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Chapter 12 
 

 

1. (a) The center of mass is given by  

 

com

0 0 0 ( )(2.00 m) ( )(2.00 m) ( )(2.00 m)
1.00 m.

6

m m m
x

m

    
   

 

(b) Similarly, we have  

 

com

0 ( )(2.00 m) ( )(4.00 m) ( )(4.00 m) ( )(2.00 m) 0
2.00 m.

6

m m m m
y

m

    
   

 

(c) Using Eq. 12-14 and noting that the gravitational effects are different at the different 

locations in this problem, we have 

 
6

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
cog 6

1 1 2 2 3 3 4 4 5 5 6 6

1

0.987 m.
i i i

i

i i

i

x m g
x m g x m g x m g x m g x m g x m g

x
m g m g m g m g m g m g

m g





    
  

    




 

 

(d) Similarly, we have  
6

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
cog 6

1 1 2 2 3 3 4 4 5 5 6 6

1

0 (2.00)(7.80 ) (4.00)(7.60 ) (4.00)(7.40 ) (2.00)(7.60 ) 0

8.0 7.80 7.60 7.40 7.60 7.80

1.97 m.

i i i

i

i i

i

y m g
y m g y m g y m g y m g y m g y m g

y
m g m g m g m g m g m g

m g

m m m m

m m m m m m





    
 

    

    


    







 

 

2. Our notation is as follows: M = 1360 kg is the mass of the automobile; L = 3.05 m is 

the horizontal distance between the axles; (3.05 1.78) m 1.27 m   is the horizontal 

distance from the rear axle to the center of mass; F1 is the force exerted on each front 

wheel; and F2 is the force exerted on each back wheel. 

 

(a) Taking torques about the rear axle, we find 

 
2

3

1

(1360kg)(9.80m/s ) (1.27m)
2.77 10 N.

2 2(3.05m)

Mg
F

L
     
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(b) Equilibrium of forces leads to
1 22 2 ,F F Mg  from which we obtain F2

3389 10 . N . 

 

3. THINK Three forces act on the sphere: the tension force 

T  of the rope, the force of 

the wall 
NF , and the force of gravity mg


.  

 

EXPRESS The free-body diagram is shown to the right. 

The tension force 

T  acts along the rope, the force of the 

wall 
NF  acts horizontally away from the wall, and the force 

of gravity mg


 acts downward. Since the sphere is in 

equilibrium they sum to zero. Let  be the angle between the 

rope and the vertical. Then Newton’s second law gives  

 

          vertical component :     T cos  – mg = 0  

      horizontal component :      FN – T sin  = 0.   

 
 

ANALYZE (a) We solve the first equation for the tension: T = mg/ cos . We substitute 

cos  L L r/ 2 2 to obtain 

 
2 2 22 2 (0.85 kg)(9.8 m/s ) (0.080 m) (0.042 m)

9.4 N
0.080 m

mg L r
T

L


   . 

 

(b) We solve the second equation for the normal force: sinNF T  . 

Using sin  r L r/ 2 2 , we obtain 

 
2 2 2

2 2 2 2

(0.85 kg)(9.8 m/s )(0.042 m)
4.4 N.

(0.080 m)
N

Tr mg L r r mgr
F

L LL r L r


    

 
 

 

LEARN Since the sphere is in static equilibrium, the vector sum of all external forces 

acting on it must be zero. 

 

4. The situation is somewhat similar to that depicted for problem 10 (see the figure that 

accompanies that problem in the text). By analyzing the forces at the “kink” where 

F  is 

exerted, we find (since the acceleration is zero) 2T sin  = F, where  is the angle (taken 

positive) between each segment of the string and its “relaxed” position (when the two 

segments are collinear). Setting T = F therefore yields  = 30º. Since  = 180º – 2 is the 

angle between the two segments, then we find  = 120º. 

 

5. The object exerts a downward force of magnitude F = 3160 N at the midpoint of the 

rope, causing a “kink” similar to that shown for problem 10 (see the figure that 

accompanies that problem in the text). By analyzing the forces at the “kink” where 

F  is 

exerted, we find (since the acceleration is zero) 2T sin = F, where  is the angle (taken 
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positive) between each segment of the string and its “relaxed” position (when the two 

segments are collinear). In this problem, we have 

 

1 0.35m
tan 11.5 .

1.72m
   
   

 
 

 

Therefore, T = F/(2sin ) = 7.92 × 10
3
 N. 

 

6. Let 1 15 . m and
2 (5.0 1.5) m 3.5 m   . We denote tension in the cable closer to 

the window as F1 and that in the other cable as F2. The force of gravity on the scaffold 

itself (of magnitude msg) is at its midpoint, 3 2 5 . m from either end. 

 

(a) Taking torques about the end of the plank farthest from the window washer, we find 

 
2 2

2 3
1

1 2

2

(80kg) (9.8m/s ) (3.5m)+(60kg)(9.8m/s ) (2.5m)

5.0m

8.4 10 N.

w sm g m g
F


 



 

 

 

(b) Equilibrium of forces leads to 

 
2 3

1 2 (60kg+80kg)(9.8m/s ) 1.4 10 Ns wF F m g m g       

 

which (using our result from part (a)) yields F2

253 10 . N . 

 

7. The forces on the ladder are shown in the diagram below.  

 
F1 is the force of the window, horizontal because the window is frictionless. F2 and F3 are 

components of the force of the ground on the ladder. M is the mass of the window cleaner 

and m is the mass of the ladder. 

 

The force of gravity on the man acts at a point 3.0 m up the ladder and the force of 

gravity on the ladder acts at the center of the ladder. Let  be the angle between the 

ladder and the ground. We use 2 2cos /  or sin /  d L L d L    to find  = 60º. Here L 
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is the length of the ladder (5.0 m) and d is the distance from the wall to the foot of the 

ladder (2.5 m). 

 

(a) Since the ladder is in equilibrium the sum of the torques about its foot (or any other 

point) vanishes. Let be the distance from the foot of the ladder to the position of the 

window cleaner. Then,  

  1cos / 2 cos sin 0Mg mg L F L     , 

and 
2

1

2

( / 2) cos [(75kg) (3.0m)+(10kg)(2.5m)](9.8m/s )cos60

sin (5.0m)sin 60

2.8 10 N.

M mL g
F

L





 
 



 

 

 

This force is outward, away from the wall. The force of the ladder on the window has the 

same magnitude but is in the opposite direction: it is approximately 280 N, inward. 

 

(b) The sum of the horizontal forces and the sum of the vertical forces also vanish: 

 

F F

F Mg mg

1 3

2

0

0

 

  
 

 

The first of these equations gives F F3 1

22 8 10  . N and the second gives 

 
2 2

2 ( ) (75kg 10kg)(9.8m/s ) 8.3 10 NF M m g      . 

 

The magnitude of the force of the ground on the ladder is given by the square root of the 

sum of the squares of its components: 

 

F F F       2

2

3

2 2 2 228 10 83 10 88 10( . ( . .N) N) N.2 2  

 

(c) The angle  between the force and the horizontal is given by  

 

tan   = F3/F2 = (830 N)/(280 N) = 2.94, 

 

so  = 71º. The force points to the left and upward, 71º above the horizontal. We note that 

this force is not directed along the ladder. 

 

8. From 
  
  r F , we note that persons 1 through 4 exert torques pointing out of the 

page (relative to the fulcrum), and persons 5 through 8 exert torques pointing into the 

page. 

 

(a) Among persons 1 through 4, the largest magnitude of torque is (330 N)(3 m) = 990 

N·m, due to the weight of person 2. 
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(b) Among persons 5 through 8, the largest magnitude of torque is (330 N)(3 m) = 990 

N·m, due to the weight of person 7. 

 

9. THINK In order for the meter stick to remain in equilibrium, the net force acting on it 

must be zero. In addition, the net torque about any point must also be zero. 

 

EXPRESS Let the x axis be along the 

meter stick, with the origin at the zero 

position on the scale. The forces acting on 

it are shown to the right. The coins are at x 

= x1 = 0.120 m, and 10.0 gm   is their 

total mass. The knife edge is at x = x2 = 

0.455 m and exerts force 

F . The mass of 

the meter stick is M, and the force of 

gravity acts at the center of the stick, x = x3 

= 0.500 m.   
Since the meter stick is in equilibrium, the sum of the torques about x2 must vanish:  

 

Mg(x3 – x2) – mg(x2 – x1) = 0. 

 

ANALYZE Solving the equation above for M, we find the mass of the meter stick to be 

 

2 1

3 2

0.455m 0.120m
(10.0g) 74.4 g.

0.500m 0.455m

x x
M m

x x

    
     

   
 

 

LEARN Since the torque about any point is zero, we could have chosen x1. In this case, 

balance of torques requires that 

 2 1 3 1( ) ( ) 0F x x Mg x x     

 

The fact that the net force is zero implies ( )F M m g  . Substituting this into the above 

equation gives the same result as before: 

2 1

3 2

x x
M m

x x

 
  

 
. 

 

10. (a) Analyzing vertical forces where string 1 and string 2 meet, we find 

 

1

40N
49N.

cos cos 35

Aw
T


  


 

 

(b) Looking at the horizontal forces at that point leads to 

 

2 1 sin35 (49N)sin35 28N.T T      
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(c) We denote the components of T3 as Tx (rightward) and Ty (upward). Analyzing 

horizontal forces where string 2 and string 3 meet, we find Tx = T2 = 28 N. From the 

vertical forces there, we conclude Ty = wB  = 50 N. Therefore, 

 

2 2

3 57 N.x yT T T    

 

(d) The angle of string 3 (measured from vertical) is 

 

1 1 28
tan tan 29 .

50

x

y

T

T
  

   
          

 

 

11. THINK The diving board is in equilibrium, so the net force and net torque must be 

zero.  

 

EXPRESS We take the force of the left pedestal to be F1 at x = 0, where the x axis is 

along the diving board. We take the force of the right pedestal to be F2 and denote its 

position as x = d. Upward direction is taken to be positive and W is the weight of the 

diver, located at x = L. The following two equations result from setting the sum of forces 

equal to zero (with upwards positive), and the sum of torques (about x2) equal to zero: 

 

1 2

1

0

( ) 0

F F W

F d W L d

  

  
 

 

ANALYZE (a) The second equation gives 

 

1

3.0m
(580 N) 1160 N

1.5m

L d
F W

d

  
       

   
 

 

which should be rounded off to 3

1 1.2 10  NF    . Thus, 3

1| | 1.2 10  N.F    

 

(b) Since F1 is negative, this force is downward. 

