

 

Combing the two equations allows us to solve for m. 

 

ANALYZE The first equation gives Fa = M(g – a), and this plugs into the new equation 

to give 

M g a M m g M m a m
Ma

g a
      


b g b g b g 2

.  

 

LEARN More generally, if a ballast mass m  is tossed, the resulting acceleration is 

awhich is related to m  via: 
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a a

m M
g a

 
 


, 

  

showing that the more mass thrown out, the greater is the upward acceleration. For 

a a  , we get 2 /( )m Ma g a   , which agrees with what was found above.    

 

62. To solve the problem, we note that the acceleration along the slanted path depends on 

only the force components along the path, not the components perpendicular to the path.  

 
(a) From the free-body diagram shown, we see that the net force on the putting shot along 

the +x-axis is  

 

 2

net, sin 380.0 N (7.260 kg)(9.80 m/s )sin30 344.4 N,xF F mg        

 

which in turn gives  
2

net, / (344.4 N) /(7.260 kg) 47.44 m/s .x xa F m    

 

Using Eq. 2-16 for constant-acceleration motion, the speed of the shot at the end of the 

acceleration phase is  

 

 2 2 2

0 2 (2.500 m/s) 2(47.44 m/s )(1.650 m) 12.76 m/s.xv v a x       

 

(b) If 42 ,    then  

 
2

net, 2sin 380.0 N (7.260 kg)(9.80 m/s )sin 42.00
45.78 m/s ,

7.260 kg

x

x

F F mg
a

m m

  
     

 

and the final (launch) speed is  

 
2 2 2

0 2 (2.500 m/s) 2(45.78 m/s )(1.650 m) 12.54 m/s.xv v a x       

 

(c) The decrease in launch speed when changing the angle from 30.00  to 42.00  is  
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12.76 m/s 12.54 m/s

0.0169 1.69%.
12.76 m/s


   

 

63. (a) The acceleration (which equals F/m in this problem) is the derivative of the 

velocity.  Thus, the velocity is the integral of F/m, so we find the “area” in the graph (15 

units) and divide by the mass (3) to obtain v – vo = 15/3 = 5.  Since vo = 3.0 m/s, then 

8.0m/s.v   

 

(b) Our positive answer in part (a) implies v  points in the +x direction. 

 

64. The +x direction for m2 = 1.0 kg is “downhill” and the +x direction for m1 = 3.0 kg is 

rightward; thus, they accelerate with the same sign. 

 
 

(a) We apply Newton’s second law to the x axis of each box: 

 

2 2

1

sinm g T m a

F T m a

  

 
 

 

Adding the two equations allows us to solve for the acceleration: 

 

 2

1 2

sinm g F
a

m m

 



 

 

With F = 2.3 N and 30   , we have a = 1.8 m/s
2
. We plug back in and find T = 3.1 N. 

 

(b) We consider the “critical” case where the F has reached the max value, causing the 

tension to vanish. The first of the equations in part (a) shows that sin30a g   in this 

case; thus, a = 4.9 m/s
2
. This implies (along with T = 0 in the second equation in part (a)) 

that  

F = (3.0 kg)(4.9 m/s
2
) = 14.7 N 15 N  

in the critical case. 

 

65. The free-body diagrams for 1m and 2m are shown in the figures below. The only 

forces on the blocks are the upward tension T and the downward gravitational forces 

1 1F m g and 2 2F m g . Applying Newton’s second law, we obtain: 
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1 1

2 2

T m g m a

m g T m a

 

 
 

 

which can be solved to give 

 

2 1

2 1

m m
a g

m m

 
  

 
 

 
 

(a) At 0t  , 
10 1.30 kgm  . With 

1 / 0.200 kg/sdm dt   , we find the rate of change of 

acceleration to be 

 

 
2

31 2 1

2 2

1 2 10

2 2(2.80 kg)(9.80 m/s )
0.200 kg/s 0.653 m/s .

