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Chapter 13 
 

1. The gravitational force between the two parts is 

 

 
 2

2 2
= =

Gm M m G
F mM m

r r


  

 

which we differentiate with respect to m and set equal to zero: 

 

 2
= 0 = 2 = 2

dF G
M m M m

dm r
  . 

 

This leads to the result m/M = 1/2. 

 

2. The gravitational force between you and the moon at its initial position (directly 

opposite of Earth from you) is 

0 2( )

m

ME E

GM m
F

R R



 

 

where mM  is the mass of the moon, MER  is the distance between the moon and the Earth, 

and ER  is the radius of the Earth. At its final position (directly above you), the 

gravitational force between you and the moon is 

 

1 2( )

m

ME E

GM m
F

R R



. 

 

(a) The ratio of the moon’s gravitational pulls at the two different positions is 

 
2 2

2 8 6

1

2 8 6

0

/( ) 3.82 10  m 6.37 10  m
1.06898.

/( ) 3.82 10  m 6.37 10  m

m ME E ME E

m ME E ME E

GM m R RF R R

F GM m R R R R

       
      

      
 

 

Therefore, the increase is 0.06898, or approximately 6.9%. 

 

(b) The change of the gravitational pull may be approximated as 

 

1 0 2 2 2 2

3

1 2 1 2
( ) ( )

4
.

m m m mE E

ME E ME E ME ME ME ME

m E

ME

GM m GM m GM m GM mR R
F F

R R R R R R R R

GM mR

R

   
         

     


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On the other hand, your weight, as measured on a scale on Earth, is  
 

2

E
g E

E

GM m
F mg

R
  . 

 

Since the moon pulls you “up,” the percentage decrease of weight is  

 
3 3

22 6
7 51 0

24 8

7.36 10 kg 6.37 10  m
4 4 2.27 10 (2.3 10 )%.

5.98 10 kg 3.82 10  m

m E

g E ME

F F M R

F M R

        
          

     
 

 

3. THINK The magnitude of gravitational force between two objects depends on their 

distance of separation. 

 

EXPRESS The magnitude of the gravitational force of one particle on the other is given 

by F = Gm1m2/r
2
, where m1 and m2 are the masses, r is their separation, and G is the 

universal gravitational constant.  

 

ANALYZE Solve for r using the values given, we obtain 

 

   11 2 2

1 2

12

6.67 10 N m / kg 5.2kg 2.4kg
19m

2.3 10 N

Gm m
r

F





 
  


. 

 

LEARN The force of gravitation is inversely proportional to 2r .  

 

4. We use subscripts s, e, and m for the Sun, Earth and Moon, respectively. Plugging in 

the numerical values (say, from Appendix C) we find 

 
2 2

2 30 8

2 24 11

/ 1.99 10 kg 3.82 10  m
2.16.

/ 5.98 10 kg 1.50 10  m

sm s m sm s em

em e m em e sm

F Gm m r m r

F Gm m r m r

    
      

   
 

 

5. The gravitational force from Earth on you (with mass m) is  

 

 
2

E
g

E

GM m
F mg

R
   

 

where 2 2/ 9.8 m/s .E Eg GM R   If r is the distance between you and a tiny black hole of 

mass 111 10 kgbM    that has the same gravitational pull on you as the Earth, then 

 

2
.b

g

GM m
F mg

r
   

 

Combining the two equations, we obtain  
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11 3 2 11

2 2 2

(6.67 10  m /kg s )(1 10 kg)
0.8 m.

9.8 m/s

b bE

E

GM m GMGM m
mg r

R r g

  
       

 

6. The gravitational forces on m5 from the two 5.00 g masses m1 and m4 cancel each 

other. Contributions to the net force on m5 come from the remaining two masses: 

 

   

 

11 2 2 3 3 3

net 2
1

14

6.67 10  N m /kg 2.50 10  kg 3.00 10  kg 1.00 10  kg

2 10  m

1.67 10  N.

F

   





     




 

 

 

The force is directed along the diagonal between m2 and m3, toward m2. In unit-vector 

notation, we have 

 

 14 14

net net
ˆ ˆ ˆ ˆ(cos45 i sin 45 j) (1.18 10 N)i  (1.18 10 N) jF F          . 

 

7. We require the magnitude of force (given by Eq. 13-1) exerted by particle C on A be 

equal to that exerted by B on A.  Thus, 

 
GmA mC

r
2   = 

GmA mB

d
2   . 

 

We substitute in mB = 3mA   and mB = 3mA, and (after canceling “mA”) solve for r. We 

find r = 5d.  Thus, particle C is placed on the x axis, to the left of particle A (so it is at a 

negative value of x), at x = –5.00d.  

 

8. Using F = GmM/r
2
, we find that the topmost mass pulls upward on the one at the 

origin with 1.9  10
8

 N, and the rightmost mass pulls rightward on the one at the origin 

with 1.0  10
8

 N. Thus, the (x, y) components of the net force, which can be converted to 

polar components (here we use magnitude-angle notation), are 

 

   8 8 8

net 1.04 10 ,1.85 10 2.13 10 60.6 .F           

 

(a) The magnitude of the force is 2.13  10
8

 N. 

 

(b) The direction of the force relative to the +x axis is 60.6 . 

 

9. THINK Both the Sun and the Earth exert a gravitational pull on the space probe. The 

net force can be calculated by using superposition principle.   

 

EXPRESS At the point where the two forces balance, we have 2 2

1 2/ /E SGM m r GM m r , 

where ME is the mass of Earth, MS is the mass of the Sun, m is the mass of the space 
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probe, r1 is the distance from the center of Earth to the probe, and r2 is the distance from 

the center of the Sun to the probe. We substitute r2 = d  r1, where d is the distance from 

the center of Earth to the center of the Sun, to find 

 
22

1 1

.SE
MM

r d r



 

 

ANALYZE Using the values for ME, MS, and d given in Appendix C, we take the 

positive square root of both sides to solve for r1. A little algebra yields 

 
11

8

1
30 24

1.50 10  m
2.60 10  m.

1 / 1 (1.99 10  kg)/(5.98 10  kg)S E

d
r

M M


   

   
 

 

LEARN The fact that 1r d indicates that the probe is much closer to the Earth than the 

Sun.  
 

10. Using Eq. 13-1, we find 

      FAB 
    

 = 
2GmA

2

d
2   j

^
 ,   FAC 

    

=  – 
4GmA

2

3d
2   i

^
  . 

 

Since the vector sum of all three forces must be zero, we find the third force (using 

magnitude-angle notation) is  

       FAD 
    

 = 
GmA

2

d
2  (2.404      –56.3º) . 

 

This tells us immediately the direction of the vector  r  


  (pointing from the origin to 

particle D), but to find its magnitude we must solve (with mD = 4mA) the following 

equation:  

2.404






GmA

2

d
2   = 

GmAmD

r
2    . 

 

This yields r = 1.29d.  In magnitude-angle notation, then,  r  


  = (1.29     –56.3º) , with 

SI units understood. The “exact” answer without regard to significant figure 

considerations is 

 
6 6

2 , 3 .
13 13 13 13

r
 

   
 

 

 

(a) In (x, y) notation, the x coordinate is x = 0.716d. 

 

(b) Similarly, the y coordinate is y = 1.07d.   

 

11. (a) The distance between any of the spheres at the corners and the sphere at the center 

is  

/ 2cos30 / 3r     
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where  is the length of one side of the equilateral triangle. The net (downward) 

contribution caused by the two bottom-most spheres (each of mass m) to the total force 

on m4 has magnitude 

4 4

2 2
2 = 2 sin30 = 3 .y

Gm m Gm m
F

r

 
 

 
 

 

This must equal the magnitude of the pull from M, so 

 

4 4

2 2
3

( / 3)

Gm m Gm m
  

which readily yields m = M. 

 

(b) Since m4 cancels in that last step, then the amount of mass in the center sphere is not 

relevant to the problem. The net force is still zero. 

 

12. (a) We are told the value of the force when particle C is removed (that is, as its 

position x goes to infinity), which is a situation in which any force caused by C vanishes 

(because Eq. 13-1 has r
2
 in the denominator).  Thus, this situation only involves the force 

exerted by A on B: 

 
net, 2

A B
x AB

AB

Gm m
F F

r
   4.17  10

10 
 N . 

 

Since mB = 1.0 kg and 0.20 mABr  , then this yields  

 
2 2 10

11 3 2

(0.20 m) (4.17 10 N)
0.25 kg

(6.67 10  m /kg s )(1.0 kg)

AB AB
A

B

r F
m

Gm






  

 
. 

 

(b) We note (from the graph) that the net force on B is zero when x = 0.40 m.  Thus, at 

that point, the force exerted by C must have the same magnitude (but opposite direction) 

as the force exerted by A (which is the one discussed in part (a)).  Therefore 

        

 
2(0.40 m)

C BGm m
 = 4.17  10

10 
 N      mC = 1.00 kg. 

 

13. If the lead sphere were not hollowed the magnitude of the force it exerts on m would 

be F1 = GMm/d
2
. Part of this force is due to material that is removed. We calculate the 

force exerted on m by a sphere that just fills the cavity, at the position of the cavity, and 

subtract it from the force of the solid sphere. 

 

The cavity has a radius r = R/2. The material that fills it has the same density (mass to 

volume ratio) as the solid sphere, that is, Mc/r
3
= M/R

3
, where Mc is the mass that fills the 

cavity. The common factor 4/3 has been canceled. Thus, 
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3 3

3 3
= = = .

8 8
c

r R M
M M M

R R

   
   
   

 

 

The center of the cavity is d  r = d  R/2 from m, so the force it exerts on m is 

 

 

 
2 2

/8
= .

/2

G M m
F

d R
 

The force of the hollowed sphere on m is 

 

   
1 2 2 22 2

11 3 2

2 2 2 2 2

9

1 1 1
= = = 1

8 /2 8 1 /2

(6.67 10  m /s kg)(2.95 kg)(0.431 kg) 1
1

(9.00 10 m) 8[1 (4 10 m) /(2 9 10 m)]

8.31 10 N.

GMm
F F F GMm

d dd R R d



  



   
     

       

  
  

     

 

 

 

14. All the forces are being evaluated at the origin (since particle A is there), and all 

forces (except the net force) are along the location vectors ,r  which  point to particles B 

and C.  We note that the angle for the location-vector pointing to particle B is 180º – 

30.0º = 150º (measured counterclockwise from the +x axis).  The component along, say, 

the x axis of one of the force vectors F  


  is simply Fx/r in this situation (where F is the 

magnitude of F  


 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r
2
, 

then the aforementioned x component would have the form GmMx/r
3
; similarly for the 

other components. With mA = 0.0060 kg, mB = 0.0120 kg, and mC = 0.0080 kg, we 

therefore have 

Fnet x = 
3 3

A C CA B B

B C

Gm m xGm m x

r r
   = (2.77  10

14 
N)cos(163.8º) 

and  

Fnet y = 
3 3

A C CA B B

B C

Gm m yGm m y

r r
  = (2.77  10

14 
N)sin(163.8º) 

 

where rB = dAB = 0.50 m, and (xB, yB) = (rBcos(150º), rBsin(150º)) (with SI units 

understood).  A fairly quick way to solve for rC is to consider the vector difference 

between the net force and the force exerted by A, and then employ the Pythagorean 

theorem.  This yields rC = 0.40 m. 

 

(a) By solving the above equations, the x coordinate of particle C is  xC = 0.20 m. 

