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Chapter 11 
 

 

1. The velocity of the car is a constant  

 

  ˆ ˆ80 km/h (1000 m/km)(1 h/3600 s) i ( 22m s)i,v      

 

and the radius of the wheel is r = 0.66/2 = 0.33 m. 

 

(a) In the car’s reference frame (where the lady perceives herself to be at rest) the road is 

moving toward the rear at 

v vroad m s   22 ,  and the motion of the tire is purely 

rotational. In this frame, the center of the tire is “fixed” so vcenter = 0. 

 

(b) Since the tire’s motion is only rotational (not translational) in this frame, Eq. 10-18 

gives top
ˆ( 22m/s)i.v    

 

(c) The bottom-most point of the tire is (momentarily) in firm contact with the road (not 

skidding) and has the same velocity as the road: bottom
ˆ( 22m s)i .v    This also follows 

from Eq. 10-18. 

 

(d) This frame of reference is not accelerating, so “fixed” points within it have zero 

acceleration; thus, acenter = 0. 

 

(e) Not only is the motion purely rotational in this frame, but we also have  = constant, 

which means the only acceleration for points on the rim is radial (centripetal). Therefore, 

the magnitude of the acceleration is 

 
2 2

23

top

(22 m/s)
1.5 10 m s .

0.33 m

v
a

r
     

 

(f) The magnitude of the acceleration is the same as in part (d): abottom = 1.5  10
3
 m/s

2
. 

 

(g) Now we examine the situation in the road’s frame of reference (where the road is 

“fixed” and it is the car that appears to be moving). The center of the tire undergoes 

purely translational motion while points at the rim undergo a combination of translational 

and rotational motions. The velocity of the center of the tire is ˆ( 22m s)i.v     

 

(h) In part (b), we found 

v vtop,car    and we use Eq. 4-39: 

 

top, ground top, car car, ground
ˆ ˆ ˆi i 2 iv v v v v v      



 

  

523 

 

which yields 2v = +44 m/s.  

 

(i) We can proceed as in part (h) or simply recall that the bottom-most point is in firm 

contact with the (zero-velocity) road. Either way, the answer is zero. 

 

(j) The translational motion of the center is constant; it does not accelerate. 

 

(k) Since we are transforming between constant-velocity frames of reference, the 

accelerations are unaffected. The answer is as it was in part (e): 1.5  10
3
 m/s

2
. 

 

(1) As explained in part (k), a = 1.5  10
3
 m/s

2
. 

 

2. The initial speed of the car is 

 

 80 km/h (1000 m/km)(1 h/3600 s) 22.2 m/sv   . 

 

The tire radius is R = 0.750/2 = 0.375 m. 

 

(a) The initial speed of the car is the initial speed of the center of mass of the tire, so Eq. 

11-2 leads to  

com0

0

22.2 m/s
59.3 rad/s.

0.375 m

v

R
     

 

(b) With  = (30.0)(2) = 188 rad and  = 0, Eq. 10-14 leads to 

 

 

2
2 2 2

0

(59.3 rad/s)
2 9.31 rad/s .

2 188 rad
         

 

(c) Equation 11-1 gives R = 70.7 m for the distance traveled. 

 

3. THINK The work required to stop the hoop is the negative of the initial kinetic energy 

of the hoop.  

 

EXPRESS From Eq. 11-5, the initial kinetic energy of the hoop is 2 21 1
2 2

,iK I mv   

where I = mR
2
 is its rotational inertia about the center of mass. Eq. 11-2 relates the 

angular speed to the speed of the center of mass:  = v/R. Thus, 

 
2

2 2 2 2 21 1 1 1
( )

2 2 2 2
i

v
K I mv mR mv mv

R


 
     

 
 

 

ANALYZE With m = 140 kg, and the speed of its center of mass v = 0.150 m/s, we find 

the initial kinetic energy to be 
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  
22 140 kg 0.150 m/s 3.15 JiK mv    

 

which implies that the work required is 3.15 Jf i iW K K K K        . 

 

LEARN By the work-kinetic energy theorem, the work done is negative since it 

decreases the kinetic energy. A rolling body has two types of kinetic energy: rotational 

and translational.  

 

4. We use the results from section 11.3. 

 

(a) We substitute I M R 2
5

2  (Table 10-2(f)) and a = – 0.10g into Eq. 11-10: 

 

  


 010
1 7 52

5

2 2
.

sin sin

/
g

g

MR MR

g 

c h  

 

which yields  = sin
–1

 (0.14) = 8.0°. 

 

(b) The acceleration would be more. We can look at this in terms of forces or in terms of 

energy. In terms of forces, the uphill static friction would then be absent so the downhill 

acceleration would be due only to the downhill gravitational pull. In terms of energy, the 

rotational term in Eq. 11-5 would be absent so that the potential energy it started with 

would simply become 1
2

2mv  (without it being “shared” with another term) resulting in a 

greater speed (and, because of Eq. 2-16, greater acceleration). 

 

5. Let M be the mass of the car (presumably including the mass of the wheels) and v be 

its speed. Let I be the rotational inertia of one wheel and  be the angular speed of each 

wheel. The kinetic energy of rotation is 

K Irot 
F
HG
I
KJ4

1

2

2 , 

 

where the factor 4 appears because there are four wheels. The total kinetic energy is 

given by  

K Mv I 1
2

2 1
2

24( ) . 

 

The fraction of the total energy that is due to rotation is 

 

fraction rot 


K

K

I

Mv I

4

4

2

2 2




.  

 

For a uniform disk (relative to its center of mass) I mR 1
2

2  (Table 10-2(c)). Since the 

wheels roll without sliding  = v/R (Eq. 11-2). Thus the numerator of our fraction is 
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4 4
1

2
22 2

2

2I mR
v

R
mv 

F
HG
I
KJ
F
HG
I
KJ   

and the fraction itself becomes 

 

 2

2 2

2 102 2 1
fraction 0.020.

2 2 1000 50

mv m

Mv mv M m
    

 
 

 

The wheel radius cancels from the equations and is not needed in the computation. 

 

6. We plug a =   – 3.5 m/s
2
 (where the magnitude of this number was estimated from the 

“rise over run” in the graph),  = 30º, M = 0.50 kg, and R = 0.060 m into Eq. 11-10 and 

solve for the rotational inertia.  We find I = 7.2  10
4

 kg
.
m

2
. 

 

7. (a) We find its angular speed as it leaves the roof using conservation of energy. Its 

initial kinetic energy is Ki = 0 and its initial potential energy is Ui = Mgh where 

6.0sin30 3.0 mh    (we are using the edge of the roof as our reference level for 

computing U). Its final kinetic energy (as it leaves the roof) is (Eq. 11-5) 

 

K Mv If  1
2

2 1
2

2 . 

 

Here we use v to denote the speed of its center of mass and  is its angular speed — at 

the moment it leaves the roof. Since (up to that moment) the ball rolls without sliding we 

can set v = R = v where R = 0.10 m. Using I MR 1
2

2  (Table 10-2(c)), conservation of 

energy leads to 

2 2 2 2 2 2 2 21 1 1 1 3
.