 

(c) The first equation gives 2 1 580N 1160N 1740NF W F     . 

 

which should be rounded off to 3

2 1.7 10  NF   . Thus, 3

2| | 1.7 10  N.F    

 

(d) The result is positive, indicating that this force is upward. 

 

(e) The force of the diving board on the left pedestal is upward (opposite to the force of 

the pedestal on the diving board), so this pedestal is being stretched.  
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(f) The force of the diving board on the right pedestal is downward, so this pedestal is 

being compressed. 

 

LEARN We can relate F1 and F2 via 
1 2

L d
F F

L

 
  

 
. The expression makes it clear 

that the two forces must be of opposite signs, i.e., one acting downward and the other 

upward.      

 

12. The angle of each half of the rope, measured from the dashed line, is 

 

1 0.30m
tan 1.9 .

9.0m
   
   

 
 

 

Analyzing forces at the “kink” (where 

F  is exerted) we find 

 

3550 N
8.3 10 N.

2sin 2sin1.9

F
T


   


 

 

13. The (vertical) forces at points A, B, and P are FA, FB, and FP, respectively. We note 

that FP = W and is upward. Equilibrium of forces and torques (about point B) lead to 

 

0

0.
A B

A

F F W

bW aF

  

 
 

(a) From the second equation, we find  

 

FA = bW/a = (15/5)W = 3W = 33(900 N) 2.7 10  N  . 

 

(b) The direction is upward since FA > 0. 

 

(c) Using this result in the first equation above, we obtain  

 

 34 4(900 N) 3.6 10 NB AF W F W         , 

or 3| | 3.6 10 NBF   . 

 

(d) FB points downward, as indicated by the negative sign. 

 

14. With pivot at the left end, Eq. 12-9 leads to 

 

– ms g 
L

2
  –  Mgx +  TR L  = 0 

 

where ms is the scaffold’s mass (50 kg) and M is the total mass of the paint cans (75 kg). 

The variable x indicates the center of mass of the paint can collection (as measured from 

the left end), and TR is the tension in the right cable (722 N).  Thus we obtain x = 0.702 m. 
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15. (a) Analyzing the horizontal forces (which add to zero) we find Fh = F3 = 5.0 N. 

 

(b) Equilibrium of vertical forces leads to Fv = F1 + F2 = 30 N. 

 

(c) Computing torques about point O, we obtain 

 

     
2 3

10 N 3.0m + 5.0 N 2.0m
1.3m.

30 N
vF d F b Fa d      

 

16. The forces exerted horizontally by the obstruction and vertically (upward) by the 

floor are applied at the bottom front corner C of the crate, as it verges on tipping. The 

center of the crate, which is where we locate the gravity force of magnitude mg = 500 N, 

is a horizontal distance   0 375. mfrom C. The applied force of magnitude F = 350 N is 

a vertical distance h from C. Taking torques about C, we obtain 

 

(500 N)(0.375m)
0.536m.

350 N

mg
h

F
    

 

17. (a) With the pivot at the hinge, Eq. 12-9 gives  

 

TLcos – mg 
L

2
  = 0. 

 

This leads to 78 .    Then the geometric relation tan = L/D gives D = 0.64 m. 

 

(b) A higher (steeper) slope for the cable results in a smaller tension.  Thus, making D 

greater than the value of part (a) should prevent rupture. 

 

18. With pivot at the left end of the lower scaffold, Eq. 12-9 leads to 

 

– m2 g 
L2

2
  – mgd + TR L2  = 0 

 

where m2 is the lower scaffold’s mass (30 kg) and L2 is the lower scaffold’s length (2.00 

m).  The mass of the package (m = 20 kg) is a distance d = 0.50 m from the pivot, and TR 

is the tension in the rope connecting the right end of the lower scaffold to the larger 

scaffold above it.  This equation yields TR = 196 N.  Then Eq. 12-8 determines TL (the 

tension in the cable connecting the right end of the lower scaffold to the larger scaffold 

above it):  TL = 294 N.  Next, we analyze the larger scaffold (of length L1 = L2 + 2d and 

mass m1, given in the problem statement) placing our pivot at its left end and using Eq. 

12-9: 

– m1 g 
L1

2
  – TL d – TR (L1 – d) + T L1 = 0. 

This yields T = 457 N. 
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19. Setting up equilibrium of torques leads to a simple “level principle” ratio: 

 

2.6cm
(40 N) (40 N) 8.7 N.

12cm

d
F

L
     

 

20. Our system consists of the lower arm holding a 

bowling ball. As shown in the free-body diagram, the 

forces on the lower arm consist of T  from the biceps 

muscle, F  from the bone of the upper arm, and the 

gravitational forces, mg  and Mg . Since the system is in 

static equilibrium, the net force acting on the system is 

zero: 

net,0 ( )yF T F m M g     . 

 

In addition, the net torque about O must also vanish: 

 

net0 ( )( ) (0) ( )( ) ( )
O

d T F D mg L Mg     . 

 

(a) From the torque equation, we find the force on the lower arms by the biceps muscle to 

be   
2

2

( ) [(1.8 kg)(0.15 m) (7.2 kg)(0.33 m)](9.8 m/s )

0.040 m

648 N 6.5 10 N.

mD ML g
T

d

 
 

  

 

 

(b) Substituting the above result into the force equation, we find F  to be 

 

 2 2( ) 648 N (7.2 kg 1.8 kg)(9.8 m/s ) 560 N 5.6 10 N.F T M m g          

 

21. (a) We note that the angle between the cable and the strut is  

 

 = – = 45º – 30º = 15º. 

 

The angle between the strut and any vertical force (like the weights in the problem) is  = 

90º – 45º = 45º. Denoting M = 225 kg and m = 45.0 kg, and   as the length of the boom, 

we compute torques about the hinge and find 

 

 2
sin sin sin sin / 2

.
sin sin

Mg mg Mg mg
T

   

 

 
   

 

The unknown length   cancels out and we obtain T = 6.63 × 10
3
 N. 
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(b) Since the cable is at 30º from horizontal, then horizontal equilibrium of forces 

requires that the horizontal hinge force be 

 
3= cos30 = 5.74 10 N.xF T    

 

(c) And vertical equilibrium of forces gives the vertical hinge force component: 

 
3sin30 5.96 10 N.yF Mg mg T       

 

22. (a) The problem asks for the person’s pull (his force exerted on the rock) but since we 

are examining forces and torques on the person, we solve for the reaction force 

1NF (exerted leftward on the hands by the rock). At that point, there is also an upward 

force of static friction on his hands, f1, which we will take to be at its maximum value 

1 1NF . We note that equilibrium of horizontal forces requires 
1 2N NF F (the force exerted 

leftward on his feet); on his feet there is also an upward static friction force of magnitude 

2FN2. Equilibrium of vertical forces gives 

 

2

1 2 1

1 2

+ = 0 = = 3.4 10 N.
+

N

mg
f f mg F

 
    

 

(b) Computing torques about the point where his feet come in contact with the rock, we 

find 

 
  1 1

1 1

1

+
+ = 0  = = 0.88 m.

N

N

N

mg d w F w
mg d w f w F h h

F


    

 

(c) Both intuitively and mathematically (since both coefficients are in the denominator) 

we see from part (a) that 1NF  would increase in such a case.  

 

(d) As for part (b), it helps to plug part (a) into part (b) and simplify: 

 

h d w d= + +2 1a f   

 

from which it becomes apparent that h should decrease if the coefficients decrease. 

 

23. The beam is in equilibrium: the sum of the forces and the sum of the torques acting 

on it each vanish. As shown in the figure, the beam makes an angle of 60º with the 

vertical and the wire makes an angle of 30º with the vertical. 

 

(a) We calculate the torques around the hinge. Their sum is  

 

TL sin 30º – W(L/2) sin 60º = 0. 

 

Here W is the force of gravity acting at the center of the beam, and T is the tension force 

of the wire. We solve for the tension: 
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 222N sin 60sin60
= = =192 N.

2 sin30 2 sin30

W
T



 
 

 

(b) Let Fh be the horizontal component of the force exerted by the hinge and take it to be 

positive if the force is outward from the wall. Then, the vanishing of the horizontal 

component of the net force on the beam yields Fh – T sin 30º = 0 or 

 

 = sin30 = 192.3N sin30 = 96.1N.hF T    

 

(c) Let Fv be the vertical component of the force exerted by the hinge and take it to be 

positive if it is upward. Then, the vanishing of the vertical component of the net force on 

the beam yields Fv + T cos 30º – W = 0 or 

 

 = cos30 = 222N 192.3N cos30 = 55.5N.vF W T     

 

24. As shown in the free-body diagram, the forces on the climber consist of T  from the 

rope, normal force
NF  on her feet, upward static frictional force ,sf  and downward 

gravitational force mg .  

 
Since the climber is in static equilibrium, the net force acting on her is zero. Applying 

Newton’s second law to the vertical and horizontal directions, we have 

 

net,

net,

0 sin

0 cos .

x N

y s

F F T

F T f mg





  

   




 

 

In addition, the net torque about O (contact point between her feet and the wall) must also 

vanish: 

net0 sin sin(180 )
O

mgL TL         

From the torque equation, we obtain  

 

sin / sin(180 ).T mg       
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Substituting the expression into the force equations, and noting that
s s Nf F , we find 

the coefficient of static friction to be 

 

cos sin cos / sin(180 )

sin sin sin / sin(180 )

1 sin cos / sin(180 )
.

sin sin / sin(180 )

s
s

N

f mg T mg mg

F T mg

    


    

   

   

   
  

 

  


 

 

  

With 40    and 30   , the result is  

 

1 sin cos / sin(180 ) 1 sin 40 cos30 / sin(180 40 30 )

sin sin / sin(180 ) sin 40 sin 30 / sin(180 40 30 )

1.19.

s

   


   

        
 

      



 

 

25. THINK At the moment when the wheel leaves the lower floor, the floor no longer 

exerts a force on it.  

 

EXPRESS As the wheel is raised over the obstacle, the only forces acting are the force F 

applied horizontally at the axle, the force of gravity mg acting vertically at the center of 

the wheel, and the force of the step corner, shown as the two components fh and fv.  

 

  
 

If the minimum force is applied the wheel does not accelerate, so both the total force and 

the total torque acting on it are zero. 