( ) (2.80 kg 1.30 kg)

dm m g dmda da

dt dm dt m m dt
      

 
 

 

(b) At 3.00 s,t  1 10 1( / ) 1.30 kg ( 0.200 kg/s)(3.00 s) 0.700 kg,m m dm dt t      and 

the rate of change of acceleration is 

 

 
2

31 2 1

2 2

1 2 1

2 2(2.80 kg)(9.80 m/s )
0.200 kg/s 0.896 m/s .

( ) (2.80 kg 0.700 kg)

dm m g dmda da

dt dm dt m m dt
      

 
 

 

(c) The acceleration reaches its maximum value when  

 

1 10 10 ( / ) 1.30 kg ( 0.200 kg/s) ,m m dm dt t t       

or 6.50 s.t   

 

66. The free-body diagram is shown to the right. Newton’s 

second law for the mass m for the x direction leads to  

 

T T mg ma1 2  sin , 

 

which gives the difference in the tension in the pull cable: 

 

    2 2 4

1 2 sin 2800 kg (9.8 m/s )sin35 0.81m/s 1.8 10 N.T T m g a            

 

67. First we analyze the entire system with “clockwise” motion considered positive (that 

is, downward is positive for block C, rightward is positive for block B, and upward is 

positive for block A):  mC g – mA g = Ma  (where M = mass of the system = 24.0 kg).  This 

yields an acceleration of    
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a = g(mC  mA)/M = 1.63 m/s
2
. 

 

Next we analyze the forces just on block C: mC g  –  T  = mC a.  Thus the tension is   

 

T = mC g(2mA + mB)/M = 81.7 N. 

 

68. We first use Eq. 4-26 to solve for the launch speed of the shot: 

 

 
2

0 2
(tan ) .

2( cos )

gx
y y x

v



  


 

 

With 34.10 ,    0 2.11 m,y   and ( , ) (15.90 m,0)x y  , we find the launch speed to be 

11.85 m/s.v   During this phase, the acceleration is  

 

 
2 2 2 2

20 (11.85 m/s) (2.50 m/s)
40.63 m/s .

2 2(1.65 m)

v v
a

L

  
    

 

Since the acceleration along the slanted path depends on only the force components along 

the path, not the components perpendicular to the path, the average force on the shot 

during the acceleration phase is  

 

 2 2( sin ) (7.260 kg) 40.63 m/s (9.80 m/s )sin34.10 334.8 N.F m a g           

 

69. We begin by examining a slightly different problem: similar to this figure but without 

the string.  The motivation is that if (without the string) block A is found to accelerate 

faster (or exactly as fast) as block B then (returning to the original problem) the tension in 

the string is trivially zero.  In the absence of the string,  

 

aA = FA /mA = 3.0 m/s
2
 

 

aB = FB /mB = 4.0 m/s
2
 

 

so the trivial case does not occur.  We now (with the string) consider the net force on the 

system: Ma = FA + FB = 36 N.  Since M = 10 kg (the total mass of the system) we obtain a 

= 3.6 m/s
2
.  The two forces on block A are FA and T (in the same direction), so we have 

 

mA a = FA + T         T = 2.4 N. 

 

70. (a) For the 0.50 meter drop in “free fall,” Eq. 2-16 yields a speed of 3.13 m/s.  Using 

this as the “initial speed” for the final motion (over 0.02 meter) during which his motion 

slows at rate “a,” we find the magnitude of his average acceleration from when his feet 

first touch the patio until the moment his body stops moving is a = 245 m/s
2
. 

 

(b) We apply Newton’s second law:  Fstop –  mg = ma     Fstop = 20.4 kN. 
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71. THINK We have two boxes connected together by a cord and placed on a wedge. 

The system accelerates together and we’d like to know the tension in the cord.  