 

(b) Similarly, the y coordinate of particle C is  yC = 0.35 m. 
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15. All the forces are being evaluated at the origin (since particle A is there), and all 

forces are along the location vectors ,r  which point to particles B, C, and D. In three 

dimensions, the Pythagorean theorem becomes r = x
2
 + y

2
 + z

2 
 .   The component along, 

say, the x axis of one of the force-vectors F  


  is simply Fx/r in this situation (where F is 

the magnitude of F  


 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r
2
 

then the aforementioned x component would have the form GmMx/r
3
; similarly for the 

other components.  For example, the z component of the force exerted on particle A by 

particle B is 

GmA mB zB

rB
3  = 

GmA(2mA)(2d)

((2d)
2
 + d

2
 + (2d)

2
)
3  = 

2

2

4

27

AGm

d
. 

 

In this way, each component can be written as some multiple of GmA
2
/d

2
.  For the z 

component of the force exerted on particle A by particle C, that multiple is –9 14 /196. 

For the x components of the forces exerted on particle A by particles B and C, those 

multiples are 4/27 and  –3 14 /196, respectively.  And for the y components of the forces 

exerted on particle A by particles B and C, those multiples are 2/27 and 3 14 /98, 

respectively.  To find the distance r to particle D one method is to solve (using the fact 

that the vector add to zero) 
 

2 2 2 2 22 2 2

2 2 2

4 3 14 2 3 14 4 9 14
0.4439

27 196 27 98 27 196

A D A AGm m Gm Gm

r d d

           
                                   

 

With mD = 4mA, we obtain 

 

2 1/ 4

2 2 2

4 0.4439 16
4.357

( ) 0.4439
r d d

r d

   
      

   
. 

 

The individual values of x, y, and z (locating the particle D) can then be found by 

considering each component of the GmAmD/r
2
 force separately.  

 

(a) The x component of r would be  
2

2 2

3 2 2

4 3 14
0.0909

27 196

A D A AGm m x Gm Gm

r d d

 
      

 

, 

 

which yields 
3 3

2 2

(4.357 )
0.0909 0.0909 1.88

(4 )

A A

D A

m r m d
x d

m d m d
      .  

(b) Similarly, y = 3.90d, 

 

(c) and z = 0.489d. 

 

In this way we are able to deduce that (x, y, z) = (1.88d, 3.90d, 0.489d). 
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16. Since the rod is an extended object, we cannot apply Equation 13-1 directly to find 

the force. Instead, we consider a small differential element of the rod, of mass dm  of 

thickness dr  at a distance r from 1m . The gravitational force between dm  and 1m is 

 

1 1

2 2

( / )Gm dm Gm M L dr
dF

r r
  , 

 

where we have substituted ( / )dm M L dr  

since mass is uniformly distributed. The 

direction of dF  is to the right (see figure). The 

total force can be found by integrating over the 

entire length of the rod: 

 

1 1 1

2

1 1

( )

L d

d

Gm M Gm M Gm Mdr
F dF

L r L L d d d L d

  
      

  
  . 

 

Substituting the values given in the problem statement, we obtain 

 
11 3 2

101 (6.67 10  m /kg s )(0.67 kg)(5.0 kg)
3.0 10 N.

( ) (0.23 m)(3.0 m 0.23 m)

Gm M
F

d L d


 

   
 

 

 

17. (a) The gravitational acceleration at the surface of the Moon is gmoon = 1.67 m/s
2
 (see 

Appendix C). The ratio of weights (for a given mass) is the ratio of g-values, so  

 

Wmoon = (100 N)(1.67/9.8) = 17 N. 

 

(b) For the force on that object caused by Earth’s gravity to equal 17 N, then the free-fall 

acceleration at its location must be ag = 1.67 m/s
2
. Thus, 

 

7

2
1.5 10 mE E

g

g

Gm Gm
a r

r a
      

 

so the object would need to be a distance of r/RE = 2.4 “radii” from Earth’s center. 

 

18. The free-body diagram of the force acting on the plumb 

line is shown to the right. The mass of the sphere is 

  

3 3 3 3 3

13

4 4
(2.6 10 kg/m )(2.00 10  m)

3 3

8.71 10 kg.

M V R
 

 
 

     
 

 
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The force between the “spherical” mountain and the plumb line is 2/F GMm r . 

Suppose at equilibrium the line makes an angle   with the vertical and the net force 

acting on the line is zero. Therefore, 

net, 2

net,

0 sin sin

0 cos

x

y

GMm
F T F T

r

F T mg

     

  




 

 

The two equations can be combined to give 
2

tan
F GM

mg gr
   . The distance the lower 

end moves toward the sphere is  

 
11 3 2 13

2 3 2

6

(6.67 10  m /kg s )(8.71 10 kg)
tan (0.50 m)

(9.8)(3 2.00 10  m)

8.2 10  m.

GM
x l l

gr






  
  

 

 

 

 

19. THINK Earth’s gravitational acceleration varies with altitude.   

 

EXPRESS The acceleration due to gravity is given by ag = GM/r
2
, where M is the mass 

of Earth and r is the distance from Earth’s center. We substitute r = R + h, where R is the 

radius of Earth and h is the altitude, to obtain  

 

 
2 2( )

g

E

GM GM
a

r R h
 


. 

ANALYZE Solving for h, we obtain / g Eh GM a R  . From Appendix C, RE = 6.37  

10
6
 m and M = 5.98  10

24
 kg, so 

 

  
 

11 3 2 24

6 6

2

6.67 10 m / s kg 5.98 10 kg
6.37 10 m 2.6 10 m.

4.9m / s
h

  
      

 

LEARN We may rewrite ag as 

 
2

2 2 2

/

(1 / ) (1 / )

E
g

E E

GM RGM g
a

r h R h R
  

 
 

 

where 29.83 m/sg   is the gravitational 

acceleration on the Surface of the Earth. The plot 

below depicts how ag decreases with increasing 

altitude. 
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20. We follow the method shown in Sample Problem 13.2 – “Difference in acceleration 

at head and feet.” Thus, 

2 3
= = 2E E

g g

GM GM
a da dr

r r
   

 

which implies that the change in weight is 

 

 top bottom .gW W m da   

 

However, since Wbottom = GmME/R
2
 (where R is Earth’s mean radius), we have 

 

 
3

bottom3 6

1.61 10  m
= 2 = 2 = 2 600 N 0.303 N

6.37 10  m

E
g

GmM dr
mda dr W

R R


    


 

 

for the weight change (the minus sign indicating that it is a decrease in W). We are not 

including any effects due to the Earth’s rotation (as treated in Eq. 13-13). 

 

21. From Eq. 13-14, we see the extreme case is when “g” becomes zero, and plugging in 

Eq. 13-15 leads to 
3 2

2

2
0 = = .

GM R
R M

R G


   

 

Thus, with R = 20000 m and  = 2 rad/s, we find M = 4.7  10
24

 kg  5  10
24

 kg. 

 

22. (a) Plugging Rh = 2GMh /c
2
 into the indicated expression, we find 

 

       

4

2 2 22 2

1
= = =

1.001 2.0021.001 2 /

h h
g

hh h

GM GM c
a

MR GGM c
 

 

which yields ag = (3.02  10
43

 kg·m/s
2
) /Mh. 

 

(b) Since Mh is in the denominator of the above result, ag decreases as Mh increases. 

 

(c) With Mh = (1.55  10
12

) (1.99  10
30

 kg), we obtain ag = 9.82 m/s
2
. 

 

(d) This part refers specifically to the very large black hole treated in the previous part. 

With that mass for M in Eq. 13-16, and r = 2.002GM/c
2
, we obtain 

 

     

6

3 3 2
2

2
= 2 =

2.0022.002 /
g

GM c
da dr dr

GMGM c
   
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where dr  1.70 m as in Sample Problem 13.2 – “Difference in acceleration at head and 

feet.” This yields (in absolute value) an acceleration difference of 7.30  10
15

 m/s
2
. 

 

(e) The miniscule result of the previous part implies that, in this case, any effects due to 

the differences of gravitational forces on the body are negligible. 

 

23. (a) The gravitational acceleration is 2

2
= = 7.6 m/s .g

GM
a

R
 

 

(b) Note that the total mass is 5M. Thus, 
 

 
2

2

5
= = 4.2 m/s .

3
g

G M
a

R
 

 

24. (a) What contributes to the GmM/r
2
 force on m is the (spherically distributed) mass M 

contained within r (where r is measured from the center of M). At point A we see that M1 

+ M2 is at a smaller radius than r = a and thus contributes to the force: 

 

 1 2

on 2
.m

G M M m
F

a


  

 

(b) In the case r = b, only M1 is contained within that radius, so the force on m becomes 

GM1m/b
2
. 

 

(c) If the particle is at C, then no other mass is at smaller radius and the gravitational 

force on it is zero. 

 

25. Using the fact that the volume of a sphere is 4R
3
/3, we find the density of the sphere: 

 

 

4
3 3total

334 4
3 3

1.0 10 kg
2.4 10 kg/m .

1.0 m

M

R


 


     

 

When the particle of mass m (upon which the sphere, or parts of it, are exerting a 

gravitational force) is at radius r (measured from the center of the sphere), then whatever 

mass M is at a radius less than r must contribute to the magnitude of that force (GMm/r
2
). 

 

(a) At r = 1.5 m, all of Mtotal is at a smaller radius and thus all contributes to the force: 

 

 7total
on 2

3.0 10 N/kg .m

GmM
F m

r

    

 

(b) At r = 0.50 m, the portion of the sphere at radius smaller than that is 

 

3 34
= =1.3 10  kg.

3
M r 

 
 

 
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Thus, the force on m has magnitude GMm/r
2
 = m (3.3  10

7
 N/kg). 

 

(c) Pursuing the calculation of part (b) algebraically, we find 

 

 34
3 7

on 2

N
6.7 10 .

kg m
m

Gm r
F mr

r

 
 

   
 

 

 

26. (a) Since the volume of a sphere is 4R
3
/3, the density is 

 

total total

3 34
3

3
.

4

M M

R R


 
   

 

When we test for gravitational acceleration (caused by the sphere, or by parts of it) at 

radius r (measured from the center of the sphere), the mass M, which is at radius less than 

r, is what contributes to the reading (GM/r
2
). Since M = (4r

3
/3) for r  R, then we can 

write this result as 
3

total

3

total

2 3

3 4

4 3

M r
G

R GM r

r R





  
  
  

  

 

when we are considering points on or inside the sphere. Thus, the value ag referred to in 

the problem is the case where r = R: 

total

2
=g

GM
a ,

R
 

 

and we solve for the case where the acceleration equals ag/3: 

 

total total

2 3
.

3 3

GM GM r R
r

R R
    

 

(b) Now we treat the case of an external test point. For points with r > R the acceleration 

is GMtotal/r
2
, so the requirement that it equal ag/3 leads to 

 

total total

2 2
3 .

3

GM GM
r R

R r
    

 

27. (a) The magnitude of the force on a particle with mass m at the surface of Earth is 

given by F = GMm/R
2
, where M is the total mass of Earth and R is Earth’s radius. The 

acceleration due to gravity is 
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  

 

11 3 2 24

2

22 6

6.67 10  m /s kg 5.98 10  kg
= = = = 9.83 m/s .

6.37 10  m
g

F GM
a

m R

  


 

 

(b) Now ag = GM/R
2
, where M is the total mass contained in the core and mantle together 

and R is the outer radius of the mantle (6.345  10
6
 m, according to the figure). The total 

mass is  

M = (1.93  10
24

 kg + 4.01  10
24

 kg ) = 5.94  10
24

 kg. 

 

The first term is the mass of the core and the second is the mass of the mantle. Thus, 

 

  

 

11 3 2 24

2

2
6

6.67 10  m /s kg 5.94 10  kg
= = 9.84 m/s .