 

We calculate the torque around the step corner. The second diagram (above right) 

indicates that the distance from the line of F to the corner is r – h, where r is the radius of 

the wheel and h is the height of the step. The distance from the line of mg to the corner is 

r r h rh h2 2 22   b g . Thus, 

F r h mg rh h   b g 2 02 . 

 

ANALYZE The solution for F is 
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2 2 2 22
2

2 2

2(6.00 10 m)(3.00 10 m) (3.00 10 m)2
= (0.800 kg)(9.80 m/s )

(6.00 10 m) (3.00 10 m)

13.6 N.

rh h
F mg

r h

  

 

   


   



  

LEARN The applied force here is about 1.73 times the weight of the wheel. If the height 

is increased, the force that must be applied also goes up. Below we plot F/mg as a 

function of the ratio /h r .  The required force increases rapidly as / 1h r  .  

 

 
 

26. As shown in the free-body diagram, the forces on the climber consist of the normal 

forces 1NF  on his hands from the ground and 
2NF  on his feet from the wall, static 

frictional force ,sf  and downward gravitational force mg . Since the climber is in static 

equilibrium, the net force acting on him is zero.  

Applying Newton’s second law to the vertical and 

horizontal directions, we have 

 

net, 2

net, 1

0

0 .

x N s

y N

F F f

F F mg

  

  




 

 

In addition, the net torque about O (contact point 

between his feet and the wall) must also vanish: 

 

net 20 cos sinN

O

mgd F L     . 

 
 

The torque equation gives  

 

2 cos / sin cot /NF mgd L mgd L    . 

 

On the other hand, from the force equation we have 2N sF f  and 1 .NF mg  These 

expressions can be combined to yield 

2 1 cots N N

d
f F F

L
  . 
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On the other hand, the frictional force can also be written as 
1s s Nf F , where 

s  is the 

coefficient of static friction between his feet and the ground. From the above equation 

and the values given in the problem statement, we find 
s  to be  

 

2 2 2 2

0.914 m 0.940 m
cot 0.216

2.10 m(2.10 m) (0.914 m)
s

d a d

L LL a
    

 
. 

 

27. (a) All forces are vertical and all distances are measured along an axis inclined at  = 

30º. Thus, any trigonometric factor cancels out and the application of torques about the 

contact point (referred to in the problem) leads to 

 

       2 2

3

tricep

15kg 9.8m/s 35cm 2.0kg 9.8m/s 15cm
1.9 10 N.

2.5cm
F


    

 

(b) The direction is upward since tricep 0F  . 

 

(c) Equilibrium of forces (with upward positive) leads to 

 

     2 2

tricep humer 15kg 9.8m/s 2.0kg 9.8m/s 0F F     

 

and thus to 3

humer 2.1 10 NF    , or 3

humer| | 2.1 10 NF   . 

 

(d) The negative sign implies that humerF points downward. 

 

28. (a) Computing torques about point A, we find 

 

T L Wx W
L

bmax maxsin = +
2

F
HG
I
KJ. 

We solve for the maximum distance: 

 

 max
max

sin / 2 (500 N)sin30.0 (200 N) / 2
3.00 m 1.50m.

300 N

bT W
x L

W

    
    
   

 

 

(b) Equilibrium of horizontal forces gives max= cos = 433N.xF T   

 

(c) And equilibrium of vertical forces gives max= + sin = 250 N.y bF W W T   

 

29. The problem states that each hinge supports half the door’s weight, so each vertical 

hinge force component is Fy = mg/2 = 1.3 × 10
2
 N. Computing torques about the top 

hinge, we find the horizontal hinge force component (at the bottom hinge) is 
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 2(27kg)(9.8m/s ) 0.91 m/2
80 N.

2.1m 2(0.30m)
hF  


 

 

Equilibrium of horizontal forces demands that the horizontal component of the top hinge 

force has the same magnitude (though opposite direction).  

 

(a) In unit-vector notation, the force on the door at the top hinge is 

 

 2

top
ˆ ˆ( 80 N)i (1.3 10 N)jF     . 

 

(b) Similarly, the force on the door at the bottom hinge is 

 
2

bottom
ˆ ˆ( 80 N)i (1.3 10 N)jF     . 

 

30. (a) The sign is attached in two places: at x1 = 1.00 m (measured rightward from the 

hinge) and at x2 = 3.00 m. We assume the downward force due to the sign’s weight is 

equal at these two attachment points, each being half the sign’s weight of mg. The angle 

where the cable comes into contact (also at x2) is  

 

 = tan
–1

(dv/dh) = tan
–1

(4.00 m/3.00 m) 

 

and the force exerted there is the tension T. Computing torques about the hinge, we find 

 

     

  

2 21 11 1
2 21 22 2

2

50.0 kg 9.8 m/s 1.00 m (50.0 kg) (9.8m/s ) (3.00 m)
=

sin 3.00 m 0.800

408 N.

mgx mgx
T

x 






 

 

(b) Equilibrium of horizontal forces requires that the horizontal hinge force be  

 

Fx = T cos  = 245 N. 

 

(c) The direction of the horizontal force is rightward. 

 

(d) Equilibrium of vertical forces requires that the vertical hinge force be  

 

Fy = mg – T sin  = 163 N. 

 

(e) The direction of the vertical force is upward. 

 

31. The bar is in equilibrium, so the forces and the torques acting on it each sum to zero. 

Let Tl be the tension force of the left-hand cord, Tr be the tension force of the right-hand 

cord, and m be the mass of the bar. The equations for equilibrium are: 
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vertical force components:

horizontal force components:

torques:

 

cos cos 0

sin sin 0

cos 0.

l r

l r

r

T T mg

T T

mgx T L

 

 



  

  

 

 

 

The origin was chosen to be at the left end of the bar for purposes of calculating the 

torque. The unknown quantities are Tl, Tr, and x. We want to eliminate Tl and Tr, then 

solve for x. The second equation yields Tl = Tr sin  /sin  and when this is substituted 

into the first and solved for Tr the result is  

 

sin

sin cos cos sin
r

mg
T



   



. 

 

This expression is substituted into the third equation and the result is solved for x: 

 

x L L=
+

=
+

.
sin cos

sin cos cos sin

sin cos

sin

 

   

 

 b g  

 

The last form was obtained using the trigonometric identity  

 

sin(A + B) = sin A cos B + cos A sin B. 

 

For the special case of this problem  +  = 90º and sin( + ) = 1. Thus, 

 

 = sin cos = 6.10 m  sin36.9 cos53.1 = 2.20  m.x L      

 

32. (a) With kF ma mg   the magnitude of the deceleration is  

 

|a| = kg = (0.40)(9.8 m/s
2
) = 3.92 m/s

2
. 

 

(b) As hinted in the problem statement, we can use Eq. 12-9, evaluating the torques about 

the car’s center of mass, and bearing in mind that the friction forces are acting 

horizontally at the bottom of the wheels; the total friction force there is fk = kgm = 3.92m 

(with SI units understood, and m is the car’s mass), a vertical distance of 0.75 meter 

below the center of mass.  Thus, torque equilibrium leads to 

 

             (3.92m)(0.75) + FNr (2.4) –  FNf (1.8)  = 0 . 

 

Equation 12-8 also holds (the acceleration is horizontal, not vertical), so we have FNr + 

FNf = mg, which we can solve simultaneously with the above torque equation.  The mass 

is obtained from the car’s weight: m = 11000/9.8, and we obtain FNr = 3929  4000 N. 

Since each involves two wheels then we have (roughly) 2.010
3
 N on each rear wheel. 
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(c) From the above equation, we also have FNf = 7071  7000 N, or 3.510
3
 N on each 

front wheel, as the values of the individual normal forces. 

 

(d) For friction on each rear wheel, Eq. 6-2 directly yields  

 
2

1 ( / 2) (0.40)(3929 N/ 2) 7.9 10 Nr k Nrf F     . 

 

(e) Similarly, for friction on the front rear wheel, Eq. 6-2 gives 

 
3

1 ( / 2) (0.40)(7071 N / 2) 1.4 10 Nf k Nff F     . 

 

33. (a) With the pivot at the hinge, Eq. 12-9 yields 

 

 cos 0aTL F y   . 

 

This leads to T = (Fa/cos)(y/L) so that we can interpret Fa/cos as the slope on the 

tension graph (which we estimate to be 600 in SI units).  Regarding the Fh graph, we use 

Eq. 12-7 to get  

Fh = Tcos   Fa = (Fa)(y/L)  Fa 

 

after substituting our previous expression. The result implies that the slope on the Fh 

graph (which we estimate to be  –300) is equal to Fa , or Fa = 300 N and (plugging back 

in) = 60.0.    

 

(b) As mentioned in the previous part, Fa = 300 N. 

 

34. (a) Computing torques about the hinge, we find the tension in the wire: 

 

TL Wx T
Wx

L
sin

sin



 = 0 = .  

 

(b) The horizontal component of the tension is T cos , so equilibrium of horizontal 

forces requires that the horizontal component of the hinge force is 

 

F
Wx

L

Wx

L
x = = .

sin
cos

tan




F
HG
I
KJ  

 

(c) The vertical component of the tension is T sin , so equilibrium of vertical forces 

requires that the vertical component of the hinge force is 

 

F W
Wx

L
W

x

L
y = = 1 .
F
HG
I
KJ 

F
HG
I
KJsin

sin


  
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35. THINK We examine the box when it is about to tip. Since it will rotate about the 

lower right edge, this is where the normal force of the floor is exerted.  

 

EXPRESS The free-body diagram is shown below. The normal force is labeled 
NF , the 

force of friction is denoted by f, the applied force by F, and the force of gravity by W. 

Note that the force of gravity is applied at the center of the box. When the minimum force 

is applied the box does not accelerate, so the sum of the horizontal force components 

vanishes: F – f = 0, the sum of the vertical force components vanishes: 0NF W  , and 

the sum of the torques vanishes:  

FL – WL/2 = 0. 

 

Here L is the length of a side of the box and the origin was chosen to be at the lower right 

edge. 

 

ANALYZE (a) From the torque equation, we find 
890 N

445N.
2 2

W
F     

 

(b) The coefficient of static friction must be large enough that the box does not slip. The 

box is on the verge of slipping if s = f/FN. According to the equations of equilibrium  

 

FN = W = 890 N 

  f = F = 445 N, 

so 

445 N
0.50.

890 N
s

N

f

F
     

 

(c) The box can be rolled with a smaller applied force if the force points upward as well 

as to the right. Let  be the angle the force makes with the horizontal. The torque 

equation then becomes  

FL cos  + FL sin  – WL/2 = 0, 

with the solution 

F
W


2(cos sin )

.
 