 

EXPRESS The +x axis is “uphill” for m1 = 3.0 kg and “downhill” for m2 = 2.0 kg (so 

they both accelerate with the same sign). The x components of the two masses along the x 

axis are given by 
1 1sinm g  and 2 2sinm g  , respectively. The free-body diagram is shown 

below. Applying Newton’s second law, we obtain 

 

1 1 1

2 2 2

sin

sin

T m g m a

m g T m a





 

 
 

 

 
 

Adding the two equations allows us to solve for the acceleration: 

 

 2 2 1 1

2 1

sin sinm m
a g

m m

  
  

 
 

 ANALYZE With 1 30   and 2 60   , we have a = 0.45 m/s
2
. This value is plugged 

back into either of the two equations to yield the tension  

 

1 2
2 1

2 1

(sin sin ) 16.1 N
m m g

T
m m

   


 

 

LEARN In this problem we find 2 2 1 1sin sinm m  , so that 0a  , indicating that 2m  

slides down and 1m  slides up. The situation would reverse if 2 2 1 1sin sinm m  . When 

2 2 1 1sin sinm m  , the acceleration is a = 0 and the two masses hang in balance. Notice 

also the symmetry between the two masses in the expression for T.   

 

72. Since the velocity of the particle does not change, it undergoes no acceleration and 

must therefore be subject to zero net force. Therefore, 

    
F F F Fnet    1 2 3 0 .  

Thus, the third force 

F3  is given by 

 

     3 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2i 3j 2k N 5i 8j 2k N 3i 11j 4k N.F F F               
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The specific value of the velocity is not used in the computation. 

 

73. THINK We have two masses connected together by a cord. A force is applied to the 

second mass and the system accelerates together. We apply Newton’s second law to solve 

the problem.  

 

EXPRESS The free-body diagrams for the two masses are shown below (not to scale). 

We first analyze the forces on m1=1.0 kg. The +x direction is “downhill”  (parallel to 

T ). 

With an acceleration a = 5.5 m/s
2
 in the positive x direction for m1, Newton’s second law 

applied to the x-axis gives 

1 1sinT m g m a  . 

 

On the other hand, for the second mass m2=2.0 kg, we have 2 2m g F T m a   , where 

the tension comes in as an upward force (the cord can pull, not push). The two equations 

can be combined to solve for T and . 

 

 
  

ANALYZE We solve (b) first. By combining the two equations above, we obtain 

 

 

2 2

1 2 2

2

1

( ) (1.0 kg 2.0 kg)(5.5 m/s ) 6.0 N (2.0 kg)(9.8 m/s )
sin

(1.0 kg)(9.8 m/s )

0.296

m m a F m g

m g


     
 



 

 

which gives .   

 

(a) Substituting the value for  found in (a) into the first equation, we have  

 
2 2

1( sin ) (1.0 kg) 5.5 m/s (9.8 m/s )sin17.2 2.60 N.T m a g           

 

LEARN For 0  , the problem becomes the same as that discussed in Sample Problem 

“Block on table, block hanging.” In this case, our results reduce to the familiar 

expressions:  2 1 2/( )a m g m m  , and 1 2 1 2/( ).T m m g m m   

 



  CHAPTER 5 232 

74. We are only concerned with horizontal forces in this problem (gravity plays no direct 

role).  Without loss of generality, we take one of the forces along the +x direction and the 

other at 80 (measured counterclockwise from the x axis).  This calculation is efficiently 

implemented on a vector-capable calculator in polar mode, as follows (using magnitude-

angle notation, with angles understood to be in degrees): 

 

Fnet



  =  (20  0) + (35  80) = (43  53)    | Fnet



 |  =  43 N  .   

 

Therefore, the mass is m = (43 N)/(20 m/s
2
) = 2.2 kg. 

 

75. The goal is to arrive at the least magnitude of 

Fnet ,  and as long as the magnitudes of  


F2  and 


F3  are (in total) less than or equal to 


F1  then we should orient them opposite to 

the direction of 

F1  (which is the +x direction). 

 

(a) We orient both 
 
F F2 3and  in the –x direction. Then, the magnitude of the net force is 

50 – 30 – 20 = 0, resulting in zero acceleration for the tire. 

 

(b) We again orient 
 
F F2 3and  in the negative x direction. We obtain an acceleration 

along the +x axis with magnitude 

 

a
F F F

m


 


 
1 2 3 250

083
N 30N 10N

12 kg
m / s. .  