6.345 10  m
ga

  


 

 

(c) A point 25 km below the surface is at the mantle–crust interface and is on the surface 

of a sphere with a radius of R = 6.345  10
6
 m. Since the mass is now assumed to be 

uniformly distributed, the mass within this sphere can be found by multiplying the mass 

per unit volume by the volume of the sphere: 3 3( / ) ,e eM R R M  where Me is the total 

mass of Earth and Re is the radius of Earth. Thus, 

 

 
3

6
24 24

6

6.345 10  m
= 5.98 10  kg = 5.91 10  kg.

6.37 10  m
M

 
  

 
 

 

The acceleration due to gravity is 

 

  

 

11 3 2 24

2

22 6

6.67 10  m /s kg 5.91 10  kg
= = = 9.79 m/s .

6.345 10  m
g

GM
a

R

  


 

 

28. (a) Using Eq. 13-1, we set GmM/r
2
  equal to  

1

2
 GmM/R

2
, and we find r = R 2 .  Thus, 

the distance from the surface is  ( 2  – 1)R = 0.414R.  

 

(b) Setting the density  equal to M/V where V = 
4

3
 R

3
, we use Eq. 13-19: 

 

 
3 3 2

4 4 1
/ 2.

3 3 4 / 3 2

Gmr Gmr M GMmr GMm
F r R

R R R

  



 
      

 
 

  

29. The equation immediately preceding Eq. 13-28 shows that  K = –U (with U evaluated 

at the planet’s surface: –5.0  10
9
 J) is required to “escape.”  Thus, K = 5.0  10

9
 J. 
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30. The gravitational potential energy is 

 
 2= =

Gm M m G
U Mm m

r r


    

 

which we differentiate with respect to m and set equal to zero (in order to minimize). 

Thus, we find M  2m = 0, which leads to the ratio m/M = 1/2 to obtain the least potential 

energy.  

 

Note that a second derivative of U with respect to m would lead to a positive result 

regardless of the value of m, which means its graph is everywhere concave upward and 

thus its extremum is indeed a minimum. 

 

31. THINK Given the mass and diameter of Mars, we can calculate its mean density, 

gravitational acceleration and escape speed.  

 

EXPRESS The density of a uniform sphere is given by  = 3M/4R
3
, where M is its 

mass and R is its radius. On the other hand, the value of gravitational acceleration ag at 

the surface of a planet is given by ag = GM/R
2
. for a particle of mass m, its escape speed 

is given by 

21 2
.

2

mM GM
mv G v

R R
    

 

ANALYZE (a) From the definition of density above, we find the ratio of the density of 

Mars to the density of Earth to be 
3

3 4

3 3

0.65 10  km
= = 0.11 = 0.74.

3.45 10  km

M M E

E E M

M R

M R





 
 

 
 

 

(b) The value of gravitational acceleration for Mars is 

 

 
2

2 2 4
2 2

2 2 2 2 3

0.65 10  km
0.11 9.8 m/s 3.8 m/s .

3.45 10  km

M M E E M E
g M g E

M M E E E M

GM M R GM M R
a a

R R M R M R

 
       

 

 

(c) For Mars, the escape speed is 

 

  11 3 2 24

3

6

2(6.67 10  m /s kg) 0.11 5.98 10  kg2
5.0 10  m/s.

3.45 10  m

M
M

M

GM
v

R

  
   


 

 

LEARN The ratio of the escape speeds on Mars and on Earth is 

 

 
3

3

2 / 6.5 10  km
(0.11) 0.455

3.45 10  km2 /

M MM M E

E E ME E

GM Rv M R

v M RGM R


     


. 
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32. (a) The gravitational potential energy is 

 

   11 3 2

11
6.67 10  m /s kg 5.2 kg 2.4 kg

= = =  4.4 10  J.
19 m

GMm
U

r




 

     

 

(b) Since the change in potential energy is 

 

 11 112
= = 4.4 10  J = 2.9 10  J,

3 3

GMm GMm
U

r r

  
        

 
 

 

the work done by the gravitational force is W =  U = 2.9  10
11

 J. 

 

(c) The work done by you is W´ = U = 2.9  10
11

 J. 

 

33. The amount of (kinetic) energy needed to escape is the same as the (absolute value of 

the) gravitational potential energy at its original position. Thus, an object of mass m on a 

planet of mass M and radius R needs K = GmM/R in order to (barely) escape. 

(a) Setting up the ratio, we find 

= = 0.0451m m E

E E m

K M R

K M R
 

 

using the values found in Appendix C. 

 

(b) Similarly, for the Jupiter escape energy (divided by that for Earth) we obtain 

 

= = 28.5.J J E

E E J

K M R

K M R
 

 

34. (a) The potential energy U at the surface is Us = –5.0  10
9
 J according to the graph, 

since U is inversely proportional to r (see Eq. 13-21), at an r-value a factor of 5/4 times 

what it was at the surface then U must be 4 Us/5.  Thus, at r = 1.25Rs, U = – 4.0  10
9
 J.  

Since mechanical energy is assumed to be conserved in this problem, we have 

  

K + U = –2.0  10
9
 J 

 

at this point.  Since U = – 4.0  10
9
 J here, then 92.0 10 JK    at this point. 

 

(b) To reach the point where the mechanical energy equals the potential energy (that is, 

where U = – 2.0  10
9 

J) means that U must reduce (from its value at r = 1.25Rs) by a 

factor of 2, which means the r value must increase (relative to r = 1.25Rs) by a 

corresponding factor of 2.  Thus, the turning point must be at r = 2.5Rs. 
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35. Let m = 0.020 kg and d = 0.600 m (the original edge-length, in terms of which the 

final edge-length is d/3). The total initial gravitational potential energy (using Eq. 13-21 

and some elementary trigonometry) is 

 

Ui = – 
4Gm

2

d
 – 

2Gm
2

2 d
 . 

 

Since U is inversely proportional to r then reducing the size by 1/3 means increasing the 

magnitude of the potential energy by a factor of 3, so 

 

         Uf  = 3Ui      U = 2Ui = 2(4 + 2 )








– 
Gm

2

d
  = – 4.82  10

–13
 J . 

 

36. Energy conservation for this situation may be expressed as follows: 

 

1 1 2 2 1 2

1 2

GmM GmM
K U K U K K

r r
        

 

where M = 5.0  10
23

 kg, r1 = R = 3.0  10
6
 m and m = 10 kg. 

 

(a) If K1 = 5.0  10
7
 J and r2 = 4.0  10

6
 m, then the above equation leads to 

 

7

2 1

2 1

1 1
2.2 10 J.K K GmM

r r

 
     

 
 

 

(b) In this case, we require K2 = 0 and r2 = 8.0  10
6
 m, and solve for K1: 

 

7

1 2

1 2

1 1
6.9 10 J.K K GmM

r r

 
     

 
 

 

37. (a) The work done by you in moving the sphere of mass mB equals the change in the 

potential energy of the three-sphere system. The initial potential energy is 

 

A C B CA B
i

Gm m Gm mGm m
U

d L L d
  


 

and the final potential energy is 

 

.A C B CA B
f

Gm m Gm mGm m
U

L d L d
  


 

The work done is 

 



   CHAPTER 13 634 

11 3 2

1 1 1 1

2 2 2
( )

( ) ( ) ( )

0.12 m 2(0.040 m)
(6.67 10 m / s kg) (0.010 kg)(0.080 kg 0.020 kg)

(0.040 m)(0.12 0.040 m)

5.0 10

f i B A C

B A C B A C

W U U Gm m m
d L d L d d

L d d L L d
Gm m m Gm m m

d L d d L d d L d



    
              

   
    

   


   



   13 J.

 

 

(b) The work done by the force of gravity is (Uf  Ui) = 5.0  10
13

 J. 

 

38. (a) The initial gravitational potential energy is 

 
11 3 2

8 8

(6.67 10  m /s kg) (20 kg) (10 kg)

0.80 m

1.67 10 J 1.7 10 J.

A B
i

i

GM M
U

r



 

 
   

     

 

 

(b) We use conservation of energy (with Ki = 0): 

 
11 3 2

8 (6.67 10  m /s kg)(20 kg)(10 kg)
    1.7 10

0.60 m
iU K U K


  

        

 

which yields K = 5.6  10
9

 J. Note that the value of r is the difference between 0.80 m 

and 0.20 m. 

 

39. THINK The escape speed on the asteroid is related to the gravitational acceleration at 

the surface of the asteroid and its size.  

 

EXPRESS We use the principle of conservation of energy. Initially the particle is at the 

surface of the asteroid and has potential energy Ui = GMm/R, where M is the mass of 

the asteroid, R is its radius, and m is the mass of the particle being fired upward. The 

initial kinetic energy is 21
2 mv . The particle just escapes if its kinetic energy is zero when 

it is infinitely far from the asteroid. The final potential and kinetic energies are both zero. 

Conservation of energy yields  

GMm/R + ½mv
2
 = 0. 

 

We replace GM/R with agR, where ag is the acceleration due to gravity at the surface.  

Then, the energy equation becomes agR + ½v
2
 = 0. Solving for v, we have  

 

2 .gv a R  
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ANALYZE (a) Given that 500 kmR  and 23.0 m/sga  , we find the escape speed to 

be 

2 3 32 2(3.0 m/s )(500 10 m) 1.7 10 m/s.gv a R      

 

(b) Initially the particle is at the surface; the potential energy is Ui = GMm/R and the 

kinetic energy is Ki = ½mv
2
. Suppose the particle is a distance h above the surface when it 

momentarily comes to rest. The final potential energy is Uf = GMm/(R + h) and the final 

kinetic energy is Kf = 0. Conservation of energy yields 

 

21
.

2

GMm GMm
mv

R R h
   


 

 

We replace GM with agR
2
 and cancel m in the energy equation to obtain 

 
2

21
.

2 ( )

g

g

a R
a R v

R h
   


 

The solution for h is 

 
2 2 3 2

3

2 2 3 2

5

2 2(3.0 m/s ) (500 10 m)
(500 10 m)

2 2(3.0 m/s ) (500 10 m) (1000 m/s)

2.5 10 m.

g

g

a R
h R

a R v


    

  

 

 

 

(c) Initially the particle is a distance h above the surface and is at rest. Its potential energy 

is Ui = GMm/(R + h) and its initial kinetic energy is Ki = 0. Just before it hits the 

asteroid its potential energy is Uf = GMm/R. Write 21
2 fmv  for the final kinetic energy. 

Conservation of energy yields 

21
.

2

GMm GMm
mv

R h R
   


 

 

We substitute agR
2
 for GM and cancel m, obtaining 

 
2

21
.

2

g

g

a R
a R v

R h
   


 

The solution for v is 

 
2 2 3 2

2 3

3 3

3

2 2(3.0 m/s )(500 10 m)
2 2(3.0 m/s ) (500 10 m)

(500 10 m) +(1000 10 m)

1.4 10 m/s.

g

g

a R
v a R

R h


    

  

 

 

 

LEARN The key idea in this problem is to realize that energy is conserved in the process: 
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0i i f fK U K U K U       . 

 

The decrease in potential energy is equal to the gain in kinetic energy, and vice versa.   

 

40. (a) From Eq. 13-28, we see that 0 / 2 Ev GM R  in this problem.  Using energy 

conservation, we have 
1

2
 mv0

2
 – GMm/RE = – GMm/r 

 

which yields r = 4RE/3. So the multiple of RE is 4/3 or 1.33. 

 

(b) Using the equation in the textbook immediately preceding Eq. 13-28, we see that in 

this problem we have Ki = GMm/2RE, and the above manipulation (using energy 

conservation) in this case leads to r = 2RE. So the multiple of RE is 2.00. 