2 2 2 4 4
Mgh Mv I MR MR MR         

 

The mass M cancels from the equation, and we obtain 

 

   
1 4

3

1

010

4

3
9 8 30 63

R
gh

.
. . .

m
m s m rad s2c hb g  

 

(b) Now this becomes a projectile motion of the type examined in Chapter 4. We put the 

origin at the position of the center of mass when the ball leaves the track (the “initial” 

position for this part of the problem) and take +x leftward and +y downward. The result 

of part (a) implies v0 = R = 6.3 m/s, and we see from the figure that (with these positive 

direction choices) its components are 

 

0 0

0 0

cos30 5.4 m s

sin 30 3.1 m s.

x

y

v v

v v

 

 
 

 

The projectile motion equations become 
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x v t y v t gtx y  0 0

21

2
and .  

 

We first find the time when y = H = 5.0 m from the second equation (using the quadratic 

formula, choosing the positive root): 
2

0 0 2
0.74s.

y yv v gH
t

g

  
   

 

Then we substitute this into the x equation and obtain x  54 0 74 4 0. . .m s s m.b gb g  

 

8. (a) Let the turning point be designated P. By energy conservation, the mechanical 

energy at x = 7.0 m is equal to the mechanical energy at P. Thus, with Eq. 11-5, we have 

 

  75 J  =  
1

2
 mvp

2
 +  

1

2
 Icom p

2
  + Up . 

 

Using item (f) of Table 10-2 and Eq. 11-2 (which means, if this is to be a turning point, 

that p = vp = 0), we find Up = 75 J.  On the graph, this seems to correspond to x = 2.0 m, 

and we conclude that there is a turning point (and this is it).  The ball, therefore, does not 

reach the origin. 

 

(b) We note that there is no point (on the graph, to the right of x = 7.0 m) taht is shown      

“higher” than 75 J, so we suspect that there is no turning point in this direction, and we 

seek the velocity vp at x = 13 m.  If we obtain a real, nonzero answer, then our      

suspicion is correct (that it does reach this point P at x = 13 m). By energy conservation, 

the mechanical energy at x = 7.0 m is equal to the mechanical energy at P. Therefore, 

 

     75 J  =  
1

2
 mvp

2
 +  

1

2
 Icom p

2
  + Up . 

 

Again, using item (f) of Table 11-2, Eq. 11-2 (less trivially this time) and Up = 60 J (from 

the graph), as well as the numerical data given in the problem, we find vp = 7.3 m/s. 

 

9. To find where the ball lands, we need to know its speed as it leaves the track (using 

conservation of energy). Its initial kinetic energy is Ki = 0 and its initial potential energy 

is Ui = M gH. Its final kinetic energy (as it leaves the track) is given by Eq. 11-5: 

 

K Mv If  1
2

2 1
2

2  

 

and its final potential energy is M gh. Here we use v to denote the speed of its center of 

mass and  is its angular speed — at the moment it leaves the track. Since (up to that 

moment) the ball rolls without sliding we can set  = v/R. Using I MR 2
5

2  (Table 10-

2(f)), conservation of energy leads to 
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2 2 2 2

2

1 1 1 2

2 2 2 10

7
.

10

MgH Mv I Mgh Mv Mv Mgh

Mv Mgh

     

 

 

 

The mass M cancels from the equation, and we obtain 

 

v g H h    
10

7

10

7
9 8 6 0 2 0 7 48

2b g d ib g. . . . .m s m m m s  

 

Now this becomes a projectile motion of the type examined in Chapter 4. We put the 

origin at the position of the center of mass when the ball leaves the track (the “initial” 

position for this part of the problem) and take +x rightward and +y downward. Then 

(since the initial velocity is purely horizontal) the projectile motion equations become 

 

21
, .

2
x vt y gt    

 

Solving for x at the time when y = h, the second equation gives t h g 2 .  Then, 

substituting this into the first equation, we find 

 

 
 

2

2 2.0 m2
7.48 m/s 4.8 m.

9.8 m/s

h
x v

g
    

 

10. From I MR 2
3

2  (Table 10-2(g)) we find 

 
 

2

22

3 0.040 kg m3
2.7 kg.

2 2 0.15 m

I
M

R


    

 

It also follows from the rotational inertia expression that 1
2

2 1
3

2 2I MR  . Furthermore, 

it rolls without slipping, vcom = R, and we find 

 

K

K K

MR

mR MR

rot

com rot




1
3

2 2

1
2

2 2 1
3

2 2



 
.  

 

(a) Simplifying the above ratio, we find Krot/K = 0.4. Thus, 40% of the kinetic energy is 

rotational, or  

Krot = (0.4)(20 J) = 8.0  J. 

 

(b) From 2 21
rot 3

8.0JK M R    (and using the above result for M) we find 
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  
1

015

3 8 0

2 7
20

.

.

.m

J

kg
rad s

b g
 

 

which leads to vcom = (0.15 m)(20 rad/s) = 3.0 m/s. 

 

(c) We note that the inclined distance of 1.0 m corresponds to a height h = 1.0 sin 30° = 

0.50 m. Mechanical energy conservation leads to 

 

 20Ji f f fK K U K Mgh      

 

which yields (using the values of M and h found above) Kf = 6.9 J. 

 

(d) We found in part (a) that 40% of this must be rotational, so 

 

 
  2 2

3 0.40 6.9 J1 1
0.40

3 0.15 m 2.7 kg
f f fMR K     

 

which yields f = 12 rad/s and leads to 

 

  com 0.15 m 12 rad/s 1.8 m/s.f fv R    

 

11. With app
ˆ(10  N)iF  , we solve the problem by applying Eq. 9-14 and Eq. 11-37. 

 

(a) Newton’s second law in the x direction leads to 

 

  2

app     10N 10kg 0.60 m s 4.0 N.s sF f ma f       

 

In unit vector notation, we have ˆ( 4.0 N)isf   , which points leftward. 

 

(b) With R = 0.30 m, we find the magnitude of the angular acceleration to be  

 

|| = |acom| / R = 2.0 rad/s
2
, 

 

from Eq. 11-6. The only force not directed toward (or away from) the center of mass is 
f s ,  and the torque it produces is clockwise: 

 

    20.30m 4.0 N 2.0rad sI I     

 

which yields the wheel’s rotational inertia about its center of mass: I  0 60. .kg m2  
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12. Using the floor as the reference position for computing potential energy, mechanical 

energy conservation leads to 

 

 2 2

release top top com

1 1
2 .

2 2
U K U mgh mv I mg R       

 

Substituting  I mr 2
5

2  (Table 10-2(f)) and   v rcom  (Eq. 11-2), we obtain 

 

 

2

2 2 2com
com com

1 1 2 7
2 2

2 2 5 10

v
mgh mv mr mgR gh v gR

r

  
       

  
 

 

where we have canceled out mass m in that last step. 

 

(a) To be on the verge of losing contact with the loop (at the top) means the normal force 

is nearly zero. In this case, Newton’s second law along the vertical direction (+y 

downward) leads to 

mg ma g
v

R r
r  



com

2

 

 

where we have used Eq. 10-23 for the radial (centripetal) acceleration (of the center of 

mass, which at this moment is a distance R – r from the center of the loop). Plugging the 

result  v g R rcom

2  b g  into the previous expression stemming from energy considerations 

gives 

gh g R r gR  
7

10
2b gb g  

 

which leads to 2.7 0.7 2.7 .h R r R    With R = 14.0 cm , we have  

 

h = (2.7)(14.0 cm) = 37.8 cm. 