 

 

We want cos + sin  to have the largest possible value. This occurs if  = 45º, a result 

we can prove by setting the derivative of  cos + sin  equal to zero and solving for . 

The minimum force needed is  
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890 N
315N.

2(cos 45 sin 45 ) 2(cos 45 sin 45 )

W
F   

   
 

 

 
LEARN The applied force as a function of  is plotted below. From the figure, we 

readily see that 0    corresponds to a maximum and 45    a minimum.  

 
 

36. As shown in the free-body diagram, the forces on the climber consist of the normal 

force from the wall, the vertical component vF  and the horizontal component hF  of the 

force acting on her four fingertips, and the downward gravitational force mg .  

 
Since the climber is in static equilibrium, the net force acting on her is zero. Applying 

Newton’s second law to the vertical and horizontal directions, we have 

 

net,

net,

0 4

0 4 .

x h N

y v

F F F

F F mg

  

  




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In addition, the net torque about O (contact point between her feet and the wall) must also 

vanish: 

net0 ( ) (4 )h

O

mg a F H   . 

 

(a) From the torque equation, we find the horizontal component of the force on her 

fingertip to be 
2(70 kg)(9.8 m/s )(0.20 m)

17 N.
4 4(2.0 m)

h

mga
F

H
    

(b) From the y-component of the force equation, we obtain 

 
2

2(70 kg)(9.8 m/s )
1.7 10 N.

4 4
v

mg
F      

 

37. The free-body diagram below shows the forces acting on the plank. Since the roller is 

frictionless, the force it exerts is normal to the plank and makes the angle  with the 

vertical.  

 
Its magnitude is designated F. W is the force of gravity; this force acts at the center of the 

plank, a distance L/2 from the point where the plank touches the floor. NF  is the normal 

force of the floor and f is the force of friction. The distance from the foot of the plank to 

the wall is denoted by d. This quantity is not given directly but it can be computed using 

d = h/tan.  

 

The equations of equilibrium are: 

 

horizontal force components:

vertical force components:

torques:

 
 2

sin 0

cos 0

cos 0.

N

L
N

F f

F W F

F d fh W d







 

  

   

 

 

The point of contact between the plank and the roller was used as the origin for writing 

the torque equation. 
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When  = 70º the plank just begins to slip and f = sFN, where s is the coefficient of 

static friction. We want to use the equations of equilibrium to compute FN and f for  = 

70º, then use s = f /FN to compute the coefficient of friction. 

 

The second equation gives F = (W – FN)/cos and this is substituted into the first to 

obtain  

f = (W – FN) sin/cos = (W – FN) tan. 

 

This is substituted into the third equation and the result is solved for FN: 

 

  2

2

/2 cos + tan (1 tan ) ( / 2)sin
= ,

+ tan (1 tan )
N

d L h h L
F W W

d h h

   

 

  



 

 

where we have used d = h/tan and multiplied both numerator and denominator by tan . 

We use the trigonometric identity 1+ tan
2 = 1/cos

2 and multiply both numerator and 

denominator by cos
2  to obtain 

2= 1 cos sin .
2

N

L
F W

h
 

 
 

 
 

 

Now we use this expression for FN in f = (W – FN) tan  to find the friction: 

 

f
WL

h
=

2
.2sin cos   

 

Substituting these expressions for f and FN into s = f/FN leads to 

 


 

 
s

L

h L
=

2
.

2

2

sin cos

sin cos
 

 

Evaluating this expression for  = 70º, L = 6.10 m and h = 3.05 m gives 

 

 

   

2

2

6.1m sin 70 cos70
= = 0.34.

2 3.05m 6.1m sin70 cos 70
s

 

  
 

 

38. The phrase “loosely bolted” means that there is no torque exerted by the bolt at that 

point (where A connects with B). The force exerted on A at the hinge has x and y 

components Fx and Fy. The force exerted on A at the bolt has components Gx and Gy, and 

those exerted on B are simply –Gx and – Gy by Newton’s third law. The force exerted on 

B at its hinge has components Hx and Hy. If a horizontal force is positive, it points 

rightward, and if a vertical force is positive it points upward. 

 

(a) We consider the combined A system, which has a total weight of Mg where M = 

122 kg and the line of action of that downward force of gravity is x = 1.20 m from the 
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wall. The vertical distance between the hinges is y = 1.80 m. We compute torques about 

the bottom hinge and find 

797 N.x

Mgx
F

y
     

If we examine the forces on A alone and compute torques about the bolt, we instead find 

 

265 NA
y

m gx
F    

 

where mA = 54.0 kg and  = 2.40 m (the length of beam A). Thus, in unit-vector notation, 

we have 

 ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yF F F     . 

 

(b) Equilibrium of horizontal and vertical forces on beam A readily yields  

 

Gx = – Fx = 797 N,     Gy = mAg – Fy = 265 N. 

 

In unit-vector notation, we have 
ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yG G G     . 

 

(c) Considering again the combined A system, equilibrium of horizontal and vertical 

forces readily yields Hx = – Fx = 797 N and Hy = Mg – Fy = 931 N. In unit-vector notation, 

we have 
ˆ ˆ ˆ ˆi j ( 797 N)i (931 N)jx yH H H     . 

 

(d) As mentioned above, Newton’s third law (and the results from part (b)) immediately 

provide – Gx = – 797 N and – Gy = – 265 N for the force components acting on B at the 

bolt. In unit-vector notation, we have 

 
ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yG G G       . 

 

39. The diagrams show the forces on the two sides of the ladder, separated. FA and FE are 

the forces of the floor on the two feet, T is the tension force of the tie rod, W is the force 

of the man (equal to his weight), Fh is the horizontal component of the force exerted by 

one side of the ladder on the other, and Fv is the vertical component of that force. Note 

that the forces exerted by the floor are normal to the floor since the floor is frictionless. 

Also note that the force of the left side on the right and the force of the right side on the 

left are equal in magnitude and opposite in direction. Since the ladder is in equilibrium, 

the vertical components of the forces on the left side of the ladder must sum to zero:  

 

Fv + FA – W = 0. 

 

The horizontal components must sum to zero: T – Fh = 0.  
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The torques must also sum to zero. We take the origin to be at the hinge and let L be the 

length of a ladder side. Then  

 

FAL cos  – W(L – d) cos  – T(L/2) sin  = 0. 

 

Here we recognize that the man is a distance d from the bottom of the ladder (or L – d 

from the top), and the tie rod is at the midpoint of the side. 

 

The analogous equations for the right side are FE – Fv = 0, Fh – T = 0, and FEL cos  – 

T(L/2) sin  = 0. There are 5 different equations: 

0,

0

cos ( )cos ( / 2)sin 0

0

cos ( / 2)sin 0.

v A

h

A

E v

E

F F W

T F

F L W L d T L

F F

F L T L

  

 

  

 

   

 

 

 

 

The unknown quantities are FA, FE, Fv, Fh, and T. 

 

(a) First we solve for T by systematically eliminating the other unknowns. The first 

equation gives FA = W – Fv and the fourth gives Fv = FE. We use these to substitute into 

the remaining three equations to obtain 

0

cos cos ( )cos ( / 2)sin 0

cos ( / 2)sin 0.

h

E

E

T F

WL F L W L d T L

F L T L

   

 

 

    

 

 

 

The last of these gives FE = Tsin/2cos = (T/2) tan. We substitute this expression into 

the second equation and solve for T. The result is 

 

.
tan

Wd
T

L 
  

 

To find tan, we consider the right triangle formed by the upper half of one side of the 

ladder, half the tie rod, and the vertical line from the hinge to the tie rod. The lower side 
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of the triangle has a length of 0.381 m, the hypotenuse has a length of 1.22 m, and the 

vertical side has a length of 122 0 381 116
2 2

. . .m m mb g b g  . This means  

 

tan  = (1.16m)/(0.381m) = 3.04. 

Thus, 

(854 N)(1.80 m)
207 N.

(2.44 m)(3.04)
T    

 

(b) We now solve for FA. We substitute ( / 2) tan / 2v EF F T Wd L    into the equation 

Fv + FA – W = 0 and solve for FA. The solution is 

 

 
1.80 m

1 (854 N) 1 539 N
2 2(2.44 m)

A v

d
F W F W

L

  
        

   
. 

 

(c) Similarly,
1.80 m

(854 N) 315 N
2 2(2.44 m)

E

d
F W

L
   . 

 

40. (a) Equation 12-9 leads to 

TL sin  –  mpgx – mbg( )
L

2
 = 0 . 

 

This can be written in the form of a straight line (in the graph) with 

 

T = (“slope”) 
x

L
   +  “y-intercept” 

 

where “slope” = mpg/sin and “y-intercept” = mbg/2sin.  The graph suggests that the 

slope (in SI units) is 200 and the y-intercept is 500.  These facts, combined with the given 

mp + mb = 61.2 kg datum, lead to the conclusion:  

 

sin = 61.22g/1200   = 30.0º. 

 

(b) It also follows that mp = 51.0 kg. 

 

(c) Similarly, mb = 10.2 kg. 

 

41. The force diagram shown depicts the situation just before the crate tips, when the 

normal force acts at the front edge. However, it may also be used to calculate the angle 

for which the crate begins to slide. W is the force of gravity on the crate, NF  is the normal 

force of the plane on the crate, and f is the force of friction. We take the x-axis to be down 

the plane and the y-axis to be in the direction of the normal force. We assume the 

acceleration is zero but the crate is on the verge of sliding. 
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(a) The x and y components of Newton’s second law are 

 

sin 0 and cos 0NW f F W      

 

respectively. The y equation gives FN = W cos . Since the crate is about to slide  

 

f = sFN = sW cos , 

 

where s is the coefficient of static friction. We substitute into the x equation and find 

 

.sin cos 0 tans sW W         

 

This leads to  = tan
–1

 s = tan
–1

 (0.60) = 31.0º. 

 

In developing an expression for the total torque about the center of mass when the crate is 

about to tip, we find that the normal force and the force of friction act at the front edge. 

The torque associated with the force of friction tends to turn the crate clockwise and has 

magnitude fh, where h is the perpendicular distance from the bottom of the crate to the 

center of gravity. The torque associated with the normal force tends to turn the crate 

counterclockwise and has magnitude / 2NF , where   is the length of an edge. Since the 

total torque vanishes, / 2Nfh F . When the crate is about to tip, the acceleration of the 

center of gravity vanishes, so sinf W   and cosNF W  . Substituting these 

expressions into the torque equation, we obtain 

 

1 1 1.2m
tan tan 33.7 .