 

(c) Again referring to the equation in the textbook immediately preceding Eq. 13-28, we 

see that the mechanical energy = 0 for the “escape condition.”  

 

41. THINK The two neutron stars are attracted toward each other due to their 

gravitational interaction. 

 

EXPRESS The momentum of the two-star system is conserved, and since the stars have 

the same mass, their speeds and kinetic energies are the same. We use the principle of 

conservation of energy. The initial potential energy is Ui = GM
2
/ri, where M is the mass 

of either star and ri is their initial center-to-center separation. The initial kinetic energy is 

zero since the stars are at rest. The final potential energy is 2 /f fU GM r  , where the 

final separation is / 2f ir r . We write Mv
2
 for the final kinetic energy of the system. This 

is the sum of two terms, each of which is ½Mv
2
. Conservation of energy yields 

 
2 2

22
.

i i

GM GM
Mv

r r
     

ANALYZE (a) The solution for v is 

 
11 3 2 30

4

10

(6.67 10 m / s kg)(10 kg)
8.2 10 m/s.

10 mi

GM
v

r

 
     

 

(b) Now the final separation of the centers is rf = 2R = 2  10
5
 m, where R is the radius of 

either of the stars. The final potential energy is given by Uf = GM
2
/rf and the energy 

equation becomes  

GM
2
/ri = GM

2
/rf + Mv

2
. 

 

The solution for v is 
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11 3 2 30

5 10

7

1 1 1 1
(6.67 10 m / s kg) (10 kg)

2 10 m 10 m

1.8 10 m/s.

f i

v GM
r r


   

            

 

 

 

LEARN The speed of the stars as a function of 

their final separation is plotted below. The 

decrease in gravitational potential energy is 

accompanied by an increase in kinetic energy, 

so that the total energy of the two-star system 

remains conserved.  

 

 

 

42. (a) Applying Eq. 13-21 and the Pythagorean theorem leads to 

 

       U =  – 






GM

2

2D
 + 

2GmM

y
2
 + D

2   

 

where M is the mass of particle B (also that of particle C) and m is the mass of particle A.  

The value given in the problem statement (for infinitely large y, for which the second 

term above vanishes) determines M, since D is given.  Thus M = 0.50 kg. 

 

(b) We estimate (from the graph) the y = 0 value to be Uo = – 3.5 × 10
10 

J.  Using this, 

our expression above determines m.  We obtain m = 1.5 kg. 

 

43. (a) If r is the radius of the orbit then the magnitude of the gravitational force acting on 

the satellite is given by GMm/r
2
, where M is the mass of Earth and m is the mass of the 

satellite. The magnitude of the acceleration of the satellite is given by v
2
/r, where v is its 

speed. Newton’s second law yields GMm/r
2
 = mv

2
/r. Since the radius of Earth is 6.37  

10
6
 m, the orbit radius is r = (6.37  10

6
 m + 160  10

3
 m) = 6.53  10

6
 m. The solution 

for v is 

 
11 3 2 24

3

6

(6.67 10 m / s kg)(5.98 10 kg)
7.82 10 m/s.

6.53 10 m

GM
v

r

  
   


 

 

(b) Since the circumference of the circular orbit is 2r, the period is 

 
6

3

3

2 2 (6.53 10 m)
5.25 10 s.

7.82 10 m/s

r
T

v

  
   


 

 

This is equivalent to 87.5 min. 
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44. Kepler’s law of periods, expressed as a ratio, is 

 
3 2 23

1

2 1 lunar month

s s s

m m

r T T

r T

      
        

      
 

 

which yields Ts = 0.35 lunar month for the period of the satellite. 

 

45. The period T and orbit radius r are related by the law of periods: T
2
 = (42

/GM)r
3
, 

where M is the mass of Mars. The period is 7 h 39 min, which is 2.754  10
4
 s. We solve 

for M: 

 

2 3 2 6 3
23

22 11 3 2 4

4 4 (9.4 10 m)
6.5 10 kg.

(6.67 10 m / s kg) 2.754 10 s

r
M

GT

 




   

  
 

 

46. From Eq. 13-37, we obtain v = /GM r  for the speed of an object in circular orbit 

(of radius r) around a planet of mass M. In this case, M = 5.98  10
24

 kg and  

 

r = (700 + 6370)m = 7070 km = 7.07  10
6
 m. 

 

The speed is found to be v = 7.51  10
3
 m/s. After multiplying by 3600 s/h and dividing 

by 1000 m/km this becomes v = 2.7  10
4
 km/h. 

 

(a) For a head-on collision, the relative speed of the two objects must be 2v = 5.4  10
4
 

km/h. 

 

(b) A perpendicular collision is possible if one satellite is, say, orbiting above the equator 

and the other is following a longitudinal line. In this case, the relative speed is given by 

the Pythagorean theorem: 2 2   = 3.8  10
4
 km/h. 

 

47. THINK The centripetal force on the Sun is due to the gravitational attraction between 

the Sun and the stars at the center of the Galaxy.  

 

EXPRESS Let N be the number of stars in the galaxy, M be the mass of the Sun, and r be 

the radius of the galaxy. The total mass in the galaxy is N M and the magnitude of the 

gravitational force acting on the Sun is  

 

 
2

2 2

( )
g

GM NM GNM
F

R R
  . 

 

The force, pointing toward the galactic center, is the centripetal force on the Sun. Thus,  

 
2 2

2c g

Mv GNM
F F

R R
   . 
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The magnitude of the Sun’s acceleration is a = v
2
/R, where v is its speed. If T is the 

period of the Sun’s motion around the galactic center then v = 2R/T and a = 4
2
R/T

2
. 

Newton’s second law yields  

GNM
2
/R

2
 = 4

2
MR/T

2
. 

The solution for N is 
2 3

2

4
.

R
N

GT M


  

 

ANALYZE The period is 2.5  10
8
 y, which is 7.88  10

15
 s, so 

 
2 20 3

10

11 3 2 15 2 30

4 (2.2 10 m)
5.1 10 .

(6.67 10 m / s kg)(7.88 10 s) (2.0 10 kg)
N





  

   
 

 

LEARN The number of stars in the Milky Way is between 1110 to 114 10 . Our 

simplified model provides a reasonable estimate. 

 

48. Kepler’s law of periods, expressed as a ratio, is 

 
3 2 2

3(1.52)
1y

M M M

E E

a T T

a T

     
       

    
 

 

where we have substituted the mean-distance (from Sun) ratio for the semi-major axis 

ratio. This yields TM = 1.87 y. The value in Appendix C (1.88 y) is quite close, and the 

small apparent discrepancy is not significant, since a more precise value for the semi-

major axis ratio is aM/aE = 1.523, which does lead to TM = 1.88 y using Kepler’s law. A 

question can be raised regarding the use of a ratio of mean distances for the ratio of semi-

major axes, but this requires a more lengthy discussion of what is meant by a ”mean 

distance” than is appropriate here. 

 

49. (a) The period of the comet is 1420 years (and one month), which we convert to T = 

4.48  10
10

 s. Since the mass of the Sun is 1.99  10
30

 kg, then Kepler’s law of periods 

gives 
2

10 2 3 13

11 3 2 30

4
(4.48 10 s) 1.89 10 m.

(6.67 10  m /kg s )(1.99 10 kg)
a a




 
     

   
 

 

(b) Since the distance from the focus (of an ellipse) to its center is ea and the distance 

from center to the aphelion is a, then the comet is at a distance of 

 
13 13(0.9932 1) (1.89 10  m) 3.767 10 mea a       

 

when it is farthest from the Sun. To express this in terms of Pluto’s orbital radius (found 

in Appendix C), we set up a ratio: 
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13

12

3.767 10
6,4 .

5.9 10
P PR R

 
 

 
 

 

50. To “hover” above Earth (ME = 5.98  10
24

 kg) means that it has a period of 24 hours 

(86400 s). By Kepler’s law of periods, 

 
2

2 3 74
(86400) 4.225 10 m.

E

r r
GM

 
    
 

 

 

Its altitude is therefore r  RE (where RE = 6.37  10
6
 m), which yields 3.58  10

7
 m. 

 

51. THINK The satellite moves in an elliptical orbit about Earth. An elliptical orbit can 

be characterized by its semi-major axis and eccentricity. 

 

EXPRESS The greatest distance between the satellite and Earth’s center (the apogee 

distance) and the least distance (perigee distance) are, respectively,  

 

Ra = RE + da = 6.37  10
6
 m + 360  10

3
 m = 6.73  10

6
 m 

 Rp = RE + dp = 6.37  10
6
 m + 180  10

3
 m = 6.55  10

6
 m. 

 

Here RE = 6.37  10
6
 m is the radius of Earth.  

 

ANALYZE The semi-major axis is given by 

 
6 6

66.73 10 m + 6.55 10 m
6.64 10 m.

2 2

a pR R
a

  
     

 

(b) The apogee and perigee distances are related to the eccentricity e by Ra = a(1 + e) and 

Rp = a(1  e). Add to obtain Ra + Rp = 2a and a = (Ra + Rp)/2. Subtract to obtain Ra  Rp 

= 2ae. Thus, 
6 6

6 6

6.73 10 m 6.55 10 m
0.0136.

2 6.73 10 m 6.55 10 m

a p a p

a p

R R R R
e

a R R

    
   

   
 

 

LEARN Since e is very small, the orbit is nearly circular. On the other hand, if e is close 

to unity, then the orbit would be a long, thin ellipse.    

 

52. (a) The distance from the center of an ellipse to a focus is ae where a is the semi-

major axis and e is the eccentricity. Thus, the separation of the foci (in the case of Earth’s 

orbit) is 

   11 92 2 1.50 10 m 0.0167 5.01 10 m.ae      

 

(b) To express this in terms of solar radii (see Appendix C), we set up a ratio: 
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9

8

5.01 10 m
7.20.

6.96 10 m





 

 

53. From Kepler’s law of periods (where T = (2.4 h)(3600 s/h) = 8640 s), we find the 

planet’s mass M: 
2

2 6 3 244
(8640s) (8.0 10 m) 4.06 10 kg.M

GM

 
     
 

 

 

However, we also know ag = GM/R
2
 = 8.0 m/s

2
 so that we are able to solve for the 

planet’s radius: 
11 3 2 24

6

2

(6.67 10  m /kg s )(4.06 10 kg)
5.8 10 m.

8.0 m/sg

GM
R

a

  
     

 

54. The two stars are in circular orbits, not about each other, but about the two-star 

system’s center of mass (denoted as O), which lies along the line connecting the centers 

of the two stars. The gravitational force between the stars provides the centripetal force 

necessary to keep their orbits circular. Thus, for the visible, Newton’s second law gives 

 

 
2

1 2 1

2

1

Gm m m v
F

r r
   

 

where r is the distance between the centers of the stars. To find the relation between r  

and 
1r , we locate the center of mass relative to 1m . Using Equation 9-1, we obtain 

 

 1 2 2 1 2
1 1

1 2 1 2 2

(0)m m r m r m m
r r r

m m m m m

 
   

 
. 

 

On the other hand, since the orbital speed of 1m  is 12 /v r T , then 1 / 2r vT   and the 

expression for r can be rewritten as   

1 2

2 2

m m vT
r

m 


 . 

 

Substituting r  and 1r  into the force equation, we obtain  

 
2 3

1 2 1

2 2 2

1 2

4 2

( )

Gm m m v
F

m m v T T

 
 


 

or  
3 3 5 3

302

2 11 3 2

1 2

(2.7 10 m/s) (1.70 days)(86400 s/day)
6.90 10 kg

( ) 2 2 (6.67 10  m /kg s )

3.467 ,s

m v T

m m G

M

  


   

  


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where 301.99 10 kgsM    is the mass of the sun. With 1 6 sm M , we write 2 sm M  

and solve the following cubic equation for  : 

 
3

2
3.467 0

(6 )




 


. 