 

(b) The energy considerations shown above (now with h = 6R) can be applied to point Q 

(which, however, is only at a height of R) yielding the condition 

 

g R v gR6
7

10
b g  com

2  

 

which gives us v g Rcom

2  50 7 . Recalling previous remarks about the radial acceleration, 

Newton’s second law applied to the horizontal axis at Q leads to 

 

 
 

2

com 50

7

v gR
N m m

R r R r
 

 
 

which (for R r ) gives  
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4 2
250 50(2.80 10  kg)(9.80 m/s )

1.96 10  N.
7 7

mg
N




     

 

(b) The direction is toward the center of the loop. 

 

13. The physics of a rolling object usually requires a separate and very careful discussion 

(above and beyond the basics of rotation discussed in Chapter 10); this is done in the first 

three sections of Chapter 11. Also, the normal force on something (which is here the 

center of mass of the ball) following a circular trajectory is discussed in Section 6-6.  

Adapting Eq. 6-19 to the consideration of forces at the bottom of an arc, we have 

  

FN – Mg = Mv
2
/r 

 

which tells us (since we are given FN = 2Mg) that the center of mass speed (squared) is v
2
 

= gr, where r is the arc radius (0.48 m)  Thus, the ball’s angular speed (squared) is  

 

2
 = v

2
/R

2
 = gr/R

2
, 

 

where R is the ball’s radius. Plugging this into Eq. 10-5 and solving for the rotational 

inertia (about the center of mass), we find 

 

      Icom = 2MhR
2
/r – MR

2
 = MR

2
[2(0.36/0.48) – 1] . 

 

Thus, using the  notation suggested in the problem, we find   

 

 = 2(0.36/0.48) – 1 = 0.50. 

 

14. To find the center of mass speed v on the plateau, we use the projectile motion 

equations of Chapter 4.  With voy = 0 (and using “h” for h2) Eq. 4-22 gives the time-of-

flight as t = 2h/g .  Then Eq. 4-21 (squared, and using d for the horizontal displacement) 

gives v
2 

= gd
2
/2h.  Now, to find the speed vp at point P, we apply energy conservation, 

that is, mechanical energy on the plateau is equal to the mechanical energy at P. With Eq. 

11-5, we obtain  
1

2
 mv

2
 +  

1

2
 Icom 

2
 + mgh1 =  

1

2
 mvp

2
 +  

1

2
 Icom p

2
 . 

 

Using item (f) of Table 10-2, Eq. 11-2, and our expression (above) v
2 

= gd
2
/2h, we obtain 

 

gd
2
/2h + 10gh1/7 = vp

2
 

 

which yields (using the values stated in the problem) vp = 1.34 m/s. 

 

15. (a) We choose clockwise as the negative rotational sense and rightward as the 

positive translational direction. Thus, since this is the moment when it begins to roll 

smoothly, Eq. 11-2 becomes  

v Rcom m    011. .b g  
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This velocity is positive-valued (rightward) since  is negative-valued (clockwise) as 

shown in the figure. 

 

(b) The force of friction exerted on the ball of mass m is  kmg  (negative since it points 

left), and setting this equal to macom leads to 

 

a gcom

2 2m s m s      0 21 9 8 21. . .b g c h  

 

where the minus sign indicates that the center of mass acceleration points left, opposite to 

its velocity, so that the ball is decelerating. 

 

(c) Measured about the center of mass, the torque exerted on the ball due to the frictional 

force is given by    mgR . Using Table 10-2(f) for the rotational inertia, the angular 

acceleration becomes (using Eq. 10-45) 

 

  
 

2

2

2

5 0.21 9.8 m/s5
47 rad s

2 5 2 2 0.11 m

mgR g

I m R R

  


 
       

 

where the minus sign indicates that the angular acceleration is clockwise, the same 

direction as  (so its angular motion is “speeding up’’). 

 

(d) The center of mass of the sliding ball decelerates from vcom,0 to vcom during time t 

according to Eq. 2-11: v v gtcom com,0   .  During this time, the angular speed of the ball 

increases (in magnitude) from zero to   according to Eq. 10-12: 

 

 


  t
gt

R

v

R

5

2

com  

 

where we have made use of our part (a) result in the last equality. We have two equations 

involving vcom, so we eliminate that variable and find 

 

 

  
com,0

2

2 2 8.5 m/s
1.2 s.

7 7 0.21 9.8 m/s

v
t

g
    

 

(e) The skid length of the ball is (using Eq. 2-15) 

 

        
22 2

com,0

1 1
8.5 m/s 1.2 s 0.21 9.8 m/s 1.2 s 8.6 m.

2 2
x v t g t       

 

(f) The center of mass velocity at the time found in part (d) is 

 



  CHAPTER 11 532 

   2

com com,0 8.5 m/s 0.21 9.8 m/s 1.2 s 6.1 m/s.v v gt      

 

16. Using energy conservation with Eq. 11-5 and solving for the rotational inertia (about 

the center of mass), we find 

 

      Icom = 2MhR
2
/r – MR

2
 = MR

2
[2g(H – h)/v

2
 – 1] . 

 

Thus, using the  notation suggested in the problem, we find   

 

 = 2g(H – h)/v
2
  –  1. 

 

To proceed further, we need to find the center of mass speed v, which we do using the 

projectile motion equations of Chapter 4.  With voy = 0, Eq. 4-22 gives the time-of-flight 

as t = 2h/g .  Then Eq. 4-21 (squared, and using d for the horizontal displacement) gives 

v
2 

= gd
2
/2h.  Plugging this into our expression for  gives  

 

2g(H – h)/v
2
 – 1 = 4h(H – h)/d

2
  –  1. 

 

Therefore, with the values given in the problem, we find  = 0.25. 

 

17. THINK The yo-yo has both translational and rotational types of motion.   

 

EXPRESS The derivation of the acceleration is given by Eq. 11-13: 

 

a
g

I MR
com

com

 
1 0

2
 

 

where M is the mass of the yo-yo, cmI  is the rotational inertia and R0 is the radius of the 

axel. The positive direction is upward. The time it takes for the yo-yo to reach the end of 

the string can be found by solving the kinematic equation y a tcom com 1
2

2 . 

 

ANALYZE (a) With 2

com 950 g cm ,I    M =120 g, R0 = 0.320 cm and g = 980 cm/s
2
, we 

obtain 

    

2
2 2

com 22

980 cm/s
| | 12.5 cm/s 13 cm/s .

1 950 g cm 120 g 0.32 cm
a   

 
 

 

(b) Taking the coordinate origin at the initial position, Eq. 2-15 leads to y a tcom com 1
2

2 . 

Thus, we set ycom = – 120 cm and find 

 

 com

2

com

2 120cm2
4.38  s 4.4  s.

12.5 cm s

y
t

a


   


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(c) As the yo-yo reaches the end of the string, its center of mass velocity is given by Eq. 