 

(c) The least value is a = 0. In this case, the forces 
 
F F2 3and  are collectively strong 

enough to have y components (one positive and one negative) that cancel each other and 

still have enough x contributions (in the –x direction) to cancel 

F1 . Since 

 
F F2 3 , we 

see that the angle above the –x axis to one of them should equal the angle below the –x 

axis to the other one (we denote this angle ). We require 

 

   2 350 N 30N cos 30N cosx xF F         

which leads to 

 
F
HG
I
KJ  cos .1 50

34
N

60N
 

 

76. (a) A small segment of the rope has mass and is pulled down by the gravitational 

force of the Earth. Equilibrium is reached because neighboring portions of the rope pull 

up sufficiently on it. Since tension is a force along the rope, at least one of the 

neighboring portions must slope up away from the segment we are considering. Then, the 

tension has an upward component, which means the rope sags. 
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(b) The only force acting with a horizontal component is the applied force 

F.  Treating 

the block and rope as a single object, we write Newton’s second law for it: F = (M + m)a, 

where a is the acceleration and the positive direction is taken to be to the right. The 

acceleration is given by a = F/(M + m). 

 

(c) The force of the rope Fr is the only force with a horizontal component acting on the 

block. Then Newton’s second law for the block gives 

 

F Ma
MF

M m
r  


 

 

where the expression found above for a has been used. 

 

(d) Treating the block and half the rope as a single object, with mass 1
2

M m , where the 

horizontal force on it is the tension Tm at the midpoint of the rope, we use Newton’s 

second law: 

 

 

 

 

/ 2 21
.

2 2
m

M m F M m F
T M m a

M m M m

  
    

  
 

 

77. THINK We have a crate that is being pulled at an angle. We apply Newton’s second 

law to analyze the motion.  

 

EXPRESS Although the full specification of 
 
F manet   

in this situation involves both x and y axes, only the x-

application is needed to find what this particular 

problem asks for. We note that ay = 0 so that there is no 

ambiguity denoting ax simply as a. We choose +x to the 

right and +y up. The free-body diagram (not to scale) is 

shown to the right. The x component of the rope’s 

tension (acting on the crate) is  

 

Fx = F cos= (450 N) cos 38° = 355 N, 

 

and the resistive force (pointing in the –x direction) has 

magnitude f = 125 N. 

 

ANALYZE (a) Newton’s second law leads to 

 

2cos 355 N 125 N
0.74m/s .

310 kg
x

F f
F f ma a

m

  
       

 

(b) In this case, we use Eq. 5-12 to find the mass: / 31.6 kgm W g   . Newton’s second 

law then leads to 
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2355 N 125 N
7.3 m/s .

31.6 kg

x
x

F f
F f m a a

m

 
       


 

 

LEARN The resistive force opposing the motion is due to the friction between the crate 

and the floor. This topic is discussed in greater detail in Chapter 6.  

 

78. We take +x uphill for the m2 = 1.0 kg box and +x rightward for the m1 = 3.0 kg box 

(so the accelerations of the two boxes have the same magnitude and the same sign). The 

uphill force on m2 is F and the downhill forces on it are T and m2g sin , where  = 37°. 

The only horizontal force on m1 is the rightward-pointed tension. Applying Newton’s 

second law to each box, we find 

 

2 2

1

 sin  

                            

F T m g m a

T m a

  


 

which can be added to obtain  

 

F – m2g sin  = (m1 + m2)a. 

This yields the acceleration 

 
2

212 N (1.0 kg)(9.8 m/s )sin 37
1.53 m/s .

1.0 kg 3.0 kg
a

 
 


 

 

Thus, the tension is T = m1a = (3.0 kg)(1.53 m/s
2
) = 4.6 N. 

 

79. We apply Eq. 5-12. 

 

(a) The mass is  

m = W/g = (22 N)/(9.8 m/s
2
) = 2.2 kg. 