 

The equation has one real solution: 9.3  , which implies 2 / 9sm M  . 

 

55. (a) If we take the logarithm of Kepler’s law of periods, we obtain 

 

2 22 1
2 log ( ) = log (4 / ) + 3 log ( )  log ( )  log ( )   log (4 / )

3 3
T GM a a T GM     

 

where we are ignoring an important subtlety about units (the arguments of logarithms 

cannot have units, since they are transcendental functions). Although the problem can be 

continued in this way, we prefer to set it up without units, which requires taking a ratio. If 

we divide Kepler’s law (applied to the Jupitermoon system, where M is mass of Jupiter) 

by the law applied to Earth orbiting the Sun (of mass Mo), we obtain 

 
3

2 o( / )  =  E

E

M a
T T

M r

  
  

   
 

where TE = 365.25 days is Earth’s orbital period and rE = 1.50  10
11

 m is its mean 

distance from the Sun. In this case, it is perfectly legitimate to take logarithms and obtain 

 

o2 1
log log log

3 3

E E Mr T

a T M

    
      

     
 

 

(written to make each term positive), which is the way we plot the data (log (rE/a) on the 

vertical axis and log (TE/T) on the horizontal axis). 

 

 
 

(b) When we perform a least-squares fit to the data, we obtain  
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log (rE/a) = 0.666 log (TE/T) + 1.01, 

 

which confirms the expectation of slope = 2/3 based on the above equation. 

 

(c) And the 1.01 intercept corresponds to the term 1/3 log (Mo/M), which implies 

 

3.03o o

3
10 .

1.07 10

M M
M

M
  


 

 

Plugging in Mo = 1.99  10
30

 kg (see Appendix C), we obtain M = 1.86  10
27

 kg for 

Jupiter’s mass. This is reasonably consistent with the value 1.90  10
27

 kg found in 

Appendix C. 

 

56. (a) The period is T = 27(3600) = 97200 s, and we are asked to assume that the orbit is 

circular (of radius r = 100000 m). Kepler’s law of periods provides us with an 

approximation to the asteroid’s mass: 

 

 
2

32 164
(97200) 100000 6.3 10 kg.M

GM

 
    
 

 

 

(b) Dividing the mass M by the given volume yields an average density equal to  

 

 = (6.3  10
16

 kg)/(1.41  10
13

 m
3
) = 4.4  10

3
 kg/m

3
, 

 

which is about 20% less dense than Earth. 

 

57. In our system, we have m1 = m2 = M (the mass of our Sun, 1.99  10
30

 kg). With r = 

2r1 in this system (so r1 is one-half the Earth-to-Sun distance r), and v = r/T for the 

speed, we have 

 
2 2 3

1 2
12

2
.

2

r TGm m r
m T

r r GM

 
    

 

With r = 1.5  10
11

 m, we obtain T = 2.2  10
7
 s. We can express this in terms of Earth-

years, by setting up a ratio: 

 
7

7

2.2 10 s
(1y) = 1 y 0.71 y.

1y 3.156 10 s

T
T

   
   

   
 

 

58. (a) We make use of 
3 3

2

2

1 2( ) 2

m v T

m m G



 

 

where m1 = 0.9MSun is the estimated mass of the star. With v = 70 m/s and T = 1500 days 

(or 1500  86400 = 1.3  10
8
 s), we find 
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3

232

2

Sun 2

1.06 10 kg .
(0.9 )

m

M m
 


 

 

Since MSun  2.0  10
30

 kg, we find m2  7.0  10
27

 kg. Dividing by the mass of Jupiter 

(see Appendix C), we obtain m  3.7mJ. 

 

(b) Since v = 2r1/T is the speed of the star, we find 

 
8

9

1

(70m/s) (1.3 10 s)
1.4 10 m

2 2

vT
r

 


     

 

for the star’s orbital radius. If r is the distance between the star and the planet, then r2 = r 

 r1 is the orbital radius of the planet, and is given by 

 

111 2 1
2 1 1

2 2

1 3.7 10 m .
m m m

r r r
m m

 
     

 
 

 

Dividing this by 1.5  10
11

 m (Earth’s orbital radius, rE) gives r2 = 2.5rE. 

 

59. Each star is attracted toward each of the other two by a force of magnitude GM
2
/L

2
, 

along the line that joins the stars. The net force on each star has magnitude 2(GM
2
/L

2
) cos 

30 and is directed toward the center of the triangle. This is a centripetal force and keeps 

the stars on the same circular orbit if their speeds are appropriate. If R is the radius of the 

orbit, Newton’s second law yields (GM
2
/L

2
) cos 30 = Mv

2
/R. 

 
 

The stars rotate about their center of mass (marked by a circled dot on the diagram above) 

at the intersection of the perpendicular bisectors of the triangle sides, and the radius of the 

orbit is the distance from a star to the center of mass of the three-star system. We take the 

coordinate system to be as shown in the diagram, with its origin at the left-most star. The 

altitude of an equilateral triangle is  3 / 2 L , so the stars are located at x = 0, y = 0; x = 

L, y = 0; and x = L/2, 3 / 2y L . The x coordinate of the center of mass is xc = (L + 
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L/2)/3 = L/2 and the y coordinate is  3 / 2 / 3 / 2 3cy L L  . The distance from a star 

to the center of mass is  

   2 2 2 2/ 4 /12 / 3c cR x y L L L     . 

 

Once the substitution for R is made, Newton’s second law then becomes 

 2 2 22 / cos30 3 /GM L Mv L  . This can be simplified further by recognizing that 

cos 30 3 / 2.   Divide the equation by M then gives GM/L
2
 = v

2
/L, or /v GM L . 

 

60. (a) From Eq. 13-40, we see that the energy of each satellite is GMEm/2r. The total 

energy of the two satellites is twice that result: 

 

 

11 3 2 24

6

9

(6.67 10  m /kg s )(5.98 10 kg)(125 kg)

7.87 10  m

6.33 10 J.

E
A B

GM m
E E E

r

  
   



 

 

 

(b) We note that the speed of the wreckage will be zero (immediately after the collision), 

so it has no kinetic energy at that moment. Replacing m with 2m in the potential energy 

expression, we therefore find the total energy of the wreckage at that instant is  


11 3 2 24

9

6

(2 ) (6.67 10  m /kg s )(5.98 10 kg)2(125 kg)
6.33 10 J.

2 2(7.87 10  m)

EGM m
E

r

  
   




 

(c) An object with zero speed at that distance from Earth will simply fall toward the 

Earth, its trajectory being toward the center of the planet. 

 

61. The energy required to raise a satellite of mass m to an altitude h (at rest) is given by 

 

1

1 1
,E

E E

E U GM m
R R h

 
    

 
 

 

and the energy required to put it in circular orbit once it is there is 

 

 
2

2 orb

1
.

2 2

E

E

GM m
E mv

R h
 


 

Consequently, the energy difference is 

 

1 2

1 3
.

2( )
E

E E

E E E GM m
R R h

 
     

 
 

 

(a) Solving the above equation, the height h0 at which 0E   is given by 
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 6

0

0

1 3
0    3.19 10  m. 

2( ) 2

E

E E

R
h

R R h
     


 

 

(b) For greater height 0h h , 0,E   implying 1 2E E . Thus, the energy of lifting is 

greater.  

 

62. Although altitudes are given, it is the orbital radii that enter the equations. Thus, rA = 

(6370 + 6370) km = 12740 km, and rB = (19110 + 6370) km = 25480 km. 

 

(a) The ratio of potential energies is 

 

/ 1
.

/ 2

B B A

A A B

U GmM r r

U GmM r r


  


 

 

(b) Using Eq. 13-38, the ratio of kinetic energies is 

 

/ 2 1
.

/ 2 2

B B A

A A B

K GmM r r

K GmM r r
    

 

(c) From Eq. 13-40, it is clear that the satellite with the largest value of r has the smallest 

value of |E| (since r is in the denominator). And since the values of E are negative, then 

the smallest value of |E| corresponds to the largest energy E. Thus, satellite B has the 

largest energy. 

 

(d) The difference is  

1 1
.

2
B A

B A

GmM
E E E

r r

 
      

 
 

 

Being careful to convert the r values to meters, we obtain E = 1.1  10
8
 J. The mass M 

of Earth is found in Appendix C. 

 

63. THINK We apply Kepler’s laws to analyze the motion of the asteroid. 

 

EXPRESS We use the law of periods: T
2
 = (4

2
/GM)r

3
, where M is the mass of the Sun 

(1.99  10
30

 kg) and r is the radius of the orbit. On the other hand, the kinetic energy of 

any asteroid or planet in a circular orbit of radius r is given by K = GMm/2r, where m is 

the mass of the asteroid or planet. We note that it is proportional to m and inversely 

proportional to r. 

 

ANALYZE (a) The radius of the orbit is twice the radius of Earth’s orbit: r = 2rSE = 

2(150  10
9
 m) = 300  10

9
 m. Thus, the period of the asteroid is 
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2 3 2 9 3
7

11 3 2 30

4 4 (300 10 m)
8.96 10 s.

(6.67 10 m / s kg)(1.99 10 kg)

r
T

GM

 



   

  
 

 

Dividing by (365 d/y) (24 h/d) (60 min/h) (60 s/min), we obtain T = 2.8 y. 

 

(b) The ratio of the kinetic energy of the asteroid to the kinetic energy of Earth is  

 

 4 4/(2 ) 1
(2.0 10 ) 1.0 10

/(2 ) 2

SE

E E SE E

rK GMm r m

K GMM r M r

  
       

 
. 

 

LEARN An alternative way to calculate the ratio of kinetic energies is to use 
2 / 2K mv  and note that 2 /v r T . This gives 

 
2 22

2

2

2

4 4

/ 2 /

/ 2 /

1.0 y
(2.0 10 ) 2 1.0 10

2.8 y

E

E E E E E E SE E E SE

TK mv m v m r T m r

K M v M v M r T M r T

 

    
        

     

 
     

 

 

 

in agreement with what we found in (b).  

 

64. (a) Circular motion requires that the force in Newton’s second law provide the 

necessary centripetal acceleration: 
2

2

GmM v
m

r r
 . 

 

Since the left-hand side of this equation is the force given as 80 N, then we can solve for 

the combination mv
2
 by multiplying both sides by r = 2.0  10

7
 m. Thus, mv

2
 = (2.0  10

7
 

m) (80 N) = 1.6  10
9
 J. Therefore, 

 

 2 9 81 1
1.6 10 J 8.0 10 J .

2 2
K mv      

 

(b) Since the gravitational force is inversely proportional to the square of the radius, then 

 
2

.
F r

F r

  
  

 
 

Thus, F´ = (80 N) (2/3)
2
 = 36 N. 

 

65. (a) From Kepler’s law of periods, we see that T is proportional to r
3/2

. 

 

(b) Equation 13-38 shows that K is inversely proportional to r. 
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(c) and (d) From the previous part, knowing that K is proportional to v
2
, we find that v is 

proportional to 1/ r . Thus, by Eq. 13-31, the angular momentum (which depends on the 

product rv) is proportional to r/ r  = r . 

 

66. (a) The pellets will have the same speed v but opposite direction of motion, so the 

relative speed between the pellets and satellite is 2v. Replacing v with 2v in Eq. 13-38 is 

equivalent to multiplying it by a factor of 4. Thus, 

 

  11 3 2 24

rel 3

5

2(6.67 10 m / kg s ) 5.98 10 kg 0.0040 kg
4

2 (6370 500) 10 m

4.6 10 J.