2-11:  

 

   2

com com 12.5 cm s 4.38s 54.8 cm sv a t    , 

 

so its linear speed then is approximately 
com| |v 55 cm/s. 

 

(d) The translational kinetic energy of the yo-yo is  

 

  
22 2

trans com

1 1
0.120 kg 0.548 m s 1.8 10 J.

2 2
K mv      

 

(e) The angular velocity is  = – vcom/R0 , so the rotational kinetic energy is 

 
2 2

2 5 2com
rot com com 3

0

1 1 1 0.548 m s
(9.50 10 kg m )

2 2 2 3.2 10 m

1.393 J 1.4 J

v
K I I

R
 



   
       

  
 

 

 

(f) The angular speed is  

 

com 2

3

0

0.548 m/s
1.7 10 rad/s

3.2 10 m

v

R



   


 27rev s . 

 

LEARN As the yo-yo rolls down, its gravitational potential energy gets converted into 

both translational kinetic energy as well as rotational kinetic energy of the wheel. To 

show that the total energy remains conserved, we note that the initial energy is 

 

 2(0.120 kg)(9.80 m/s )(1.20 m) 1.411 Ji iU Mgy    

 

which is equal to the sum of transK  (= 0.018 J) and rotK  (= 1.393 J).   

 

18. (a) The derivation of the acceleration is found in § 11-4; Eq. 11-13 gives 

 

a
g

I MR
com

com

 
1 0

2
 

 

where the positive direction is upward. We use 2

com / 2I MR  where the radius is R = 

0.32 m and M = 116 kg is the total mass (thus including the fact that there are two disks) 

and obtain 

 
22 2

0 0
1 ( / 2) 1 / / 2

g g
a

MR MR R R
  

 
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which yields a = –g/51 upon plugging in R0 = R/10 = 0.032 m. Thus, the magnitude of the 

center of mass acceleration is 0.19 m/s
2
.  

 

(b) As observed in §11-4, our result in part (a) applies to both the descending and the 

rising yo-yo motions. 

 

(c) The external forces on the center of mass consist of the cord tension (upward) and the 

pull of gravity (downward). Newton’s second law leads to 

 

T Mg ma T M g
g

    
F
HG
I
KJ51

 = 1.1  10
3
 N. 

 

(d) Our result in part (c) indicates that the tension is well below the ultimate limit for the 

cord. 

 

(e) As we saw in our acceleration computation, all that mattered was the ratio R/R0 (and, 

of course, g). So if it’s a scaled-up version, then such ratios are unchanged and we obtain 

the same result. 

 

(f) Since the tension also depends on mass, then the larger yo-yo will involve a larger 

cord tension. 

 

19. If we write 

r x y z   i + j + k,  then (using Eq. 3-30) we find 

 
r F  is equal to 

 

yF zF zF xF xF yFz y x z y x  d i b g d i  i + j + k.  

 

With (using SI units) x = 0, y = – 4.0, z = 5.0, Fx = 0, Fy = –2.0, and  Fz = 3.0 (these latter 

terms being the individual forces that contribute to the net force), the expression above 

yields 
ˆ( 2.0N m)i.r F       

 

20. If we write 

r x y z    i j k,  then (using Eq. 3-30) we find 

 
r F  is equal to 

 

yF zF zF xF xF yFz y x z y x    d i b g d i  .i j k  

 

(a) In the above expression, we set (with SI units understood) x = –2.0, y = 0, z = 4.0, Fx 

= 6.0, Fy = 0, and Fz = 0. Then we obtain ˆ(24N m)j.r F      

 

(b) The values are just as in part (a) with the exception that now Fx = –6.0. We find 
ˆ( 24N m)j.r F       

 

(c) In the above expression, we set x = –2.0, y = 0, z = 4.0, Fx = 0, Fy = 0, and Fz = 6.0. 

We get  ˆ(12N m)j.r F      
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(d) The values are just as in part (c) with the exception that now Fz = –6.0. We find 
ˆ( 12N m)j.r F       

 

21. If we write 

r x y z    i j k,  then (using Eq. 3-30) we find 

 
r F  is equal to 

 

yF zF zF xF xF yFz y x z y x    d i b g d i  .i j k  

 

(a) In the above expression, we set (with SI units understood) x = 0, y = – 4.0, z = 3.0, Fx 

= 2.0, Fy = 0, and  Fz = 0. Then we obtain  

 

 ˆ ˆ6.0j 8.0k N m.r F       

 

This has magnitude 2 2(6.0 N m) (8.0 N m) 10 N m     and is seen to be parallel to 

the yz plane. Its angle (measured counterclockwise from the +y direction) is 

tan .  1 8 6 53b g  

 

(b) In the above expression, we set x = 0, y = – 4.0, z = 3.0, Fx = 0, Fy = 2.0, and Fz = 4.0. 

Then we obtain ˆ( 22N m)i.r F       The torque has magnitude 22 N m  and points in 

the –x direction. 

 

22. Equation 11-14 (along with Eq. 3-30) gives 

 

r F    = 4.00i
^
  +(12.0 + 2.00Fx)j

^
 + (14.0 + 3.00Fx)k

^
  

 

with SI units understood. Comparing this with the known expression for the torque (given 

in the problem statement), we see that Fx must satisfy two conditions:  

 

12.0 + 2.00Fx = 2.00   and  14.0 + 3.00Fx = –1.00. 

 

The answer (Fx = –5.00 N) satisfies both conditions. 

 

23. We use the notation 

r  to indicate the vector pointing from the axis of rotation 

directly to the position of the particle. If we write 

      r x y z  i j k,  then (using Eq.  

3-30) we find 
 
 r F  is equal to 

 

          y F z F z F x F x F y Fz y x z y xd i b g d i  i j k.  

 

(a) Here, 
 
 r r .  Dropping the primes in the above expression, we set (with SI units 

understood) x = 0, y = 0.5, z = –2.0, Fx = 2.0, Fy = 0, and Fz = –3.0. Then we obtain  
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 ˆ ˆ ˆ1.5i 4.0j 1.0k N m.r F         

 

(b) Now 
  
  r r ro where 

o
ˆ ˆ2.0i 3.0k.r    Therefore, in the above expression, we set 

2.0, 0.5, 1.0, 2.0, 0x yx y z F F       , and 3.0.zF    Thus, we obtain  

 

 ˆ ˆ ˆ1.5i 4.0 j 1.0k N m.r F          

 

24. If we write 

      r x y z  i j k,  then (using Eq. 3-30) we find 

 
 r F  is equal to 

 

          y F z F z F x F x F y Fz y x z y xd i b g d i  .i j k  

 

(a) Here, 
 
 r r  where  ˆ ˆ ˆ3.0i 2.0j 4.0k,r     and 

 
F F 1.  Thus, dropping the prime in 

the above expression, we set (with SI units understood) x = 3.0, y = –2.0, z = 4.0, Fx = 3.0, 

Fy = –4.0, and Fz = 5.0. Then we obtain   

 
  
      r F1 6 0 30 6 0.  .  . i j k N m.e j  

 

(b) This is like part (a) but with 
 
F F 2 .  We plug in Fx = –3.0, Fy = –4.0, and Fz =  –5.0 

and obtain   
  
      r F2 26 30 18 .  i j k N m.e j  

 

(c) We can proceed in either of two ways. We can add (vectorially) the answers from 

parts (a) and (b), or we can first add the two force vectors and then compute 
   
   r F F1 2d i  (these total force components are computed in the next part). The result 

is 

   1 2
ˆ ˆ32i 24k N m.r F F        

 

(d) Now 
  
  r r ro  where o

ˆ ˆ ˆ3.0i 2.0j 4.0k.r     Therefore, in the above expression, we 

set 0, 4.0, 0,x y z      and 

3.0 3.0 0

4.0 4.0 8.0

5.0 5.0 0.

x

y

z

F

F

F

  

  

  

 

We get 
   
     r F F1 2 0d i .  