 

At a place where g = 4.9 m/s
2
, the mass is still 2.2 kg but the gravitational force is  

 

Fg = mg = (2.2 kg) (4.0 m/s
2
) = 11 N. 

 

(b) As noted, m = 2.2 kg. 

 

(c) At a place where g = 0 the gravitational force is zero. 

 

(d) The mass is still 2.2 kg. 

 

80. We take down to be the +y direction. 

 

(a) The first diagram (shown below left) is the free-body diagram for the person and 

parachute, considered as a single object with a mass of 80 kg + 5.0 kg = 85 kg.  
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 
Fa is the force of the air on the parachute and mg


 is the force of gravity. Application of 

Newton’s second law produces mg – Fa = ma, where a is the acceleration. Solving for Fa 

we find 

    2 285 kg 9.8 m/s 2.5 m/s 620 N.aF m g a      

 

(b) The second diagram (above right) is the free-body diagram for the parachute alone. 
Fa is the force of the air, m gp


 is the force of gravity, and 


Fp  is the force of the person. 

Now, Newton’s second law leads to  

 

mpg + Fp – Fa = mpa. 

 

Solving for Fp, we obtain 

 

    2 25.0 kg 2.5 m/s 9.8 m/s 620 N 580 N.p p aF m a g F        

 

81. The mass of the pilot is m = 735/9.8 = 75 kg. Denoting the upward force exerted by 

the spaceship (his seat, presumably) on the pilot as 

F  and choosing upward as the +y 

direction, then Newton’s second law leads to 

 

  2 2

moon 75 kg 1.6 m/s 1.0 m/s 195 N.F mg ma F       

 

82. With SI units understood, the net force on the box is 

 

   net
ˆ ˆ3.0 14 cos 30 11 i 14 sin30 5.0 17 jF          

 

which yields net
ˆ ˆ(4.1 N) i (5.0 N) jF   . 

 

(a) Newton’s second law applied to the m = 4.0 kg box leads to 

 

2 2net ˆ ˆ(1.0m/s )i (1.3m/s ) j .
F

a
m

    

 

(b) The magnitude of 

a  is  

2
2 2 2 2(1.0 m/s ) 1.3 m/s 1.6 m sa     .  
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(c) Its angle is tan
–1

 [(–1.3 m/s
2
)/(1.0 m/s

2
)] = –50° (that is, 50° measured clockwise from 

the rightward axis). 

 

83. THINK This problem deals with the relationship between the three quantities: force, 

mass and acceleration in Newton’s second law F ma .   

 

EXPRESS The “certain force,” denoted as F, is assumed to be the net force on the object 

when it gives m1 an acceleration a1 = 12 m/s
2
 and when it gives m2 an acceleration a2 = 

3.3 m/s
2
, i.e., 1 1 2 2F m a m a  . The accelerations for 

2 1m m  and 
2 1m m can be solved 

by substituting m1 = F/a1 and 2 2/ .m F a  

 

ANALYZE (a) Now we seek the acceleration a of an object of mass m2 – m1 when F is 

the net force on it. The result is  

 
2 2

21 2

2 2

2 1 2 1 1 2

(12.0 m/s )(3.30 m/s )
 4.55 m/s

( / ) ( / ) 12.0 m/s 3.30 m/s

a aF F
a

m m F a F a a a
    

   
. 

 

(b) Similarly for an object of mass m2 + m1, we have: 

 
2 2

21 2

2 2

2 1 2 1 1 2

(12.0 m/s )(3.30 m/s )
2.59 m/s

( / ) ( / ) 12.0 m/s 3.30 m/s

a aF F
a

m m F a F a a a
     

   
. 

 

LEARN With the same applied force, the greater the mass the smaller the acceleration. 

In this problem, we have 1 2a a a a   . This implies 1 2 1 2 2 1.m m m m m m      

 

84. We assume the direction of motion is +x and assume the refrigerator starts from rest 

(so that the speed being discussed is the velocity v  that results from the process). The 

only force along the x axis is the x component of the applied force 

F . 