EGM m
K

r

   
  

  

 

 

 

(b) We set up the ratio of kinetic energies: 

 

  

5
2rel

2
1

bullet 2

4.6 10 J
2.6 10 .

0.0040kg 950m/s

K

K


    

 

67. (a) The force acting on the satellite has magnitude GMm/r
2
, where M is the mass of 

Earth, m is the mass of the satellite, and r is the radius of the orbit. The force points 

toward the center of the orbit. Since the acceleration of the satellite is v
2
/r, where v is its 

speed, Newton’s second law yields GMm/r
2
 = mv

2
/r and the speed is given by v = 

/GM r . The radius of the orbit is the sum of Earth’s radius and the altitude of the 

satellite:  

r = (6.37  10
6
 + 640  10

3
) m = 7.01  10

6
 m. 

Thus, 

 11 3 2 24

3

6

(6.67 10 m / s kg) 5.98 10 kg
7.54 10 m/s.

7.01 10 m

GM
v

r

  
   


 

 

(b) The period is  

 

T = 2r/v = 2(7.01  10
6
 m)/(7.54  10

3
 m/s) = 5.84  10

3
 s   97 min. 

 

(c) If E0 is the initial energy then the energy after n orbits is E = E0  nC, where C = 1.4  

10
5
 J/orbit. For a circular orbit the energy and orbit radius are related by E = GMm/2r, 

so the radius after n orbits is given by r = GMm/2E. 

The initial energy is 

 

  11 3 2 24

9

0 6

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.26 10 J,

2(7.01 10 m)
E

  
    


 

 

the energy after 1500 orbits is 
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  9 5 9

0 6.26 10 J 1500 orbit 1.4 10 J orbit 6.47 10 J,E E nC           

 

and the orbit radius after 1500 orbits is 

 

  11 3 2 24

6

9

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.78 10 m.

2( 6.47 10 J)
r

  
   

 
 

 

The altitude is  

h = r  R = (6.78  10
6
 m  6.37  10

6
 m) = 4.1  10

5
 m. 

 

Here R is the radius of Earth. This torque is internal to the satelliteEarth system, so the 

angular momentum of that system is conserved. 

 

(d) The speed is 

 

 11 3 2 24

3

6

(6.67 10 m / s kg) 5.98 10 kg
7.67 10 m / s 7.7 km/s.

6.78 10 m

GM
v

r

  
    


 

 

(e) The period is 
6

3

3

2 2 (6.78 10 m)
5.6 10 s

7.67 10 m/s

r
T

v

  
    


93 min. 

 

(f) Let F be the magnitude of the average force and s be the distance traveled by the 

satellite. Then, the work done by the force is W = Fs. This is the change in energy: Fs 

= E. Thus, F = E/s. We evaluate this expression for the first orbit. For a complete 

orbit s = 2r = 2(7.01  10
6
 m) = 4.40  10

7
 m, and E = 1.4  10

5
 J. Thus, 

 
5

3

7

1.4 10 J
3.2 10 N.

4.40 10 m

E
F

s

 
    


 

 

(g) The resistive force exerts a torque on the satellite, so its angular momentum is not 

conserved. 

 

(h) The satelliteEarth system is essentially isolated, so its momentum is very nearly 

conserved. 

 

68. The orbital radius is 66370 km 400 km 6770 km 6.77 10  m.Er R h        

 

(a) Using Kepler’s law given in Eq. 13-34, we find the period of the ships to be  
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2 3 2 6 3
3

0 11 3 2 24

4 4 (6.77 10 m)
5.54 10 s 92.3 min.

(6.67 10 m / s kg)(5.98 10 kg)

r
T

GM

 



    

  
 

 

(b) The speed of the ships is 

 
6

3 2

0 3

0

2 2 (6.77 10  m)
7.68 10 m/s

5.54 10 s

r
v

T

  
   


. 

 

(c) The new kinetic energy is  

 

 2 2 2 3 2 10

0

1 1 1
(0.99 ) (2000 kg)(0.99) (7.68 10 m/s) 5.78 10  J.

2 2 2
K mv m v       

 

(d) Immediately after the burst, the potential energy is the same as it was before the burst. 

Therefore, 
11 3 2 24

11

6

(6.67 10 m / s kg)(5.98 10 kg)(2000 kg)
1.18 10  J.

6.77 10 m

GMm
U

r

  
      


 

 

(e) In the new elliptical orbit, the total energy is  

 
10 11 105.78 10  J ( 1.18 10  J) 6.02 10  J.E K U           

 

(f) For elliptical orbit, the total energy can be written as (see Eq. 13-42) / 2E GMm a  , 

where a is the semi-major axis. Thus,  

 
11 3 2 24

6

10

(6.67 10 m / s kg)(5.98 10 kg)(2000 kg)
6.63 10 m.

2 2( 6.02 10  J)

GMm
a

E

  
     

 
 

 

(g) To find the period, we use Eq. 13-34 but replace r with a. The result is 

 
2 3 2 6 3

3

11 3 2 24

4 4 (6.63 10 m)
5.37 10 s 89.5 min.

(6.67 10 m / s kg)(5.98 10 kg)

a
T

GM

 



    

  
 

 

(h) The orbital period T for Picard’s elliptical orbit is shorter than Igor’s by 

 

0 5540 s 5370 s 170 sT T T      . 

 

Thus, Picard will arrive back at point P ahead of Igor by 170 s – 90 s = 80 s. 

 

69. We define the “effective gravity” in his environment as geff = 220/60 = 3.67 m/s
2
. 

Thus, using equations from Chapter 2 (and selecting downward as the positive direction), 

we find the “fall-time” to be 
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2

0 2

1 2(2.1 m)
1.1 s.

2 3.67 m/s
effy v t g t t       

 

70. (a) The gravitational acceleration ag is defined in Eq. 13-11.  The problem is 

concerned with the difference between ag evaluated at r = 50Rh and ag evaluated at r = 

50Rh + h (where h is the estimate of your height).  Assuming h is much smaller than 50Rh 

then we can approximate h as the dr that is present when we consider the differential of 

Eq. 13-11: 

       |dag| = 
2GM

 r
3  dr    

2GM

50
3
Rh

3 h  = 
2GM

50
3
(2GM/c

2
)
3 h . 

 

If we approximate |dag| = 10 m/s
2
 and h  1.5 m, we can solve this for M.  Giving our 

results in terms of the Sun’s mass means dividing our result for M by 2   10
30

 kg.  Thus, 

admitting some tolerance into our estimate of h we find the “critical” black hole mass 

should in the range of 105 to 125 solar masses. 

 

(b) Interestingly, this turns out to be lower limit (which will surprise many students) since 

the above expression shows |dag| is inversely proportional to M.  It should perhaps be 

emphasized that a distance of 50Rh from a small black hole is much smaller than a 

distance of 50Rh from a large black hole. 

 

71. (a) All points on the ring are the same distance (r = x
2
 + R

2 
 ) from the particle, so 

the gravitational potential energy is simply U =  –GMm/ x
2
 + R

2 
 , from Eq. 13-21.  The 

corresponding force (by symmetry) is expected to be along the x axis, so we take a 

(negative) derivative of U (with respect to x) to obtain it (see Eq. 8-20).  The result for the 

magnitude of the force is GMmx(x
2
 + R

2
)
3/2

. 

 

(b) Using our expression for U, the change in potential energy as the particle falls to the 

center is  

 
2 2

1 1
U GMm

R x R

 
    

 
 

 

By conservation of mechanical energy, this must “turn into” kinetic energy, 
2 / 2K U mv    . We solve for the speed and obtain 

 

2

2 2 2 2

1 1 1 1 1
2

2
mv GMm v GM

R Rx R x R

   
       

    
. 

 

72. (a) With 302.0 10 kgM    and r = 10000 m, we find 12 2

2
1.3 10 m/s .g

GM
a

r
    

 

(b) Although a close answer may be gotten by using the constant acceleration equations 

of Chapter 2, we show the more general approach (using energy conservation): 
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o oK U K U    

 

where Ko = 0, K = ½mv
2
, and U is given by Eq. 13-21. Thus, with ro = 10001 m, we find 

 

6

o

1 1
2 1.6 10 m/s .v GM

r r

 
    

 
 

 

73. Using energy conservation (and Eq. 13-21) we have 

 

         K1  – 
GMm

 r1
  = K2 – 

GMm

 r2
  . 

 

(a) Plugging in two pairs of values (for (K1 ,r1) and (K2 ,r2)) from the graph and using the 

value of G and M (for Earth) given in the book, we find  m  1.0  10
3
 kg. 

 

(b) Similarly, v = (2K/m)
1/2

  1.5  10
3
 m/s  (at  r = 1.945   10

7
 m). 

 

74. We estimate the planet to have radius r = 10 m. To estimate the mass m of the planet, 

we require its density equal that of Earth (and use the fact that the volume of a sphere is 

4r
3
/3): 

3

3 34 / 3 4 / 3

E
E

E E

m M r
m M

r R R

 
    

   
 

 

which yields (with ME  6  10
24

 kg and RE  6.4  10
6
 m) m = 2.3  10

7
 kg. 

 

(a) With the above assumptions, the acceleration due to gravity is 

 

  11 3 2 7

5 2 5 2

2 2

6.7 10  m /s kg 2.3 10  kg
1.5 10 m s 2 10 m s .

(10 m)
g

Gm
a

r



 
  

       

 

(b) Equation 13-28 gives the escape speed: 
2

0.02 m/s .
Gm

v
r

   

 

75. We use m1 for the 20 kg of the sphere at (x1, y1) = (0.5, 1.0) (SI units understood), m2 

for the 40 kg of the sphere at (x2, y2) = (1.0, 1.0), and m3 for the 60 kg of the sphere at 

(x3, y3) = (0, 0.5). The mass of the 20 kg object at the origin is simply denoted m. We 

note that 1 21.25, 2r r  , and r3 = 0.5 (again, with SI units understood). The force nF  

that the n
th

 sphere exerts on m has magnitude 2/n nGm m r  and is directed from the origin 

toward mn, so that it is conveniently written as 
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 2 3
ˆ ˆ ˆ ˆ= i + j = i + j .n n n n

n n n

n n n n

Gm m x y Gm m
F x y

r r r r

 
 
 

 

 

Consequently, the vector addition to obtain the net force on m becomes 

 

3 3 3
9 7

net 3 3
=1 1 1

ˆ ˆ ˆ ˆ= i j ( 9.3 10 N)i (3.2 10 N)jn n n n
n

n n nn n

m x m y
F F Gm

r r

 

 

    
           

    
    . 

 

Therefore, we find the net force magnitude is 7

net 3.2 10 NF   . 

 

76. THINK We apply Newton’s law of gravitation to calculate the force between the 

meteor and the satellite.  

 

EXPRESS We use F = Gmsmm/r
2
, where ms is the mass of the satellite, mm is the mass of 

the meteor, and r is the distance between their centers. The distance between centers is r 

= R + d = 15 m + 3 m = 18 m. Here R is the radius of the satellite and d is the distance 

from its surface to the center of the meteor.  

 

ANALYZE The gravitational force between the meteor and the satellite is 

 

   

 

11 2 2

11

22

6.67 10 N m / kg 20kg 7.0kg
2.9 10 N.

18m

s sGm m
F

r




 

     

 

LEARN The force of gravitation is inversely proportional to 2r . 