 

25. THINK We take the cross product of r  and F  to find the torque   on a particle. 
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EXPRESS If we write ˆ ˆ ˆi j kr x y z    and ˆ ˆ ˆi j k,x y zF F F F    then (using Eq. 3-30) 

the general expression for torque can be written as  

 

     ˆ ˆ ˆi j k.z y x z y xr F yF zF zF xF xF yF          

 

ANALYZE (a) With ˆ ˆ(3.0 m)i (4.0 m)jr    and ˆ ˆ( 8.0 N)i (6.0 N)jF    , we have 

 

      ˆ ˆ3.0m 6.0N 4.0m 8.0N k (50N m) k.         

 

(b) To find the angle   between 

r  and 


F , we use Eq. 3-27: | | sinr F rF   . Now 

r x y  2 2 50. m  and F F Fx y  2 2 10 N.  Thus,  

 

rF   50 10 50. m N N m,b gb g  

 

the same as the magnitude of the vector product calculated in part (a). This implies sin  

= 1 and = 90°.  

 

LEARN Our result (= 90°) implies that 

r  and 


F  are perpendicular to each other.  A 

useful check is to show that their dot product is zero. This is indeed the case: 

 

ˆ ˆ ˆ ˆ[(3.0 m)i (4.0 m)j] [( 8.0 N)i (6.0 N) j]

(3.0 m)( 8.0 N) (4.0 m)(6.0 N) 0.

r F     

   
 

 

26. We note that the component of 

v  perpendicular to 


r  has magnitude v sin  where 

= 30°. A similar observation applies to 

F . 

 

(a) Eq. 11-20 leads to  

    23.0 m 2.0 kg 4.0 m/s sin30 12 kg m s.rmv      

 

(b) Using the right-hand rule for vector products, we find 
 
r p  points out of the page, or 

along the +z axis, perpendicular to the plane of the figure. 

 

(c) Similarly, Eq. 10-38 leads to 

  

  2sin 3.0 m 2.0 N sin 30 3.0N m.rF      

 

(d) Using the right-hand rule for vector products, we find 
 
r F  is also out of the page, or 

along the +z axis, perpendicular to the plane of the figure. 
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27. THINK We evaluate the cross product mr v  to find the angular momentum  

on the object, and the cross product of r F  for the torque  . 

 

EXPRESS Let ˆ ˆ ˆi j kr x y z    be the position vector of the object, ˆ ˆ ˆi j kx y zv v v v    its 

velocity vector, and m its mass. The cross product of r  and v  is (using Eq. 3-30) 

 

     ˆ ˆ ˆi j k.z y x z y xr v yv zv zv xv xv yv        

 

Since only the x and z components of the position and velocity vectors are nonzero (i.e., 

0 and 0yy v  ), the above expression becomes 
 
r v xv zvz z   b g j.  As for the torque, 

writing ˆ ˆ ˆi j k,x y zF F F F    we find 
 
r F  to be 

 

     ˆ ˆ ˆi j k.z y x z y xr F yF zF zF xF xF yF          

 

ANALYZE (a) With ˆ ˆ(2.0 m)i (2.0 m)kr   and ˆ ˆ( 5.0 m/s)i (5.0 m/s)k,v     in 

unit-vector notation, the angular momentum of the object is 

 

           ˆ ˆj 0.25 kg 2.0 m 5.0 m s 2.0 m 5.0 m s j 0.z xm xv zv          

 

(b) With x = 2.0 m, z = –2.0 m, Fy = 4.0 N and all other components zero, the expression 

above yields  
ˆ ˆ(8.0 N m)i (8.0 N m)k .r F        

 

LEARN The fact that 0  implies that r  and v  are parallel to each other ( 0r v  ). 

Using | | sinr F rF    , we find the angle between 

r  and 


F  to be 

 

8 2 N m
sin 1 90

(2 2 m)(4.0 N)rF


 


       

 

That is, 

r  and 


F  are perpendicular to each other.  

 

28. If we write 

      r x y z  i j k,  then (using Eq. 3-30) we find 

 
 r v  is equal to 

 

          y v z v z v x v x v y vz y x z y xd i b g d i  .i j k  

 

(a) Here, r r   where ˆ ˆ3.0i 4.0j.r    Thus, dropping the primes in the above expression, 

we set (with SI units understood) 3.0, 4.0, 0, 30, 60x yx y z v v     , and vz = 0. Then 

(with m = 2.0 kg) we obtain  
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  2 2 ˆ(6.0 10 kg m s)k.m r v      

 

(b) Now 
  
  r r ro  where 

o
ˆ ˆ2.0i 2.0j.r    Therefore, in the above expression, we set 

5.0, 2.0, 0, 30, 60x yx y z v v       , and vz  0 . We get   

 

  2 2 ˆ(7.2 10 kg m s)k.m r v       

 

29. For the 3.1 kg particle, Eq. 11-21 yields  

 

    2

1 1 1 2.8 m 3.1kg 3.6 m/s 31.2 kg m s.r mv     

 

Using the right-hand rule for vector products, we find this 
 
r p1 1b g  is out of the page, or 

along the +z axis, perpendicular to the plane of Fig. 11-41. And for the 6.5 kg particle, we 

find 

    2

2 2 2 1.5 m 6.5 kg 2.2 m/s 21.4 kg m s.r mv     

 

And we use the right-hand rule again, finding that this 
 
r p2 2b g  is into the page, or in 

the –z direction.  

 

(a) The two angular momentum vectors are in opposite directions, so their vector sum is 

the difference of their magnitudes: L     1 2 9 8. .kg m s2  

 

(b) The direction of the net angular momentum is along the +z axis. 

 

30. (a) The acceleration vector is obtained by dividing the force vector by the (scalar) 

mass:  

 a  


  = F 


/m = (3.00 m/s
2
)i
^
 – (4.00 m/s

2
)j
^
 + (2.00 m/s

2
)k

^
. 

 

(b) Use of Eq. 11-18 leads directly to  

 

L 


 =  (42.0 kg
.
m

2
/s)i

^
 + (24.0 kg

.
m

2
/s)j

^
 + (60.0 kg

.
m

2
/s)k

^
. 

 

(c) Similarly, the torque is  

 

r F    = (–8.00 N m )i
^
 – (26.0 N m )j

^
 – (40.0 N m )k

^
. 

 

(d) We note (using the Pythagorean theorem) that the magnitude of the velocity vector is 

7.35 m/s and that of the force is 10.8 N.  The dot product of these two vectors is  

 v  
 .