2 2(0.90m)h
       

 

As  is increased from zero the crate slides before it tips.  

 

(b) It starts to slide when  = 31º. 

 

(c) The crate begins to slide when  

 

 = tan
–1

 s = tan
–1

 (0.70) = 35.0º 
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and begins to tip when  = 33.7º. Thus, it tips first as the angle is increased. 

 

(d) Tipping begins at  = 33.7  34. 

 

42. Let x be the horizontal distance between the firefighter 

and the origin O (see the figure) that makes the ladder on the 

verge of sliding. The forces on the firefighter + ladder system 

consist of the horizontal force 
wF  from the wall, the vertical 

component 
pyF  and the horizontal component 

pxF  of the force 

pF  on the ladder from the pavement, and the downward 

gravitational forces Mg  and mg , where M and m are the 

masses of the firefighter and the ladder, respectively.  

 

Since the system is in static equilibrium, the net force acting 

on the system is zero. Applying Newton’s second law to the 

vertical and horizontal directions, we have 

 

net,

net,

0

0 ( ) .

x w px

y py

F F F

F F M m g

  

   




 

 

Since the ladder is on the verge of sliding, px s pyF F . Therefore, we have  

 

( )w px s py sF F F M m g     . 

 

In addition, the net torque about O (contact point between the ladder and the wall) must 

also vanish: 

net0 ( ) ( ) ( ) 0
3

w

O

a
h F x Mg mg      . 

Solving for x, we obtain  

 

( / 3) ( ) ( / 3) ( ) ( / 3)w s shF a mg h M m g a mg h M m a m
x

Mg Mg M

     
    

 

Substituting the values given in the problem statement (with 2 2 7.58 ma L h   ), the 

fraction of ladder climbed is 

 

( ) ( / 3) (9.3 m)(0.53)(72 kg 45 kg) (7.58 m / 3)(45 kg)

(72 kg)(7.58 m)

0.848 85%.

sh M m a mx

a Ma

    
 

 
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43. THINK The weight of the object hung on the end provides the source of shear stress. 

 

EXPRESS The shear stress is given by F/A, where F is the magnitude of the force 

applied parallel to one face of the aluminum rod and A is the cross–sectional area of the 

rod. In this case F = mg, where m is the mass of the object. The cross-sectional area is 
2A r  where r is the radius of the rod.   

 

ANALYZE (a) Substituting the values given, we find the shear stress to be 

 
2

6 2

2 2

(1200kg)(9.8m/s )
6.5 10 N/m .

(0.024m)

F mg

A r 
     

 

(b) The shear modulus G is given by 

G
F A

x L


/

/
, 

 

where L is the protrusion of the rod and x is its vertical deflection at its end. Thus, 

 
6 2

5

10 2

( / ) (6.5 10 N/m )(0.053m)
1.1 10 m.

3.0 10 N/m

F A L
x

G


    


 

 

LEARN As expected, the extent of vertical deflection x is proportional to F, the weight 

of the object hung from the end. On the other hand, it is inversely proportional to the 

shear modulus G.  

 

44. (a) The Young’s modulus is given by 

 
6 2

10 2stress 150 10 N/m
slope of the stress-strain curve 7.5 10 N/m .

strain 0.002
E


      

 

(b) Since the linear range of the curve extends to about 2.9×10
8
 N/m

2
, this is 

approximately the yield strength for the material. 

 

45. (a) Since the brick is now horizontal and the cylinders were initially the same length 

 , then both have been compressed an equal amount . Thus, 

 

 






 

FA

A E

F

A EA A

B

B B

and  

which leads to 

F

F

A E

A E

A E

A E

A

B

A A

B B

B B

B B

  
( )( )

.
2 2

4  

 

When we combine this ratio with the equation FA + FB = W, we find FA/W = 4/5 = 0.80. 
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(b) This also leads to the result FB/W = 1/5 = 0.20. 

 

(c) Computing torques about the center of mass, we find FAdA = FBdB, which leads to 

 

1
0.25.

4

A B

B A

d F

d F
    

 

46. Since the force is (stress × area) and the displacement is (strain × length), we can 

write the work integral (eq. 7-32) as 

 

  W = Fdx   = (stress) A (differential strain)L  = AL (stress) (differential strain) 

 

which means the work is  (thread cross-sectional area) × (thread length) × (graph area 

under curve). The area under the curve is   

 

 1 2 1 3 2 2 3 1 3 2

9 2 9 2 9 2

8 2

1 1 1 1
graph area ( )( ) ( )( ) ( ) ( )

2 2 2 2

1
(0.12 10 N/m )(1.4) (0.30 10 N/m )(1.0) (0.80 10 N/m )(0.60)

2

4.74 10 N/m .

as a b s s b c s s as b s s c s s           

       

 

 

 

(a) The kinetic energy that would put the thread on the verge of breaking is simply equal 

to W: 
12 2 3 8 2

5

(graph area) (8.0 10  m )(8.0 10  m)(4.74 10 N/m )

3.03 10  J.

K W AL  



     

 
 

 

(b) The kinetic energy of the fruit fly of mass 6.00 mg and speed 1.70 m/s is 

 

 2 6 2 61 1
(6.00 10 kg)(1.70 m/s) 8.67 10  J.

2 2
f f fK m v        

 

(c) Since fK W , the fruit fly will not be able to break the thread. 

 

(d) The kinetic energy of a bumble bee of mass 0.388 g and speed 0.420 m/s is  

 

2 4 2 51 1
(3.99 10 kg)0.420 m/s) 3.42 10  J.

2 2
b b bK m v        

 

(e) On the other hand, since bK W , the bumble bee will be able to break the thread. 

 

47. The flat roof (as seen from the air) has area A = 150 m × 5.8 m = 870 m
2
. The volume 

of material directly above the tunnel (which is at depth d = 60 m) is therefore  



CHAPTER 12 598 

 

V = A × d = (870 m
2
) × (60 m) = 52200 m

3
. 

 

Since the density is  = 2.8 g/cm
3
 = 2800 kg/m

3
, we find the mass of material supported 

by the steel columns to be m = V = 1.46 × 10
8
 kg. 

 

(a) The weight of the material supported by the columns is mg = 1.4 × 10
9
 N. 

 

(b) The number of columns needed is 

 

n 


 




143 10

400 10 960 10
75

9

1
2

6 4 2

.

( )( )
.

N

N / m m2
 

 

48. Since the force is (stress × area) and the displacement is (strain × length), we can 

write the work integral (Eq. 7-32) as 

 

  W = Fdx   = (stress) A (differential strain)L  = AL (stress) (differential strain) 

 

which means the work is  (wire area) × (wire length) × (graph area under curve).  Since 

the area of a triangle (see the graph in the problem statement) is  
1

2
 (base)(height)  then we 

determine the work done to be 

 

     W = (2.00 × 10
6

 m
2
)(0.800 m)( )

1

2
(1.0 × 10

3
)(7.0 × 10

7 
N/m

2
) = 0.0560 J. 

 

49. (a) Let FA and FB be the forces exerted by the wires on the log and let m be the mass 

of the log. Since the log is in equilibrium, FA + FB – mg = 0. Information given about the 

stretching of the wires allows us to find a relationship between FA and FB. If wire A 

originally had a length LA and stretches by LA , then L F L AEA A A / , where A is the 

cross-sectional area of the wire and E is Young’s modulus for steel (200 × 10
9
 N/m

2
). 

Similarly, L F L AEB B B / . If    is the amount by which B was originally longer than A 

then, since they have the same length after the log is attached, A BL L    . This means 

 

F L

AE

F L

AE

A A B B  .  

We solve for FB: 

F
F L

L

AE

L
B

A A

B B

 


.  

We substitute into FA + FB – mg = 0 and obtain 

 

F
mgL AE

L L
A

B

A B







.  

The cross-sectional area of a wire is  
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A r      2 3
2

6120 10 4 52 10. .m m2c h . 

 

Both LA and LB may be taken to be 2.50 m without loss of significance. Thus 

 
2 6 2 9 2 3(103kg)(9.8m/s ) (2.50m) (4.52 10 m )(200 10 N/m )(2.0 10 m)

2.50m 2.50m

866 N.

AF
    






 

 

(b) From the condition FA + FB – mg = 0, we obtain 

 
2(103kg)(9.8m/s ) 866N 143N.B AF mg F      

 

(c) The net torque must also vanish. We place the origin on the surface of the log at a 

point directly above the center of mass. The force of gravity does not exert a torque about 

this point. Then, the torque equation becomes FAdA – FBdB = 0, which leads to 

 

143N
0.165.

866 N

A B

B A

d F

d F
    

 

50. On the verge of breaking, the length of the thread is 

 

0 0 0 0 0(1 / ) (1 2) 3L L L L L L L L       , 

 

where  0 0.020 mL  is the original length, and 0strain / 2L L   , as given in the 

problem. The free-body diagram of the system is shown below.  

 

 
 

The condition for equilibrium is 2 sinmg T  , where m is the mass of the insect and  

(stress)T A . Since the volume of the thread remains constant as it is being stretched, 

we have 0 0V A L AL  , or 0 0 0( / ) / 3A A L L A  . The vertical distance y  is 

 
2 2

2 2 0 0
0 0

9
( / 2) ( / 2) 2

4 4

L L
y L L L      . 

Thus, the mass of the insect is  
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0 0 0

0

12 2 8 2
4

2

2( / 3)(stress)sin 2 (stress) 4 2 (stress)2 sin

3 3 / 2 9

4 2(8.00 10  m )(8.20 10 N/m )
4.21 10 kg

9(9.8 m/s )

A A AT y
m

g g g L g







   

 
  

 

or 0.421 g.  

 

51. Let the forces that compress stoppers A and B be FA and FB, respectively. Then 

equilibrium of torques about the axle requires  

 

FR = rAFA + rBFB. 

 

If the stoppers are compressed by amounts |yA| and |yB|, respectively, when the rod 

rotates a (presumably small) angle  (in radians), then | | | . y r y rA A B B  and |  

 

Furthermore, if their “spring constants” k are identical, then k = |F/y| leads to the 

condition FA/rA = FB/rB, which provides us with enough information to solve. 

 

(a) Simultaneous solution of the two conditions leads to 

 

2

2 2 2 2

(5.0 cm)(7.0 cm)
(220 N) 118 N 1.2 10  N.