 

77. We note that rA (the distance from the origin to sphere A, which is the same as the 

separation between A and B) is 0.5, rC = 0.8, and rD = 0.4 (with SI units understood). The 

force kF  that the k
th

 sphere exerts on mB has magnitude 2/k B kGm m r  and is directed from 

the origin toward mk so that it is conveniently written as 

 

 2 3
ˆ ˆ ˆ ˆ= i + j = i + j .k B k k k B

k k k

k k k k

Gm m x y Gm m
F x y

r r r r

 
 
 

 

 

Consequently, the vector addition (where k equals A, B, and D) to obtain the net force on 

mB becomes 

5

net 3 3
ˆ ˆ ˆ= i j (3.7 10 N)j.k k k k

k B

k k kk k

m x m y
F F Gm

r r


    

        
    

    

 

78. (a) We note that rC (the distance from the origin to sphere C, which is the same as the 

separation between C and B) is 0.8, rD = 0.4, and the separation between spheres C and D 

is rCD = 1.2 (with SI units understood). The total potential energy is therefore 
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4

2 2 2
= 1.3 10  JB C C DB D

C D CD

GM M GM MGM M

r r r

      

 

using the mass-values given in the previous problem. 

 

(b) Since any gravitational potential energy term (of the sort considered in this chapter) is 

necessarily negative (GmM/r
2
 where all variables are positive) then having another mass 

to include in the computation can only lower the result (that is, make the result more 

negative). 

 

(c) The observation in the previous part implies that the work I do in removing sphere A 

(to obtain the case considered in part (a)) must lead to an increase in the system energy; 

thus, I do positive work. 

 

(d) To put sphere A back in, I do negative work, since I am causing the system energy to 

become more negative. 

 

79. THINK Since the orbit is circular, the net gravitational force on the smaller star is 

equal to the centripetal force.  

 

EXPRESS The magnitude of the net gravitational force on one of the smaller stars (of 

mass m) is 

 
22 2

.
42

GMm Gmm Gm m
F M

r rr

 
    

 
 

 

This supplies the centripetal force needed for the motion of the star: 

 
2

2 4

Gm m v
M m

r r

 
  

 
 

 

where 2 /v r T . Combining the two expressions allows us to solve for T. 

 

ANALYZE Plugging in for speed v, we arrive at an equation for the period T: 

 
3 22

.
( / 4)

r
T

G M m





 

LEARN In the limit where m M , we recover the expected result 
3 22 r

T
GM


  for two 

bodies.  

 

80. If the angular velocity were any greater, loose objects on the surface would not go 

around with the planet but would travel out into space. 
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(a) The magnitude of the gravitational force exerted by the planet on an object of mass m 

at its surface is given by F = GmM / R
2
, where M is the mass of the planet and R is its 

radius. According to Newton’s second law this must equal mv
2
 / R, where v is the speed 

of the object. Thus, 
2

2
= .

GM v

R R
 

 

With 34 /3M R  where  is the density of the planet, and 2 /v R T , where T is the 

period of revolution, we find 
2

2

4 4
= .

3

R
G R

T

 
  

We solve for T and obtain 

3
T

G




 . 

 

(b) The density is 3.0  10
3
 kg/m

3
. We evaluate the equation for T: 

 

  
3

11 3 2 3 3

3
6.86 10 s 1.9h.

6.67 10 m / s kg 3.0 10 kg/m
T




   
  

 

 

81. THINK In a two-star system, the stars rotate about their common center of mass.  

 

EXPRESS The situation is depicted on the right. The 

gravitational force between the two stars (each having 

a mass M) is 

 
2 2

2 2(2 ) 4
g

GM GM
F

r r
   

  

The gravitational force between the stars provides the 

centripetal force necessary to keep their orbits circular.  
 

Thus, writing the centripetal acceleration as r2
 where  is the angular speed, we have 

 
2

2

24
g c

GM
F F Mr

r
   . 

 

ANALYZE (a) Substituting the values given, we find the common angular speed to be 

 
11 2 2 30

7

3 11 3

1 1 (6.67 10 N m /kg )(3.0 10 kg)
2.2 10 rad/s.

2 2 (1.0 10  m)

GM

r



  

   

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(b) To barely escape means to have total energy equal to zero (see discussion prior to Eq. 

13-28). If m is the mass of the meteoroid, then 

 

2 41 4
0 8.9 10 m/s .

2

GmM GmM GM
mv v

r r r
        

 

LEARN Comparing with Eq. 13-28, we see that the escape speed of the two-star system 

is the same as that of a star with mass 2M.  

 

82. The key point here is that angular momentum is conserved: 

 

Ipp = Iaa 

 

which leads to 2( / )p a p ar r  ,but rp = 2a – ra where a is determined by Eq. 13-34 

(particularly, see the paragraph after that equation in the textbook).  Therefore, 

 

              p = 
ra

2 
a

(2(GMT 
2


2
)
1/3

 – ra)
2  = 9.24  10

5
 rad/s . 

 

83. THINK The orbit of the shuttle goes from circular to elliptical after changing its speed by firing the 

thrusters.  

 

EXPRESS We first use the law of periods: T
2
 = (4

2
/GM)r

3
, where M is the mass of the 

planet and r is the radius of the orbit. After the orbit of the shuttle turns elliptical by firing 

the thrusters to reduce its speed, the semi-major axis is / 2a GMm E  , where 

E K U   is the mechanical energy of the shuttle and its new period becomes 

2 34 /T a GM  .   

 

ANALYZE (a) Using Kepler’s law of periods, we find the period to be  

  

2 2 7 3
3 4

11 2 2 25

4 4 (4.20 10  m)
2.15 10 s .

(6.67 10 N m /kg )(9.50 10 kg)
T r

GM

 


  
    

   
 

 

(b) The speed is constant (before she fires the thrusters), so  

 

 
7

4

0 4

2 2 (4.20 10 m)
1.23 10 m/s

2.15 10 s

r
v

T

  
   


. 

 

(c) A two percent reduction in the previous value gives  

 
4 4

00.98 0.98(1.23 10 m/s) 1.20 10 m/sv v     . 
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(d) The kinetic energy is 2 4 2 111 1
(3000 kg)(1.20 10 m/s) 2.17 10  J

2 2
K mv     . 

 

(e) Immediately after the firing, the potential energy is the same as it was before firing 

the thruster:  

 
11 2 2 25

11

7

(6.67 10 N m /kg )(9.50 10 kg)(3000 kg)
4.53 10  J

4.20 10  m

GMm
U

r

  
      


. 

 

(f) Adding these two results gives the total mechanical energy:  

 

 11 11 112.17 10  J ( 4.53 10  J) 2.35 10  JE K U          . 

 

(g) Using Eq. 13-42, we find the semi-major axis to be 

 
11 2 2 25

7

11

(6.67 10 N m /kg )(9.50 10 kg)(3000 kg)
4.04 10  m

2 2( 2.35 10  J)

GMm
a

E

  
     

 
. 

 

(h) Using Kepler’s law of periods for elliptical orbits (using a instead of r) we find the 

new period to be 

 

2 2 7 3
3 4

11 2 2 25

4 4 (4.04 10  m)
2.03 10 s .

(6.67 10 N m /kg )(9.50 10 kg)
T a

GM

 


  
     

   
 

 

This is smaller than our result for part (a) by T  T´ = 1.22  10
3
 s. 

 

(i) Comparing the results in (a) and (h), we see that elliptical orbit has a smaller period. 

 

LEARN The orbits of the shuttle before and after firing the thruster are shown below. 

Point P corresponds to the location where the thruster was fired.   

 

 
 

84. The difference between free-fall acceleration g and the gravitational acceleration ga  

at the equator of the star is (see Equation 13.14): 
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2

ga g R   

where  

2 2
153rad/s

0.041sT

 
     

 

is the angular speed of the star. The gravitational acceleration at the equator is 

 

 
11 3 2 30

11 2

2 4 2

(6.67 10  m /kg s )(1.98 10 kg)
9.17 10 m/s .

(1.2 10  m)
g

GM
a

R

  
   


 

 

Therefore, the percentage difference is  

 
2 2 4

4

11 2

(153rad/s) (1.2 10  m)
3.06 10 0.031%.

9.17 10 m/s

g

g g

a g R

a a

 
 

    


 

 

85. Energy conservation for this situation may be expressed as follows: 

 

2 2

1 1 2 2 1 2

1 2

1 1

2 2

GmM GmM
K U K U mv mv

r r
        

 

where M = 5.98  10
24

 kg, r1 = R = 6.37  10
6
, m and v1 = 10000 m/s. Setting v2 = 0 to 

find the maximum of its trajectory, we solve the above equation (noting that m cancels in 

the process) and obtain r2 = 3.2  10
7
 m. This implies that its altitude is 

 

h = r2  R = 2.5  10
7
 m. 

 

86. We note that, since v = 2r/T, the centripetal acceleration may be written as a = 

4
2
r/T

2
. To express the result in terms of g, we divide by 9.8 m/s

2
. 

 

(a) The acceleration associated with Earth’s spin (T = 24 h = 86400 s) is 

 
6

3

2 2

4 (6.37 10 m)
3.4 10 .

(86400s) (9.8m/s )
a g g

 
  

2

 

 

(b) The acceleration associated with Earth’s motion around the Sun (T = 1 y = 3.156  

10
7
 s) is 

11
4

7 2 2

4 (1.5 10 m)
6.1 10 .

(3.156 10 s) (9.8m/s )
a g g

 
  



2

 

 

(c) The acceleration associated with the Solar System’s motion around the galactic center 

(T = 2.5  10
8
 y = 7.9  10

15
 s) is 
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20

11

15 2 2

4 (2.2 10 m)
1.4 10 .

(7.9 10 s) (9.8m/s )
a g g

 
  



2

 

 

87. (a) It is possible to use 2 2

0 2v v a y   as we did for free-fall problems in Chapter 2 

because the acceleration can be considered approximately constant over this interval. 

However, our approach will not assume constant acceleration; we use energy 

conservation: 

02 2

0

0 0

2 ( )1 1

2 2

GM r rGMm GMm
mv mv v

r r r r


      

 

which yields v = 1.4  10
6
 m/s. 

 

(b) We estimate the height of the apple to be h = 7 cm = 0.07 m. We may find the answer 

by evaluating Eq. 13-11 at the surface (radius r in part (a)) and at radius r + h, being 

careful not to round off, and then taking the difference of the two values, or we may take 

the differential of that equation — setting dr equal to h. We illustrate the latter procedure: 

 

6 2

3 3
| | 2 2 3 10 m/s .g

GM GM
da dr h

r r
      

 

88. We apply the work-energy theorem to the object in question. It starts from a point at 

the surface of the Earth with zero initial speed and arrives at the center of the Earth with 

final speed vf. The corresponding increase in its kinetic energy, ½mvf
2
, is equal to the 

work done on it by Earth’s gravity: ( )F dr Kr dr   . Thus, 

 
0 0

2 21 1
( )

2 2
f

R R
mv F dr Kr dr KR      

 

where R is the radius of Earth. Solving for the final speed, we obtain vf = R /K m . We 

note that the acceleration of gravity ag = g = 9.8 m/s
2
 on the surface of Earth is given by  

 

ag = GM/R
2
 = G(4R

3
/3)R

2
, 

 

where  is Earth’s average density. This permits us to write K/m = 4G/3 = g/R. 

Consequently, 

 

2 6 3(9.8 m/s ) (6.37 10 m) 7.9 10 m/s .f

K g
v R R gR

m R
        
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89. THINK To compare the kinetic energy, potential energy, and the speed of the Earth 

at aphelion (farthest distance) and perihelion (closest distance), we apply both 

conservation of energy and conservation of angular momentum. 

 

EXPRESS As Earth orbits about the Sun, its total energy is conserved: 

  

 2 21 1

2 2

S E S E
a p

a p

GM M GM M
mv mv

R R
   . 

 

In addition, angular momentum conservation implies
a a p pv R v R . 