F 


 = – 48 (in SI units).  Thus, Eq. 3-20 yields  



 = cos
1

[48.0/(7.35 10.8)] = 127. 
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31. (a) Since the speed is (momentarily) zero when it reaches maximum height, the 

angular momentum is zero then. 

 

(b) With the convention (used in several places in the book) that clockwise sense is to be 

associated with the negative sign, we have L = – r m v  where r = 2.00 m, m = 0.400 kg, 

and v is given by free-fall considerations (as in Chapter 2). Specifically, ymax is 

determined by Eq. 2-16 with the speed at max height set to zero; we find ymax = vo
2
/2g 

where vo = 40.0 m/s. Then with y = 
1

2
 ymax, Eq. 2-16 can be used to give v = vo / 2 .  In this 

way we arrive at L = –22.6 2kg m /s . 

 

(c) As mentioned in the previous part, we use the minus sign in writing  = – rF with the 

force F being equal (in magnitude) to mg.  Thus,  = –7.84 N m . 

 

(d) Due to the way r  is defined it does not matter how far up the ball is.  The answer is 

the same as in part (c),  = –7.84 N m . 

 

32. The rate of change of the angular momentum is 

 

1 2
ˆ ˆ(2.0 N m)i (4.0 N m)j.

d

dt
        

 

Consequently, the vector d dt

  has a magnitude  

22(2.0 N m) 4.0 N m 4.5N m       

and is at an angle  (in the xy plane, or a plane parallel to it) measured from the positive x 

axis, where     

1 4.0 N m
tan 63

2.0 N m
    
    

 
, 

 

the negative sign indicating that the angle is measured clockwise as viewed “from above” 

(by a person on the z  axis). 

 

33. THINK We evaluate the cross product mr v  to find the angular momentum  

on the particle, and the cross product of r F  for the torque  . 

 

EXPRESS Let ˆ ˆ ˆi j kr x y z    be the position vector of the object, ˆ ˆ ˆi j kx y zv v v v    its 

velocity vector, and m its mass. The cross product of r  and v  is 

 

     ˆ ˆ ˆi j k.z y x z y xr v yv zv zv xv xv yv        

 

The angular momentum is given by the vector product mr v  . As for the torque, 

writing ˆ ˆ ˆi j k,x y zF F F F    then we find 
 
r F  to be 
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     ˆ ˆ ˆi j k.z y x z y xr F yF zF zF xF xF yF          

 

ANALYZE (a) Substituting m = 3.0 kg, x = 3.0 m, y = 8.0 m, z = 0, vx = 5.0 m/s, 

6.0 m/syv    and vz = 0 into the above expression, we obtain 

 

  2ˆ ˆ3.0 kg [(3.0 m)( 6.0 m/s) (8.0 m)(5.0 m/s)]k ( 174 kg m s)k.       

 

(b) Given that 

r x y  i j  and 


F Fx i , the corresponding torque is 

 

   ˆ ˆ ˆ ˆi j i k.x xx y F yF        

 

Substituting the values given, we find  

 

   ˆ ˆ8.0m 7.0N k (56N m)k.      

 

(c) According to Newton’s second law 
 

  d dt ,  so the rate of change of the angular 

momentum is 56 kg m
2
/s

2
, in the positive z direction. 

 

LEARN The direction of  is in the z-direction, which is perpendicular to both r  and 

v . Similarly, the torque   is perpendicular to both r  and F (i.e,   is in the direction 

normal to the plane formed by r  and F ). 

 

34. We use a right-handed coordinate system with k  directed out of the xy plane so as to 

be consistent with counterclockwise rotation (and the right-hand rule). Thus, all the 

angular momenta being considered are along the – k  direction; for example, in part (b) 
  4 0 2. t k  in SI units. We use Eq. 11-23. 

 

(a) The angular momentum is constant so its derivative is zero. There is no torque in this 

instance. 

 

(b) Taking the derivative with respect to time, we obtain the torque: 

 

 
2

ˆ ˆ4.0k ( 8.0  N m)k
d dt

t
dt dt

       . 

 

This vector points in the – k  direction (causing the clockwise motion to speed up) for all t 

> 0. 

 

(c) With ˆ( 4.0 )kt   in SI units, the torque is 
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    1 2.0ˆ ˆ ˆ4.0k 4.0k k N m
2

d t

dt t t


   
         

   
. 

 

This vector points in the – k  direction (causing the clockwise motion to speed up) for all t 

> 0 (and it is undefined for t < 0). 

 

(d) Finally, we have 

   
2

3 3

2 8.0ˆ ˆ ˆ4.0k 4.0k k N m.
dt

dt t t


    
        

   
 

 

This vector points in the + k  direction (causing the initially clockwise motion to slow 

down) for all t > 0. 

 

35. (a) We note that  

d r
v

dt
 = 8.0t i

^
  – (2.0 + 12t)j

^
  

 

with SI units understood.  From Eq. 11-18 (for the angular momentum) and Eq. 3-30, we 

find the particle’s angular momentum is 8t
2
k
^
 . Using Eq. 11-23 (relating its time-

derivative to the (single) torque) then yields 


 = (48t k
^
) N m . 

 

(b) From our (intermediate) result in part (a), we see the angular momentum increases in 

proportion to t
2
. 

 

36. We relate the motions of the various disks by examining their linear speeds (using Eq. 

10-18).  The fact that the linear speed at the rim of disk A must equal the linear speed at 

the rim of disk C leads to A = 2C . The fact that the linear speed at the hub of disk A 

must equal the linear speed at the rim of disk B leads to A = 
1

2
 B .  Thus, B = 4C .  The 

ratio of their angular momenta depend on these angular velocities as well as their 

rotational inertias (see item (c) in Table 11-2), which themselves depend on their masses.  

If h is the thickness and is the density of each disk, then each mass is R
2
h.  Therefore, 

 

LC

LB
  = 

(½)RC 

2
 h RC 

2
 C

(½)RB 

2
 h RB 

2
B

  = 1024. 

 

37. (a) A particle contributes mr2 to the rotational inertia. Here r is the distance from the 

origin O to the particle. The total rotational inertia is 

 

     
2 2 2 2 2 2

3 2

3 2 14 14(2.3 10 kg)(0.12 m)

4.6 10  kg m .

I m d m d m d md 



     

  
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(b) The angular momentum of the middle particle is given by Lm = Im, where Im = 4md 
2
 

is its rotational inertia. Thus  

 

 2 2 2 3 24 4(2.3 10 kg)(0.12 m) (0.85 rad/s) 1.1 10  kg m /s.mL md          

 

(c) The total angular momentum is  

 

 2 2 2 3 214 14(2.3 10 kg)(0.12 m) (0.85 rad/s) 3.9 10  kg m /s.I md          

 

38. (a) Equation 10-34 gives  = /I and Eq. 10-12 leads to  = t = t/I. Therefore, the 

angular momentum at t = 0.033 s is 

 

   216N m 0.033s 0.53kg m sI t       

 

where this is essentially a derivation of the angular version of the impulse-momentum 

theorem. 