(7.0 cm) +(4.0 cm)

A
A

A B

Rr
F F

r r
    


 

 

(b) It also yields 

2 2 2 2

(5.0 cm)(4.0 cm)
(220 N) 68 N.

(7.0 cm) +(4.0 cm)

B
B

A B

Rr
F F

r r
  


 

 

52. (a) If L (= 1500 cm) is the unstretched length of the rope and L  2 8. cm is the 

amount it stretches, then the strain is 

 

L L/ . / .   2 8 1500 19 10 3cm cmb g b g . 

 

(b) The stress is given by F/A where F is the stretching force applied to one end of the 

rope and A is the cross-sectional area of the rope. Here F is the force of gravity on the 

rock climber. If m is the mass of the rock climber then F = mg. If r is the radius of the 

rope then A r  2 . Thus the stress is 

 
2

7 2

2 3 2

(95kg)(9.8m/s )
1.3 10 N/m .

(4.8 10 m)

F mg

A r  
   


 

 

(c) Young’s modulus is the stress divided by the strain:  

 

E = (1.3 × 10
7
 N/m

2
) / (1.9 × 10

–3
) = 6.9 × 10

9
 N/m

2
. 
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53. THINK The slab can remain in static equilibrium if the combined force of the 

friction and the bolts is greater than the component of the weight of the slab along the 

incline. 

  

EXPRESS We denote the mass of the slab as m, its density as  , and volume as 

V LTW . The angle of inclination is 26   . The component of the weight of the slab 

along the incline is 1 sin sinF mg Vg    , and the static force of friction is 

 

cos coss s N s sf F mg Vg        . 

 

ANALYZE (a) Substituting the values given, we find 
1F  to be 

  
3 2 7

1 sin kg/m )(43m)(2.5m)(12m)(9.8m/s )sin 26 1.8 10 N.F Vg         

 

(b) Similarly, the static force of friction is 

  
3 2

7

cos kg/m )(43m)(2.5m)(12m)(9.8m/s )cos 26

1.4 10 N.

s sf Vg      

 
 

 

(c) The minimum force needed from the bolts to stabilize the slab is 

  
7 7 6

2 1 1.77 10 N 1.42 10 N 3.5 10 N.sF F f         

 

If the minimum number of bolts needed is n, then 2 / ,GF nA S  where 
8 23.6 10 N/mGS    is the shear stress. Solving for n, we find   

  
6

8 2 4 2

3.5 10 N
15.2

(3.6 10 N/m )(6.4 10 m )
n




 

 
 

 

Therefore, 16 bolts are needed. 

 

LEARN In general, the number of bolts needed to maintain static equilibrium of the slab 

is  

1 s

G

F f
n

S A


 . 

Thus, no bolt would be necessary if 1sf F . 

 

54. The notation and coordinates are as shown in Fig. 12-7 in the textbook.  Here, the 

ladder's center of mass is halfway up the ladder (unlike in the textbook figure).  Also, we 

label the x and y forces at the ground fs and FN, respectively.  Now, balancing forces, we 

have 
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 Fx = 0        fs  =  Fw 

   Fy = 0        FN  = mg . 

 

Since fs = fs, max, we divide the equations to obtain 

 

   
,maxs

N

f

F
= s = 

Fw

mg
 . 

Now, from  z = 0 (with axis at the ground) we have mg(a/2)  Fwh = 0.  But from the 

Pythagorean theorem, h = 2 2 ,L a  where L is the length of the ladder.  Therefore, 

2 2

/ 2
.

2

wF a a

mg h L a
 


   

In this way, we find 

2 2 2

2
3.4 m.

2 1 4

s
s

s

La
a

L a





   

 
 

 

55. THINK Block A can be in equilibrium if friction is present between the block and 

the surface in contact.   

 

EXPRESS The free-body diagrams for blocks A, B and the knot (denoted as C) are 

shown below.  

 
 

The tensions in the three strings are denoted as AT , BT  and CT Analyzing forces at C, the 

conditions for static equilibrium are  

 

cos , sinC B C AT T T T    

 

which can be combined to give tan /A BT T  . On the other hand, equilibrium condition 

for block B implies B BT m g . Similarly, for block A, the conditions are 

, ,N A A AF m g f T   
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For the static force to be at its maximum value, we have 
,s N A s Af F m g   . 

Combining all the equations leads to  

 

tan s A s AA

B B B

m g mT

T m g m

 
    . 

 

ANALYZE Solving for s , we get  

 

5.0 kg
tan tan30 0.29

10 kg

B
s

A

m

m
 

   
      

  
 

 

LEARN The greater the mass of block B, the greater the static coefficient s  would be 

required for block A to be in equilibrium.  

  

56. (a) With pivot at the hinge (at the left end), Eq. 12-9 gives 

 

                    – mgx – Mg 
L

2
   +  Fh h = 0 

 

where m is the man’s mass and M is that of the ramp; Fh is the leftward push of the right 

wall onto the right edge of the ramp.  This equation can be written in the form (for a 

straight line in a graph)   

Fh = (“slope”)x  +  (“y-intercept”), 

 

where the “slope” is mg/h and the “y-intercept” is MgD/2h. Since h = 0.480 m 

and 4.00 mD  , and the graph seems to intercept the vertical axis at 20 kN, then we find 

M = 500 kg. 

 

(b) Since the “slope” (estimated from the graph) is  (5000 N)/(4 m), then the man’s mass 

must be m = 62.5 kg. 

 

57. With the x axis parallel to the incline (positive uphill), then 

 

 Fx = 0       T cos 25  mg sin 45  =  0. 

Therefore,  

2sin 45 sin 45
(10 kg)(9.8 m/s ) 76 N

cos25 cos 25
T mg

 
  

 
. 

 

58. The beam has a mass M = 40.0 kg and a length L = 0.800 m. The mass of the package 

of tamale is m = 10.0 kg. 

 

(a) Since the system is in static equilibrium, the normal force on the beam from roller A is 

equal to half of the weight of the beam:  
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FA = Mg/2 = (40.0 kg)(9.80 m/s
2
)/2 = 196 N. 

 

(b) The normal force on the beam from roller B is equal to half of the weight of the beam 

plus the weight of the tamale:  

 

FB = Mg/2 + mg = (40.0 kg)(9.80 m/s
2
)/2 + (10.0 kg)(9.80 m/s

2
) = 294 N. 

 

(c) When the right-hand end of the beam is centered over roller B, the normal force on the 

beam from roller A is equal to the weight of the beam plus half of the weight of the 

tamale:  

FA = Mg + mg/2 = (40.0 kg)(9.8 m/s
2
) + (10.0 kg)(9.80 m/s

2
)/2 = 441 N. 

 

(d) Similarly, the normal force on the beam from roller B is equal to half of the weight of 

the tamale:  

FB = mg/2 = (10.0 kg)(9.80 m/s
2
)/2 = 49.0 N. 

 

(e) We choose the rotational axis to pass through roller B. When the beam is on the verge 

of losing contact with roller A, the net torque is zero. The balancing equation may be 

written as  

( / 4 )     
4

L M
mgx Mg L x x

M m
   


. 

 

Substituting the values given, we obtain x = 0.160 m. 

 

59. THINK The bucket is in static equilibrium. The forces acting on it are the downward 

force of gravity and the upward tension force of cable A.  

 

EXPRES Since the bucket is in equilibrium, the tension force of cable A is equal to the 

weight of the bucket: AT W mg  . To solve for BT  and CT , we use the coordinates axes 

defined in the diagram. Cable A makes an angle of 2 = 66.0º with the negative y axis, 

cable B makes an angle of 27.0º with the positive y axis, and cable C is along the x axis. 

The y components of the forces must sum to zero since the knot is in equilibrium. This 

means  

TB cos 27.0º – TA cos 66.0º = 0. 

 

Similarly, the fact that the x components of forces must also sum to zero implies  

 

TC + TB sin 27.0º – TA sin 66.0º = 0 . 

 

ANALYZE (a) Substituting the values given, we find the tension force of cable A to be 

 
2 3(817 kg)(9.80m/s ) 8.01 10 NAT mg    . 

 

(b) Equilibrium condition for the y-components gives 
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3 3cos66.0 cos66.0
(8.01 10 N) 3.65 10 N.

cos 27.0 cos 27.0
B AT T

    
       

    
 

 

(c) Using the equilibrium condition for the x-components, we have   

 
3 3

3

sin 66.0 sin 27.0 (8.01 10 N)sin 66.0 (3.65 10 N)sin 27.0

5.66 10 N.

C A BT T T       

 
 

 

LEARN One may verify that the tensions obey law of sine: 

 

 
1 2 2 1sin(180 ) sin(90 ) sin(90 )

CA B
TT T

   
 

   
 . 

 

60. (a) Equation 12-8 leads to T1 sin40º  + T2 sin = mg . Also, Eq. 12-7 leads to 

 

T1 cos40º  T2 cos = 0. 

 

Combining these gives the expression  

 

2
cos tan 40 sin

mg
T

 



. 

 

To minimize this, we can plot it or set its derivative equal to zero.  In either case, we find 

that it is at its minimum at  = 50.  

 

(b) At  = 50, we find T2 = 0.77mg.  

 

61. The cable that goes around the lowest pulley is cable 1 and has tension T1 = F. That 

pulley is supported by the cable 2 (so T2 = 2T1 = 2F) and goes around the middle pulley. 

The middle pulley is supported by cable 3 (so T3 = 2T2 = 4F) and goes around the top 

pulley. The top pulley is supported by the upper cable with tension T, so T = 2T3 = 8F. 

Three cables are supporting the block (which has mass m = 6.40 kg): 

 

1 2 3 8.96 N.
7

mg
T T T mg F       

 

Therefore, T = 8(8.96 N) = 71.7 N. 

 

62. To support a load of W = mg = (670 kg)(9.8 m/s
2
) = 6566 N, the steel cable must 

stretch an amount proportional to its “free” length: 
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L
W

AY
L A r

F
HG
I
KJ where  2  

and r = 0.0125 m. 

 

(a) If L = 12 m, then 4

2 11 2

6566 N
(12 m) 8.0 10 m.

(0.0125 m) (2.0 10 N/m )
L



 
    

 
 

 

(b) Similarly, when L = 350 m, we findL  0 023. m. 

 

63. (a) The center of mass of the top brick cannot be further (to the right) with respect to 

the brick below it (brick 2) than L/2; otherwise, its center of gravity is past any point of 

support and it will fall. So a1 = L/2 in the maximum case. 