 

(a) Since v0 = 0, the combination of Eq. 2-11 and Eq. 5-2 leads simply to 

 

F m
v

t
v

F

m
tx i

i
F
HG
I
KJ  

F
HG

I
KJ

cos
 

 

for i = 1 or 2 (where we denote 1 = 0 and 2 =  for the two cases). Hence, we see that 

the ratio v2 over v1 is equal to cos . 

 

(b) Since v0 = 0, the combination of Eq. 2-16 and Eq. 5-2 leads to 

 

F m
v

x
v

F

m
xx i

i
F
HG
I
KJ  

F
HG

I
KJ

2

2
2




cos
 

 



 

  

237 

for i = 1 or 2 (again, 1 = 0 and 2 =  is used for the two cases). In this scenario, we see 

that the ratio v2 over v1 is equal to cos . 

 

85. (a) Since the performer’s weight is (52 kg)(9.8 m/s
2
) = 510 N, the rope breaks. 

 

(b) Setting T = 425 N in Newton’s second law (with +y upward) leads to 

 

T mg ma a
T

m
g      

which yields |a| = 1.6 m/s
2
. 

 

86. We use Wp = mgp, where Wp is the weight of an object of mass m on the surface of a 

certain planet p, and gp is the acceleration of gravity on that planet. 

 

(a) The weight of the space ranger on Earth is  

 

We = mge = (75 kg) (9.8 m/s
2
) = 7.4  10

2
 N. 

 

(b) The weight of the space ranger on Mars is  

 

Wm = mgm = (75 kg) (3.7 m/s
2
) = 2.8  10

2
 N. 

 

(c) The weight of the space ranger in interplanetary space is zero, where the effects of 

gravity are negligible. 

 

(d) The mass of the space ranger remains the same, m = 75 kg, at all the locations. 

 

87. From the reading when the elevator was at rest, we know the mass of the object is m 

= (65 N)/(9.8 m/s
2
) = 6.6 kg. We choose +y upward and note there are two forces on the 

object: mg downward and T upward (in the cord that connects it to the balance; T is the 

reading on the scale by Newton’s third law). 

 

(a) “Upward at constant speed” means constant velocity, which means no acceleration. 

Thus, the situation is just as it was at rest: T = 65 N. 

 

(b) The term “deceleration” is used when the acceleration vector points in the direction 

opposite to the velocity vector. We’re told the velocity is upward, so the acceleration 

vector points downward (a = –2.4 m/s
2
). Newton’s second law gives 

 
2 2  (6.6 kg)(9.8 m/s 2.4 m/s ) 49 N.T mg ma T       

 

88. We use the notation g as the acceleration due to gravity near the surface of Callisto, m 

as the mass of the landing craft, a as the acceleration of the landing craft, and F as the 

rocket thrust. We take down to be the positive direction. Thus, Newton’s second law 

takes the form mg – F = ma. If the thrust is F1 (= 3260 N), then the acceleration is zero, 
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so mg – F1 = 0. If the thrust is F2 (= 2200 N), then the acceleration is a2 (= 0.39 m/s
2
), so 

mg – F2 = ma2. 

 

(a) The first equation gives the weight of the landing craft: mg = F1 = 3260 N. 

 

(b) The second equation gives the mass: 

 

m
mg F

a






 2

2

2

33260 2200

0 39
2 7 10

N N

m / s
kg

.
. .  

 

(c) The weight divided by the mass gives the acceleration due to gravity:  

 

g = (3260 N)/(2.7  10
3
 kg) = 1.2 m/s

2
. 

 

89. (a) When

F F mgnet   3 0 , we have 

 

F mg   
1

3

1

3
1400 9 8 4 6 102 3kg m / s Nb g c h. .  

 

for the force exerted by each bolt on the engine. 

 

(b) The force on each bolt now satisfies 3F – mg = ma, which yields 

 

    2 2 31 1
1400 kg 9.8 m/s 2.6 m/s 5.8 10 N.

3 3
F m g a       

 

90. We write the length unit light-month, the distance traveled by light in one month, as 

c·month in this solution. 