 

(b) We find 

  
3 2

16 N m 0.033 s
440rad/s

1.2 10 kg m

t

I







  

 
 

which we convert as follows:  

 

 = (440 rad/s)(60 s/min)(1 rev/2rad)  4.2 ×10
3
 rev/min. 

 

39. THINK A non-zero torque is required to change the angular momentum of the 

flywheel. We analyze the rotational motion of the wheel using the equations given in 

Table 10-1.  

 

EXPRESS Since the torque is equal to the rate of change of angular momentum,  = 

dL/dt, the average torque acting during any interval t  is simply given by 

 avg  L L tf id i  ,  where Li is the initial angular momentum and Lf is the final angular 

momentum. For uniform angular acceleration, the angle turned is 2

0 / 2t t    , and 

the work done on the wheel is W  . 

 

ANALYZE (a) Substituting the values given, the average torque is  

 
2 2

avg

(0.800 kg m s) (3.00 kg m s)
1.47 N m

1.50 s

f iL L

t


   
   


, 

 

or avg| | 1.47 N m   . In this case the negative sign indicates that the direction of the 

torque is opposite the direction of the initial angular momentum, implicitly taken to be 

positive. 
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(b) If the angular acceleration  is uniform, so is the torque and  = /I. Furthermore, 0 

= Li/I, and we obtain 

 

     
222

2

3.00kg m s 1.50 s 1.467 N m 1.50 s / 2/ 2
20.4rad.

0.140kg m

iLt t

I




   
  


 

 

(c) Using the values of  and  found above, we find the work done on the wheel to be 

 

  1.47 N m 20.4rad 29.9 J.W        

 

(d) The average power is the work done by the flywheel (the negative of the work done 

on the flywheel) divided by the time interval: 

 

avg

29.9 J
19.9W.

1.50s

W
P

t


    


 

 

LEARN An alternative way to calculate the work done on the wheel is to apply the 

work-kinetic energy theorem: 

 

2 2 2 2

2 21 1
( )

2 2 2

f f ii
f i f i

L L LL
W K K K I I

I I I
 

     
            

    

 

Substituting the values given, we have 

 
2 2 2 2 2 2

2

(0.800 kg m s) (3.00 kg m s)
29.9 J

2 2(0.140kg m )

f iL L
W

I

   
  


 

 

which agrees with that calculated in part (c). 

 

40. Torque is the time derivative of the angular momentum. Thus, the change in the 

angular momentum is equal to the time integral of the torque. With 

(5.00 2.00 ) N mt    , the angular momentum (in units 2kg m /s ) as a function of time 

is  

 2

0( ) (5.00 2.00 ) 5.00 1.00L t dt t dt L t t       . 

 

Since 25.00 kg m /sL    when 1.00 st  , the integration constant is 0 1L   . Thus, the 

complete expression of the angular momentum is  

 
2( ) 1 5.00 1.00L t t t    . 

 

At 3.00 st  , we have 2 2( 3.00) 1 5.00(3.00) 1.00(3.00) 23.0 kg m /s.L t         
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41. (a) For the hoop, we use Table 10-2(h) and the parallel-axis theorem to obtain 

 

I I mh mR mR mR1

2 2 2 21

2

3

2
    com .  

 

Of the thin bars (in the form of a square), the member along the rotation axis has 

(approximately) no rotational inertia about that axis (since it is thin), and the member 

farthest from it is very much like it (by being parallel to it) except that it is displaced by a 

distance h; it has rotational inertia given by the parallel axis theorem: 

 

I I mh mR mR2

2 2 20    com .  

 

Now the two members of the square perpendicular to the axis have the same rotational 

inertia (that is I3 = I4). We find I3 using Table 10-2(e) and the parallel-axis theorem: 

 

I I mh mR m
R

mR3

2 2

2

21

12 2

1

3
   

F
HG
I
KJ com .  

Therefore, the total rotational inertia is 

 

I I I I mR1 2 3 4

219

6
16     . .kg m2  

(b) The angular speed is constant: 




  


t

2

2 5
2 5


.

. rad s.  

Thus, L I  total

2kg m s. 4 0.  

 

42. The results may be found by integrating Eq. 11-29 with respect to time, keeping in 

mind that Li 
  

 = 0 and that the integration may be thought of as “adding the areas” under 

the line-segments (in the plot of the torque versus time, with “areas” under the time axis 

contributing negatively). It is helpful to keep in mind, also, that the area of a triangle is 
1

2
 

(base)(height). 

 

(a) We find that L 


 =  24 2kg m / s  at t = 7.0 s. 

 

(b) Similarly, L 


 = 1.5 2kg m / s  at t = 20 s.   

 

43. We assume that from the moment of grabbing the stick onward, they maintain rigid 

postures so that the system can be analyzed as a symmetrical rigid body with center of 

mass midway between the skaters. 

 

(a) The total linear momentum is zero (the skaters have the same mass and equal and 

opposite velocities). Thus, their center of mass (the middle of the 3.0 m long stick) 

remains fixed and they execute circular motion (of radius r = 1.5 m) about it.  
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(b) Using Eq. 10-18, their angular velocity (counterclockwise as seen in Fig. 11-47) is 

 

1.4 m/s
0.93 rad/s.

1.5 m

v

r
     

 

(c) Their rotational inertia is that of two particles in circular motion at r = 1.5 m, so Eq. 

10-33 yields 

  
22 22 50 kg 1.5 m 225 kg m .I mr     

 

Therefore, Eq. 10-34 leads to 

 

  
22 21 1

225 kg m 0.93rad/s 98 J.
2 2

K I     

 

(d) Angular momentum is conserved in this process. If we label the angular velocity 

found in part (a)  i  and the rotational inertia of part (b) as Ii, we have 

 

  2225 kg m 0.93rad/s .i i f fI I     

 

The final rotational inertia is mrf

2  where rf = 0.5 m so 225 kg m .fI    Using this 

value, the above expression gives  f  8 4. rad s.  

 

(e) We find 

  
22 2 21 1

25 kg m 8.4rad/s 8.8 10 J.
2 2

f f fK I       

 

(f) We account for the large increase in kinetic energy (part (e) minus part (c)) by noting 

that the skaters do a great deal of work (converting their internal energy into mechanical 

energy) as they pull themselves closer — “fighting” what appears to them to be large 

“centrifugal forces” trying to keep them apart. 

 

44. So that we don’t get confused about ± signs, we write the angular speed to the lazy 

Susan as   and reserve the  symbol for the angular velocity (which, using a common 

convention, is negative-valued when the rotation is clockwise). When the roach “stops” 

we recognize that it comes to rest relative to the lazy Susan (not relative to the ground). 

 

(a) Angular momentum conservation leads to 

 

mvR I mR I f   0

2c h  

 

which we can write (recalling our discussion about angular speed versus angular velocity) 

as 
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mvR I mR I f    0

2c h .  