 

(b) With brick 1 (the top brick) in the maximum situation, then the combined center of 

mass of brick 1 and brick 2 is halfway between the middle of brick 2 and its right edge. 

That point (the combined com) must be supported, so in the maximum case, it is just 

above the right edge of brick 3. Thus, a2 = L/4. 

 

(c) Now the total center of mass of bricks 1, 2, and 3 is one-third of the way between the 

middle of brick 3 and its right edge, as shown by this calculation: 

 

x
m m L

m

L
com =

2 0 + / 2

3
=

6

a f a f
  

 

where the origin is at the right edge of brick 3. This point is above the right edge of brick 

4 in the maximum case, so a3 = L/6. 

 

(d) A similar calculation, 




x
m m L

m

L
com =

3 0 + / 2

4
=

8

b g b g
 

shows that a4 = L/8. 

 

(e) We find 
4

1
25 / 24ii

h a L


  . 

 

64. Since all surfaces are frictionless, the contact force 

F  exerted by the lower sphere on 

the upper one is along that 45° line, and the forces exerted by walls and floors are 

“normal” (perpendicular to the wall and floor surfaces, respectively). Equilibrium of 

forces on the top sphere leads to the two conditions 

 

wall cos45 and sin 45 .F F F mg     

 

And (using Newton’s third law) equilibrium of forces on the bottom sphere leads to the 

two conditions 
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wall floorcos45 and sin 45 .F F F F mg      

 

(a) Solving the above equations, we find 
floorF   = 2mg. 

 

(b) We obtain for the left side of the container, F´wall = mg. 

 

(c) We obtain for the right side of the container, Fwall = mg. 

 

(d) We get / sin 45 2F mg mg  . 

 

65. (a) Choosing an axis through the hinge, perpendicular to the plane of the figure and 

taking torques that would cause counterclockwise rotation as positive, we require the net 

torque to vanish: 

 sin90 sin65 0FL Th    

 

where the length of the beam is L = 3.2 m and the height at which the cable attaches is h 

= 2.0 m. Note that the weight of the beam does not enter this equation since its line of 

action is directed towards the hinge. With F = 50 N, the above equation yields  

 

(50 N)(3.2 m)
88 N

sin 65 (2.0 m)sin 65

FL
T

h
  

 
. 

 

(b) To find the components of 

Fp we balance the forces: 

 

0 cos 25

0 sin 25
x px

y py

F F T F

F F T W

    

    
 

 

where W is the weight of the beam (60 N). Thus, we find that the hinge force components 

are Fpx = 30 N pointing rightward, and Fpy = 97 N pointing upward. In unit-vector 

notation, ˆ ˆ(30 N)i (97 N)j.pF    

 

66. Adopting the usual convention that torques that would produce counterclockwise 

rotation are positive, we have (with axis at the hinge) 

 

0 sin 60 0
2

z

L
TL Mg

 
     

 
 

 

where L = 5.0 m and M = 53 kg. Thus, T = 300 N. Now (with Fp for the force of the hinge) 

 

      

     

F F T

F F Mg T

x px

y py

0 150

0 260

cos

sin





N

N
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where  = 60°. Therefore, 2 2ˆ ˆ( 1.5 10  N)i (2.6 10  N)j.pF       

 

67. The cube has side length l and volume V = l 
3
. We use p B V V  / for the pressure p. 

We note that 

    V

V

l

l

l l l

l

l l

l

l

l
 

 
 

3

3

3 3

3

2

3

3
3

( )
.  

 

Thus, the pressure required is 

 
11 2

9 23 3(1.4 10 N/m )(85.5cm 85.0cm)
2.4 10 N/m .

85.5cm

B l
p

l

  
     

 

68. (a) The angle between the beam and the floor is  

 

sin
1 

(d /L) = sin
1 

(1.5/2.5) = 37, 

 

so that the angle between the beam and the weight vector W  


of the beam is 53.  With L = 

2.5 m being the length of the beam, and choosing the axis of rotation to be at the base, 

 

 z  =  0       PL – W 





L

2
 sin 53  =  0 

Thus, P = ½ W sin 53 = 200 N. 

 

(b) Note that 

P  


 + W  


 = (200  90) + (500  –127) = (360  –146) 

 

using magnitude-angle notation (with angles measured relative to the beam, where 

"uphill" along the beam would correspond to 0) with the unit newton understood.  The 

"net force of the floor" Ff 


 is equal and opposite to this (so that the total net force on the 

beam is zero), so that |Ff 


 | = 360 N and is directed 34 counterclockwise from the beam. 

 

(c) Converting that angle to one measured from true horizontal, we have  = 34 + 37 = 

71.  Thus, fs = Ff cos and FN = Ff sin .  Since fs = fs, max, we divide the equations to 

obtain 

,max

N

s

F

f
 =  

1

s
  =  tan . 

Therefore, s = 0.35. 

 

69. THINK Since the rod is in static equilibrium, the net torque about the hinge must be 

zero. 
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EXPRESS The free-body diagram is shown below (not to scale). The tension in the rope 

is denoted as T.  Since the rod is in rotational equilibrium, the net torque about the hinge, 

denoted as O, must be zero. This implies 

 

– mg sin1 
L

2
  +  T L cos   =  0 , 

 

where 1 2 90      . 

 

ANALYZE Solving for T gives 

 

1 1

1 2 1 2

sin sin

2 cos( 90 ) 2 sin( )

mg mg
T

 

   
 

   
. 



With 1 = 60 and T = mg/2, we have 2sin 60 sin(60 )   , which yields 2 = 60. 

 

LEARN A plot of /T mg as a function of 2  is shown below. The other solution, 2 = 0, 

is rejected since it corresponds to the limit where the rope becomes infinitely long.  

 

 
 

70. (a) Setting up equilibrium of torques leads to 

 

2

far end (73kg)(9.8m/s ) (2700 N)
4 2

L L
F L    

 

which yields Ffar end = 1.5 × 10
3
 N. 

 

(b) Then, equilibrium of vertical forces provides 

 

F Fnear end far end)(9.8 N.    ( ) .73 2700 19 103  

 

71. THINK Upon applying a horizontal force, the cube may tip or slide, depending on 

the friction between the cube and the floor. 

 

EXPRESS When the cube is about to move, we are still able to apply the equilibrium 

conditions, but (to obtain the critical condition) we set static friction equal to its 
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maximum value and picture the normal force 
NF  as a concentrated force (upward) at the 

bottom corner of the cube, directly below the point O where P is being applied. Thus, the 

line of action of 
NF  passes through point O and exerts no torque about O (of course, a 

similar observation applied to the pull P). Since FN = mg in this problem, we have fsmax = 

cmg applied a distance h away from O. And the line of action of force of gravity (of 

magnitude mg), which is best pictured as a concentrated force at the center of the cube, is 

a distance L/2 away from O. Therefore, equilibrium of torques about O produces 

 

(8.0 cm)
0.57

2 2 2(7.0 cm)
c c

L L
mgh mg

h
 

 
     

 
 

 

for the critical condition we have been considering. We now interpret this in terms of a 

range of values for . 

 

ANALYZE (a) For it to slide but not tip, a value of  less than c is needed, since 

then — static friction will be exceeded for a smaller value of P, before the pull is strong 

enough to cause it to tip. Thus, the required condition is  

 

  c =L/2h = 0.57. 

 

(b) And for it to tip but not slide, we need  greater than c is needed, since now — static 

friction will not be exceeded even for the value of P which makes the cube rotate about 

its front lower corner. That is, we need to have   c =L/2h = 0.57 in this case. 

 

LEARN Note that the value c depends only on the ratio /L h . The cube will tend to 

slide when  is mall (think about the limit of a frictionless floor), and tend to tip over 

when the friction is sufficiently large.   

 

72. We denote the tension in the upper left string (bc) as T´ and the tension in the lower 

right string (ab) as T. The supported weight is W = Mg = (2.0 kg)(9.8 m/s
2
) = 19.6 N. The 

force equilibrium conditions lead to 

 

cos60 cos 20

sin 60 sin 20

T T

T W T

   

    
 

horizontal forces

vertical forces.
 

 (a) We solve the above simultaneous equations and find 

 

19.6 N
15 N.

tan 60 cos20 sin 20 tan 60 cos 20 sin 20

W
T   

     
 

 

(b) Also, we obtain  

T´ = T cos 20º / cos 60º = 29 N. 

 

73. THINK The force of the ground prevents the ladder from sliding.    
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EXPRESS The free-body diagram for the ladder is 

shown to the right. We choose an axis through O, the 

top (where the ladder comes into contact with the wall), 

perpendicular to the plane of the figure and take torques 

that would cause counterclockwise rotation as positive. 

The length of the ladder is 10 mL  . Given that 

8.0 mh  , the horizontal distance to the wall is 

 

2 2 2 2(10 m) (8 m) 6.0mx L h     . 

 

Note that the line of action of the applied force 
F intersects the wall at a height of (8.0 m) /5 1.6m .  

 

 

 
In other words, the moment arm for the applied force (in terms of where we have chosen 

the axis) is  

( )sin ( )( / ) (8.0 m)(8.0 m/10.0 m) 6.4mr L d L d h L       . 

 

The moment arm for the weight is / 2 3.0mx  , half the horizontal distance from the wall 

to the base of the ladder. Similarly, the moment arms for the x and y components of the 

force at the ground 

Fgd i  are  h = 8.0 m and x = 6.0 m, respectively. Thus, we have 

 

, ,

, ,

( / 2)

(6.4 m) (3.0 m) (8.0 m) (6.0 m) 0.

z g x g y

g x g y

Fr W x F h F x

F W F F

     

    
 

 

In addition, from balancing the vertical forces we find that W = Fg,y (keeping in mind that 

the wall has no friction). Therefore, the above equation can be written as 

 

,(6.4 m) (3.0 m) (8.0 m) (6.0 m) 0.z g xF W F W       

 

ANALYZE (a) With F = 50 N and W = 200 N, the above equation yields , 35 Ng xF  . 

Thus, in unit vector notation we obtain 

 
ˆ ˆ(35 N)i+(200 N)j.gF   

 

(b) Similarly, with F = 150 N and W = 200 N, the above equation yields , 45 Ng xF   . 