 

(a) The magnitude of the required acceleration is given by 

 

a
v

t
 


 





010 30 10

30 86400
12 10

8

2
. .

.
. .

b gc h
b gb g

m / s

days s / day
m / s2  

 

(b) The acceleration in terms of g is a
a

g
g g g

F
HG
I
KJ 

F
HG

I
KJ 

12 10
12

2.
.

m / s

9.8 m / s

2

2
 

(c) The force needed is 

 

  6 2 2 81.20 10 kg 1.2 10 m/s 1.4 10 N.F ma       

 

(d) The spaceship will travel a distance d = 0.1 c·month during one month. The time it 

takes for the spaceship to travel at constant speed for 5.0 light-months is 
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t
d

v c
 




50

01
50

.

.

c months
months    4.2 years. 

 

91. THINK We have a motorcycle going up a ramp at a constant acceleration. We apply 

Newton’s second law to calculate the net force on the rider and the force on the rider 

from the motorcycle.     

 

EXPRESS The free-body diagram is 

shown to the right (not to scale). Note 

that 
, ym rF and

, xm rF , respectively, denote 

the y and x components of the force ,m rF  

exerted by the motorcycle on the rider. 

The net force on the rider is  

 

 net .F ma  

  

ANALYZE (a) Since the net force equals ma, then the magnitude of the net force on the 

rider is 

netF ma  = (60.0 kg) (3.0 m/s
2
) = 1.8  10

2
 N. 

 

(b) To calculate the force by the motorcycle on the rider, we apply Newton’s second law 

to the x- and the y-axes separately. For the x-axis, we have: 

 

, sin
xm rF mg ma   

 

where m = 60.0 kg, a = 3.0 m/s
2
, and  = 10°. Thus, , 282 N.

xm rF   Applying it to the y- 

axis (where there is no acceleration), we have 

 

, cos 0
ym rF mg    

 

which gives
, 579 N

ym rF  . Using the Pythagorean theorem, we find 

 

2 2 2 2

, , , (282 N) (579 N) 644 N.
x ym r m r m rF F F      

 

Now, the magnitude of the force exerted on the rider by the motorcycle is the same 

magnitude of force exerted by the rider on the motorcycle, so the answer is 644 N. 

 

LEARN The force exerted by the motorcycle on the rider keeps the rider accelerating in 

the +x-direction, while maintaining contact with the inclines surface ( 0ya  ).  

 

92. We denote the thrust as T and choose +y upward. Newton’s second law leads to 
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5
2 2

4

2.6 10 N
  9.8 m/s 10m/s .

1.3 10 kg
T Mg Ma a


     


 

 

93. THINK In this problem we have mobiles consisting of masses connected by cords. 

We apply Newton’s second law to calculate the tensions in the cords. 

 

EXPRESS The free-body diagrams for m1 and m2 for part (a) are shown to the right.  

 

 
 

The bottom cord is only supporting m2 = 4.5 kg against gravity, so its tension is 

2 2 .T m g  On the other hand, the top cord is supporting a total mass of m1 + m2 = (3.5 kg 

+ 4.5 kg) = 8.0 kg against gravity. Applying Newton’s second law gives 

 

1 2 1 0T T m g    

so the tension is  

1 1 2 1 2( ) .T m g T m m g     

 

ANALYZE (a) From the equations above, we find the tension in the bottom cord to be   

 

T2= m2g = (4.5 kg)(9.8 m/s
2
) = 44 N. 

 

(b) Similarly, the tension in the top cord is  T1= (m1 + m2)g = (8.0 kg)(9.8 m/s
2
) = 78 N. 

 

(c) The free-body diagrams for m3, m4 and m5 for part (b) are shown below (not to scale). 

  

 
From the diagram, we see that the lowest cord supports a mass of m5 = 5.5 kg against 

gravity and consequently has a tension of  
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T5 = m5g  = (5.5 kg)(9.8 m/s
2
) = 54 N. 