 

ANALYZE (a) The total energy is conserved, so there is no difference between its values 

at aphelion and perihelion. 

 

(b) The difference in potential energy is  

 

11 2 2 30 24

11 11

32

1 1

1 1
(6.67 10 N m /kg )(1.99 10 kg)(5.98 10 kg)

1.52 10  m 1.47 10  m

1.8 10  J.

a p S E

a p

U U U GM M
R R



 
       

 

 
       

  

 
 

(c) Since 0K U   , 321.8 10  Ja pK K K U        . 

 

(d) With a a p pv R v R , the change in kinetic energy may be written as 

 

 
2

2 2 2

2

1 1
1

2 2

a
a p E a p E a

p

R
K K K M v v M v

R

 
        

 

 

 

from which we find the speed at the aphelion to be 

 

4

2 2

2( )
2.95 10 m/s

(1 / )
a

E a p

K
v

M R R


  


. 

 

Thus, the variation in speed is  
11

4

11

3

1.52 10  m
1 1 (2.95 10 m/s)

1.47 10  m

0.99 10 m/s 0.99 km/s.

a
a p a

p

R
v v v v

R

   
              

    

 

 

The speed at the aphelion is smaller than that at the perihelion. 
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LEARN Since the changes are small, the problem could also be solved by using 

differentials: 

 

   

 
 

11 2 2 30 24

9

22 11

6.67 10 N m /kg 1.99 10 kg 5.98 10 kg
5 10  m .

1.5 10  m

E SGM M
dU dr

r

    
   
  

 

This yields U  1.8  10
32

 J. Similarly, with K  dK = MEv dv, where v  2R/T, we 

have 

 
 11

32 24

7

2π 1.5 10  m
1.8 10  J 5.98 10 kg

3.156 10 s
v

 
    
 
 

 

 

which yields a difference of v  0.99 km/s in Earth’s speed (relative to the Sun) between 

aphelion and perihelion. 
 

90. (a) Because it is moving in a circular orbit, F/m must equal the centripetal 

acceleration: 
280 N

.
50 kg

v

r
  

However, v = 2r/T, where T = 21600 s, so we are led to 

 

2

2

4
1.6m/s r

T




2

 

which yields r = 1.9  10
7
 m. 

 

(b) From the above calculation, we infer v
2
 = (1.6 m/s

2
)r, which leads to v

2
 = 3.0  10

7
 

m
2
/s

2
. Thus, K = ½mv

2
 = 7.6  10

8
 J. 

 

(c) As discussed in Section 13-4, F/m also tells us the gravitational acceleration: 

 

2

2
1.6 m/s .g

GM
a

r
   

We therefore find M = 8.6  10
24

 kg. 

 

91. (a) Their initial potential energy is Gm
2
/Ri and they started from rest, so energy 

conservation leads to 
2 2 2

total total .
0.5i i i

Gm Gm Gm
K K

R R R
      

 

(b) They have equal mass, and this is being viewed in the center-of-mass frame, so their 

speeds are identical and their kinetic energies are the same. Thus, 
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2

total

1
.

2 2 i

Gm
K K

R
   

 

(c) With K = ½ mv
2
, we solve the above equation and find v = / iGm R . 

 

(d) Their relative speed is 2v = 2 / iGm R . This is the (instantaneous) rate at which the 

gap between them is closing. 

 

(e) The premise of this part is that we assume we are not moving (that is, that body A 

acquires no kinetic energy in the process). Thus, Ktotal = KB, and the logic of part (a) leads 

to KB = Gm
2
/Ri. 

 

(f) And 21
2 B Bmv K  yields vB = 2 / iGm R . 

 

(g) The answer to part (f) is incorrect, due to having ignored the accelerated motion of 

“our” frame (that of body A). Our computations were therefore carried out in a 

noninertial frame of reference, for which the energy equations of Chapter 8 are not 

directly applicable. 

 

92. (a) We note that the altitude of the rocket is Eh R R   where 66.37 10 mER   . 

With 245.98 10 kgM   , R0 = 0ER h = 6.57  10
6
 m and R = 7.37  10

6
 m, we have 

 

3 2

0

1
(3.70 10 m/s)

2
i i

GmM GmM
K U K U m K

R R
        , 

 

which yields K = 3.83  10
7
 J. 

 

(b) Again, we use energy conservation. 

 

3 2

0

1
(3.70 10 ) 0

2
i i f f

f

GmM GmM
K U K U m

R R
         

 

Therefore, we find Rf = 7.40  10
6
 m. This corresponds to a distance of 1034.9 km  1.03 

 10
3
 km above the Earth’s surface. 

 

93. Energy conservation for this situation may be expressed as follows: 

 

2 2

1 1 2 2 1 2

1 2

1 1

2 2

GmM GmM
K U K U mv mv

r r
        
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where M = 7.0  10
24

 kg, r2 = R = 1.6  10
6
 m, and r1 =  (which means that U1 = 0). We 

are told to assume the meteor starts at rest, so v1 = 0. Thus, K1 + U1 = 0, and the above 

equation is rewritten as 

2 4

2 2

2

1 2
2.4 10 m s.

2

GmM GM
mv v

r R
      

 

94. The initial distance from each fixed sphere to the ball is r0 = , which implies the 

initial gravitational potential energy is zero. The distance from each fixed sphere to the 

ball when it is at x = 0.30 m is r = 0.50 m, by the Pythagorean theorem. 

 

(a) With M = 20 kg and m = 10 kg, energy conservation leads to 

 

0 0 2i i

GmM
K U K U K

r
        

 

which yields K = 2GmM/r = 5.3  10
8

 J. 

 

(b) Since the y-component of each force will cancel, the net force points in the –x 

direction, with a magnitude  

 

2Fx = 2 (GmM/r
2
) cos  , 

 

where   = tan
1

 (4/3) = 53. Thus, the result is 8

net
ˆ( 6.4 10  N)i.F     

 

95. The magnitudes of the individual forces (acting on mC, exerted by mA and mB, 

respectively) are 

 

8 8

2 2
2.7 10 N and 3.6 10 NA C B C

AC BC

AC BC

Gm m Gm m
F F

r r

        

 

where rAC = 0.20 m and rBC = 0.15 m. With rAB = 0.25 m, the angle AF makes with the x 

axis can be obtained as 
2 2 2

1 1cos cos (0.80) 217 .
2

AC AB BC
A

AC AB

r r r

r r
     

      
 

 

 

Similarly, the angle BF makes with the x axis can be obtained as 

 
2 2 2

1 1cos cos (0.60) 53 .
2

AB BC AC
B

AB BC

r r r

r r
    

    
 

 

 

The net force acting on mC then becomes 
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8

ˆ ˆ ˆ ˆ(cos i sin j) (cos i sin j)

ˆ ˆ( cos cos )i ( sin sin )j

ˆ( 4.4 10  N) j.

C AC A A BC B B

AC A BC B AC A BC B

F F F

F F F F

   

   



   

   

  

 

 

96. (a) From Chapter 2, we have 2 2

0 2v v a x   , where a may be interpreted as an 

average acceleration in cases where the acceleration is not uniform. With v0 = 0, v = 

11000 m/s, and x = 220 m, we find a = 2.75  10
5
 m/s

2
. Therefore, 

 
5 2

4

2

2.75 10 m/s
2.8 10

9.8 m/s
a g g

 
   
 

. 

 

(b) The acceleration is certainly deadly enough to kill the passengers. 

 

(c) Again using 2 2

0 2v v a x   , we find 

 
2

2(7000 m/s)
7000 m/s 714 .

2(3500 m)
a g    

 

(d) Energy conservation gives the craft’s speed v (in the absence of friction and other 

dissipative effects) at altitude h = 700 km after being launched from R = 6.37  10
6
 m 

(the surface of Earth) with speed v0 = 7000 m/s. That altitude corresponds to a distance 

from Earth’s center of r = R + h = 7.07  10
6
 m. 

 

2 2

0

1 1
.

2 2

GMm GMm
mv mv

R r
    

 

With M = 5.98  10
24

 kg (the mass of Earth) we find v = 6.05  10
3
 m/s. However, to 

orbit at that radius requires (by Eq. 13-37)  

 

v´ = /GM r  = 7.51  10
3
 m/s. 

 

The difference between these two speeds is v´  v = 1.46  10
3
 m/s 31.5 10  m/s,   which 

presumably is accounted for by the action of the rocket engine. 

 

97. We integrate Eq. 13-1 with respect to r from 3RE to 4RE and obtain the work equal to  

 

1 1
.

4 3 12

E
E

E E E

GM m
W U GM m

R R R

 
      

 
 

 

98. The gravitational force at a radial distance r inside Earth (e.g., point A in the figure) 

is  
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3g

GMm
F r

R
  

 

The component of the force along the tunnel is  

 

3 3
sinx g

GMm x GMm
F F r x

R r R


 
     

 
 

 

which can be rewritten as 

 
2

2

2 3x

d x GM
a x x

dt R
     

 

where 2 3/ .GM R  The equation is similar to Hooke’s law, in that the force on the train 

is proportional to the displacement of the train but oppositely directed. Without exiting 

the tunnel, the motion of the train would be periodic would a period given by 2 / .T    

The travel time required from Boston to Washington DC is only half that (one-way): 

 

 
3 6 3

11 3 2 24

(6.37 10 m)
2529 s 42.1 min

2 (6.67 10  m /kg s )(5.98 10 kg)

T R
t

GM


 

 


      

  
 

 

Note that the result is independent of the distance between the two cities. 

 

99. The gravitational force exerted on m due to a mass element dM from the thin rod is 

 

2

( )
g

Gm dM
dF

R
  

 

By symmetry, the force is along the y-

direction. With 

 

M M
dM dl Rd d

R
  

 

 
   

 
 

 

where /M R   is the mass density (mass per unit length), we have 

 

, 2 2
sin sin sing y g

Gm Md GMm
dF dF d

R R


   

 

 
   

 
 

Integrating over  gives 

 

, 2 2 20 0

2
sin sing y

GMm GMm GMm
F d d

R R R

 

   
  

     

 



   CHAPTER 13 666 

Substituting the values given leads to 

 
11 3 2 3

12

, 2 2

2 2(6.67 10  m /kg s )(5.0 kg)(3.0 10 kg)
1.51 10  N

(0.650 m)
g y

GMm
F

R 

 
  

     

 

If the rod were a complete circle, by symmetry, the net force on the particle would be 

zero. 

 

100. The gravitational acceleration at a distance r from the center of Earth is 

 

 
2g

GM
a

r
  

Thus, the weight difference between the two objects is 

 

 2

2 2 2 2 3

2 2
( ) 1 (1 / )

( )
g

GMm GMm GMm GMm h GMmh
w m g a h R

R R h R R R R

            
 

 

With 34
3

,M R   the above expression can be rewritten as 

 

3

3 3

2 2 4 8

3 3

GMmh Gmh Gmh
w R

R R

 


 
     

 
 

 

Substituting the values given, we obtain 

 

3 3 11 3 2

7

8 8
(5.5 10 kg/m )(6.67 10  m /kg s )(2.00 kg)(0.050 m)

3 3

3.07 10 N

Gmh
w

  



     

 

 

 

101. Let the distance from Earth to the spaceship be r. Rem = 3.82  10
8
 m is the distance 

from Earth to the moon. Thus, 

 
2 2

= = = ,m e
m E

em

GM m GM m
F F

rR r
 

 

where m is the mass of the spaceship. Solving for r, we obtain 

 
8

8

22 24

3.82 10 m
3.44 10 m

/ 1 (7.36 10 kg) /(5.98 10 kg) 1

em

m e

R
r

M M


   

   
. 

 

 