Therefore, in unit vector notation we obtain 

 
ˆ ˆ( 45 N)i+(200 N)j.gF    

 

(c) Note that the phrase “start to move towards the wall” implies that the friction force is 

pointed away from the wall (in the i  direction). Now, if ,g xf F   and 
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, 200 NN g yF F  are related by the (maximum) static friction relation (f = fs,max = s FN) 

with s = 0.38, then we find 
, 76 Ng xF   . Returning this to the above equation, we 

obtain 

2( / 2) (200 N)(3.0m) (0.38)(200N)(8.0m)
1.9 10 N.

6.4m

sW x Wh
F

r





 
     

 

LEARN The force needed to move the ladder toward the wall would decrease with a 

larger r  or a smaller s . 

 

74. One arm of the balance has length 1  and the other has length 2 . The two cases 

described in the problem are expressed (in terms of torque equilibrium) as 

 

m m m m1 1 2 1 2 2    and .  

 

We divide equations and solve for the unknown mass: m m m 1 2 . 

 

75. Since GA exerts a leftward force T at the corner A, then (by equilibrium of horizontal 

forces at that point) the force Fdiag in CA must be pulling with magnitude 

 

diag 2.
sin 45

T
F T 


 

 

This analysis applies equally well to the force in DB. And these diagonal bars are pulling 

on the bottom horizontal bar exactly as they do to the top bar, so the bottom bar CD is the 

“mirror image” of the top one (it is also under tension T). Since the figure is symmetrical 

(except for the presence of the turnbuckle) under 90° rotations, we conclude that the side 

bars (DA and BC) also are under tension T (a conclusion that also follows from 

considering the vertical components of the pull exerted at the corners by the diagonal 

bars). 

 

(a) Bars that are in tension are BC, CD, and DA. 

 

(b) The magnitude of the forces causing tension is 535 NT  . 

 

(c) The magnitude of the forces causing compression on CA and DB is 

 

diag 2 (1.41)535 N 757 NF T   . 

 

76. (a) For computing torques, we choose the axis to be at support 2 and consider torques 

that encourage counterclockwise rotation to be positive. Let m = mass of gymnast and M 

= mass of beam. Thus, equilibrium of torques leads to 

 

1(1.96m) (0.54m) (3.92m) 0.Mg mg F    
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Therefore, the upward force at support 1 is F1 = 1163 N (quoting more figures than are 

significant — but with an eye toward using this result in the remaining calculation). In 

unit-vector notation, we have 3

1
ˆ(1.16 10  N)jF   . 

 

(b) Balancing forces in the vertical direction, we have F F Mg mg1 2 0    , so that the 

upward force at support 2 is F2 =1.74×10
3
 N. In unit-vector notation, we have 

3

2
ˆ(1.74 10  N)jF   . 

 

77. (a) Let d = 0.00600 m.  In order to achieve the same final lengths, wires 1 and 3 must 

stretch an amount d more than wire 2 stretches: 

 

L1 = L3 = L2 + d . 

 

Combining this with Eq. 12-23 we obtain 

F1 = F3 =  F2 + 
dAE

L
 . 

 

Now, Eq. 12-8 produces F1 + F3 + F2 – mg = 0.  Combining this with the previous 

relation (and using Table 12-1) leads to 3

1= 1380 N 1.38 10 NF   .  

 

(b) Similarly, F2 = 180 N. 

 

78. (a) Computing the torques about the hinge, we have  

 

sin 40 sin50 ,
2

L
TL W    

 

where the length of the beam is L = 12 m and the tension is T = 400 N. Therefore, the 

weight is 671 NW  , which means that the gravitational force on the beam is 
ˆ( 671 N)jwF   . 

 

(b) Equilibrium of horizontal and vertical forces yields, respectively, 

 

hinge 

hinge 

400 N

671 N

x

y

F T

F W

 

 
 

 

where the hinge force components are rightward (for x) and upward (for y). In unit-vector 

notation, we have hinge
ˆ ˆ(400 N)i (671 N)jF   . 

 

79. We locate the origin of the x axis at the edge of the table and choose rightward 

positive. The criterion (in part (a)) is that the center of mass of the block above another 

must be no further than the edge of the one below; the criterion in part (b) is more subtle 
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and is discussed below. Since the edge of the table corresponds to x = 0 then the total 

center of mass of the blocks must be zero. 

 

(a) We treat this as three items: one on the upper left (composed of two bricks, one 

directly on top of the other) of mass 2m whose center is above the left edge of the bottom 

brick; a single brick at the upper right of mass m, which necessarily has its center over the 

right edge of the bottom brick (so a1 = L/2 trivially); and, the bottom brick of mass m. 

The total center of mass is 

 

( )( ) ( / )2 2

4
02 2 2m a L ma m a L

m

   
  

 

which leads to a2 = 5L/8. Consequently, h = a2 + a1 = 9L/8. 

 

(b) We have four bricks (each of mass m) where the center 

of mass of the top one and the center of mass of the bottom 

one have the same value, xcm = b2 – L/2. The middle layer 

consists of two bricks, and we note that it is possible for 

each of their centers of mass to be beyond the respective 

edges of the bottom one! This is due to the fact that the top brick is exerting downward 

forces (each equal to half its weight) on the middle blocks — and in the extreme case, 

this may be thought of as a pair of concentrated forces exerted at the innermost edges of 

the middle bricks. Also, in the extreme case, the support force (upward) exerted on a 

middle block (by the bottom one) may be thought of as a concentrated force located at the 

edge of the bottom block (which is the point about which we compute torques, in the 

following).  

 

If (as indicated in our sketch, where 

Ftop  has magnitude mg/2) we consider equilibrium of 

torques on the rightmost brick, we obtain 

 

mg b L
mg

L b1 1

1

2 2

F
HG

I
KJ  ( )  

 

which leads to b1 = 2L/3. Once we conclude from symmetry that b2 = L/2, then we also 

arrive at h = b2 + b1 = 7L/6. 

 

80. The assumption stated in the problem (that the density does not change) is not meant 

to be realistic; those who are familiar with Poisson’s ratio (and other topics related to the 

strengths of materials) might wish to think of this problem as treating a fictitious material 

(which happens to have the same value of E as aluminum, given in Table 12-1) whose 

density does not significantly change during stretching.  Since the mass does not change 

either, then the constant-density assumption implies the volume (which is the circular 

area times its length) stays the same: 

 

       (r
2
L)new = (r

2
L)old          L = L[(1000/999.9)

2
 – 1] . 
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 Now, Eq. 12-23 gives 

 

     F = r
2 

EL/L  =  r
2
(7.0 x 10

9 
N/m

2
)[(1000/999.9)

2
 – 1] . 

 

Using either the new or old value for r gives the answer F = 44 N. 

 

81. Where the crosspiece comes into contact with the beam, there is an upward force of 

2F (where F is the upward force exerted by each man). By equilibrium of vertical forces, 

W = 3F where W is the weight of the beam. If the beam is uniform, its center of gravity is 

a distance L/2 from the man in front, so that computing torques about the front end leads 

to 

W
L

Fx
W

x
2

2 2
3

 
F
HG
I
KJ  

 

which yields x = 3L/4 for the distance from the crosspiece to the front end. It is therefore 

a distance L/4 from the rear end (the “free” end). 

 

82. The force F exerted on the beam is F = 7900 N, as computed in the Sample Problem. 

Let F/A = Su/6, where 6 250 10 N/muS    is the ultimate strength (see Table 12-1). Then 

 

4 2

6 2

6 6(7900 N)
9.5 10 m .

50 10 N/mu

F
A

S

   


 

 

Thus the thickness is 4 29.5 10  m 0.031mA    . 

 

83. (a)   Because of Eq. 12-3, we can write 

 

          T  


  +  (mB g   –90º) + (mA g   –150º)  = 0 . 

 

Solving the equation, we obtain T  


 = (106.34   63.963º).   Thus, the magnitude of the 

tension in the upper cord is 106 N,   

 

(b) and its angle (measured counterclockwise from the +x axis) is 64.0. 

 

84. (a) and (b)  With +x rightward and +y upward (we assume the adult is pulling with 

force P  


 to the right), we have 

 

    Fy = 0       W = T cos   = 270 N 

 Fx = 0       P = T sin   = 72 N 

where  = 15. 
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(c) Dividing the above equations leads to 

 
P

W
  =  tan   . 

 

Thus, with W = 270 N and P = 93 N, we find  = 19. 

 

85. Our system is the second finger bone. Since the system is in 

static equilibrium, the net force acting on it is zero. In addition, 

the torque about any point must be zero. We set up the torque 

equation about point O where 
cF  act: 

 

net0 sin ( ) sin ( ) sin
3

t v h

O

d
F d F d F   

 
     

 
 . 

 

Solving for tF  and substituting the values given, we obtain  

 

2

3( sin sin ) 3[(162.4 N)sin10 (13.4 N)sin80 ]
175.6 N

sin sin 45

1.8 10 N.

v h
t

F F
F

 



  
  



 

 

86. (a) Setting up equilibrium of torques leads to a simple “level principle” ratio: 

 

2

catch

(91/ 2 10)cm
(11kg)(9.8m/s ) 42 N.

91cm
F


   

 

(b) Then, equilibrium of vertical forces provides 

 
2

hinge catch(11kg)(9.8m/s ) 66 N.F F    

 

87. (a) For the net force to be zero, 1 2 3 0,F F F    we require 

 

3 1 2
ˆ ˆ ˆ ˆ(8.40 N)i (5.70 N)j (16.0 N)i (4.10 N)j

ˆ ˆ( 24.4 N)i (1.60 N)j

F F F           
   

  

 

 

Thus, 3 24.4 NxF   . 

 

(b) Similarly, 3 1.60 NyF  . 

 

(c) The angle 3F  makes relative to the +x-axis is  
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31 1

3

1.60 N
tan tan 176.25 .

24.4 N

y

x

F

F
     
      

  
 

 

88. We solve part (b) first. 

 

(b) The critical tilt angle corresponds to the situation where the line of action of gF  

passes through the supporting edge (point O in the figure).  

 

 
At this state, the normal force also passes through the supporting edge, so the net torque 

is zero and the Tower is in static equilibrium. However, this equilibrium is unstable and 

the Tower is on the verge of falling over. From the figure, we find the critical angle to be  

 

1 1/ 2 7.44 m
tan tan tan 7.18

/ 2 59.1 m

D D D

h h h
      
        

   
 

 

(a) From the figure, the maximum displacement is  

 

max sin (59.1 m)sin7.18 7.38 ml h      

 

Thus, the additional displacement to put the Tower on the verge of toppling is 

 

max 7.38 m 4.01 m 3.37 ml l l       

 

 

 

 