 

(d) The top cord, as we are told, has a tension T3 =199 N which supports a total of (199 

N)/(9.80 m/s
2
) = 20.3 kg, 10.3 kg of which is already accounted for in the figure. Thus, 

the unknown mass in the middle must be m4 = 20.3 kg – 10.3 kg = 10.0 kg, and the 

tension in the cord above it must be enough to support  

 

m4 + m5 = (10.0 kg  + 5.50 kg) = 15.5 kg, 

 

so T4 = (15.5 kg)(9.80 m/s
2
) = 152 N.  

 

LEARN Another way to calculate T4 is to examine the forces on m3  one of the 

downward forces on it is T4. From Newton’s second law, we have 3 3 4 0T m g T   , 

which can be solved to give  

 
2

4 3 3 199 N (4.8 kg)(9.8 m/s ) 152 N.T T m g      

 

94. The coordinate choices are made in the problem statement. 

 

(a) We write the velocity of the armadillo as ˆ ˆi jx yv v v  . Since there is no net force 

exerted on it in the x direction, the x component of the velocity of the armadillo is a 

constant: vx = 5.0 m/s. In the y direction at t = 3.0 s, we have (using Eq. 2-11 with 

0 0yv  ) 

 0 0

17 N
3.0 s 4.3 m/s.

12 kg

y

y y y y

F
v v a t v t

m

   
        

  
 

Thus, ˆ ˆ(5.0m/s) i (4.3m/s) j .v    

 

(b) We write the position vector of the armadillo as 

r r rx y  i j . At t = 3.0 s we have 

rx = (5.0 m/s) (3.0 s) = 15 m and (using Eq. 2-15 with v0 y = 0) 

 

 
22 2

0

1 1 1 17 N
3.0 s 6.4 m.

2 2 2 12 kg

y

y y y

F
r v t a t t

m

   
       

  
 

 

The position vector at t = 3.0 s is therefore ˆ ˆ(15 m)i (6.4 m)j .r    

 

95. (a) Intuition readily leads to the conclusion that the heavier block should be the 

hanging one, for largest acceleration. The force that “drives” the system into motion is 

the weight of the hanging block (gravity acting on the block on the table has no effect on 

the dynamics, so long as we ignore friction). Thus, m = 4.0 kg.  

 

The acceleration of the system and the tension in the cord can be readily obtained by 

solving  
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 , .mg T ma T Ma    

 

(b) The acceleration is given by 26.5 m/s .
m

a g
m M

 
  

 
 

(c) The tension is  

13 N.
Mm

T Ma g
m M

 
   

 
 

 

96. According to Newton’s second law, the magnitude of the force is given by F = ma, 

where a is the magnitude of the acceleration of the neutron. We use kinematics (Table 2-

1) to find the acceleration that brings the neutron to rest in a distance d. Assuming the 

acceleration is constant, then v v ad2

0

2 2   produces the value of a: 

 

a
v v

d





 


  



2

0

2 7
2

14

27 2

2

14 10

2 10 10
9 8 10

c h c h
c h

.

.
. .

m / s

m
m / s  

 

The magnitude of the force is consequently 

 

   27 27 21.67 10 kg 9.8 10 m/s 16 N.F ma       

 

97. (a) With SI units understood, the net force is 

 

     net 1 2
ˆ ˆ3.0 N 2.0 N i 4.0 N 6.0 N jF F F         

 

which yields net
ˆ ˆ(1.0 N) i (2.0 N) j.F      

 

(b) The magnitude of netF is 2 2

net (1.0 N) ( 2.0 N) 2.2 N.F      

 

(c) The angle of netF  is 1 2.0 N
tan 63 .

1.0 N
   
    

 
 

(d) The magnitude of 

a  is 2

net / (2.2 N) /(1.0 kg) 2.2 m/s .a F m    

 

(e) Since 

Fnet  is equal to 


a  multiplied by mass m, which is a positive scalar that cannot 

affect the direction of the vector it multiplies,

a has the same angle as the net force, i.e, 

63 .     In magnitude-angle notation, we may write  22.2m/s 63 .a       