 

We solve for the final angular speed of the system: 

 
3 2

0

2 3 2 2

| | (0.17 kg)(2.0 m/s)(0.15 m) (5.0 10  kg m )(2.8 rad/s)
| |

(5.0 10  kg m ) (0.17 kg)(0.15 m)

      4.2 rad/s.

f

mvR I

mR I








   
 

   



 

 

(b) No, K Kf i  and — if desired — we can solve for the difference: 

 

K K
mI v R Rv

mR I
i f 

 

2

22

0

2 2

0

2

 
 

 

which  is clearly positive. Thus, some of the initial kinetic energy is “lost” — that is, 

transferred to another form. And the culprit is the roach, who must find it difficult to stop 

(and “internalize” that energy). 

 

45. THINK No external torque acts on the system consisting of the man, bricks, and 

platform, so the total angular momentum of the system is conserved.  

 

EXPRESS Let Ii be the initial rotational inertia of the system and let If be the final 

rotational inertia. Then Iii = Iff  by angular momentum conservation. The kinetic 

energy (of rotational nature) is given by 2 / 2.K I    

 

ANALYZE (a) The final angular momentum of the system is 

 

  
2

2

6.0 kg m
1.2rev s 3.6rev s.

2.0 kg m

i
f i

f

I

I
 

   
         

 

 

(b) The initial kinetic energy is K Ii i i
1

2

2 ,  and the final kinetic energy is 

K If f f
1

2

2 ,  so that their ratio is 

  

  

222

22 2

2.0kg m 3.6rev s / 2/ 2
3.0.

/ 2 6.0kg m 1.2rev s / 2

f f f

i i i

K I

K I






  


 

 

(c) The man did work in decreasing the rotational inertia by pulling the bricks closer to 

his body. This energy came from the man’s internal energy. 

 

LEARN The work done by the person is equal to the change in kinetic energy: 
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2 2 23 2 (6.0kg m )(2 1.2rad s) 341 Jf i i i i i iW K K K K K I           . 

 

46. Angular momentum conservation I Ii i f f   leads to 






f

i

i

f

i

I

I
  3  

which implies 
22

2

/ 2
3.

/ 2

f f f f f

i i i i i

K I I

K I I

 

 

 
   

 
 

 

47. THINK No external torque acts on the system consisting of the train and wheel, so 

the total angular momentum of the system (which is initially zero) remains zero.  

 

EXPRESS Let I = MR
2
 be the rotational inertia of the wheel (which we treat as a hoop). 

Its angular momentum is  
2

wheel
ˆ ˆ( )k k,L I M R     

 

where k  is up in Fig. 11-48 and that last step (with the minus sign) is done in recognition 

that the wheel’s clockwise rotation implies a negative value for . The linear speed of a 

point on the track is R and the speed of the train (going counterclockwise in Fig. 11-

48 with speed v  relative to an outside observer) is therefore   v v R  where v is its 

speed relative to the tracks. Consequently, the angular momentum of the train is 

 train k̂ .L m v R R   Conservation of angular momentum yields 

 

 2

wheel train
ˆ ˆ0 k kL L MR m v R R        

 

which we can use to solve for  . 

 

ANALYZE Solving for the angular speed, the result is 

 

   2

0.15 m/s
| | 0.17 rad/s.

/ 1 (1.1 1)(0.43 m)

mvR v

M m R M m R
    

  
 

 

LEARN By angular momentum conservation, we must have wheel train ,L L   which 

means that train and the wheel must have opposite senses of rotation.  

 

48. Using Eq. 11-31 with angular momentum conservation, Li 
  

 = Lf 
  

 (Eq. 11-33) leads to 

the ratio of rotational inertias being inversely proportional to the ratio of angular 

velocities.  Thus, If /Ii = 6/5 = 1.0 + 0.2.  We interpret the “1.0” as the ratio of disk 

rotational inertias (which does not change in this problem) and the “0.2” as the ratio of 

the roach rotational inertial to that of the disk.  Thus, the answer is 0.20. 
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49. (a) We apply conservation of angular momentum:   

 

I11 + I22 = (I1 + I2). 

 

The angular speed after coupling is therefore 

 

     2 2

1 1 2 2

2 2

1 2

3.3kg m 450 rev min 6.6kg m 900 rev min

3.3kg m 6.6kg m

750 rev min.

I I

I I

 


  
 

   



 

 

(b) In this case, we obtain 

 

     2 2

1 1 2 2

2 2

1 2

3.3 kg m 450 rev/min 6.6 kg m 900 rev/min

3.3 kg m 6.6 kg m

450 rev min

I I

I I

 


   
 

   

 

 

 

or | | 450 rev min  . 

 

(c) The minus sign indicates that 

  is clockwise, that is, in the direction of the second 

disk’s initial angular velocity. 

 

50. We use conservation of angular momentum:  

 

Imm = Ipp. 

 

The respective angles m and p by which the motor and probe rotate are therefore related 

by 

I dt I I dt Im m m m p p p p     z z  

which gives 




m

p p

m

I

I
 

 

 
 



12 30

2 0 10
180000

3

kg m

kg m

2

2

c hb g
.

.  

 

The number of  revolutions for the rotor is then  

 

N = (1.8  10
5
)º/(360º/rev) = 5.0  10

2
 rev. 

 

51. THINK No external torques act on the system consisting of the two wheels, so its 

total angular momentum is conserved.  
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EXPRESS Let I1 be the rotational inertia of the wheel that is originally spinning at  ib g  
and I2 be the rotational inertia of the wheel that is initially at rest. Then by angular 

momentum conservation, ,i fL L  or I I Ii f1 1 2  b g  and 

 

 f i

I

I I




1

1 2

 

 

where  f  is the common final angular velocity of the wheels.  

 

ANALYZE (a) Substituting I2 = 2I1 and  i  800 rev min,  we obtain 

 

1 1

1 2 1 1

1
(800 rev/min) (800 rev/min) 267 rev/min.

2( ) 3
f i

I I

I I I I
    

 
 

 

(b) The initial kinetic energy is K Ii i 1
2 1

2  and the final kinetic energy is 

K I If f 1
2 1 2

2b g . We rewrite this as 

K I I
I

I I
If

i
i 



F
HG

I
KJ 

1

2
2

2

1

6
1 1

1

1 1

2

2b g 
 .  

 

Therefore, the fraction lost is 

 
2

2

/ 6 2
1 1 0.667.

/ 2 3

i f f i

i i i i

K K K IK

K K K I






        

 

LEARN The situation here is analogous to the case of completely inelastic collision, in 

which some energy is lost but momentum remains conserved.    

 

52. We denote the cockroach with subscript 1 and the disk with subscript 2. The 

cockroach has a mass m1 = m, while the mass of the disk is m2 = 4.00 m. 

 

(a) Initially the angular momentum of the system consisting of the cockroach and the disk 

is 

L m v r I m R m Ri i i i   1 1 1 2 2 1 0

2

2 0

21

2
   .  

 

After the cockroach has completed its walk, its position (relative to the axis) is r Rf1 2  

so the final angular momentum of the system is 

 

L m
R

m Rf f f
F
HG
I
KJ 1

2

2

2

2

1

2
  .  

Then from Lf = Li we obtain 
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 f m R m R m R m R
1

4

1

2

1

2
1

2

2 0 1

2

2

2
F
HG

I
KJ  
F
HG

I
KJ.  

Thus, 
2 2

1 2 2 1
0 0 0 02 2

1 2 2 1

2 1 ( / ) 2 1 2
1.33 .

4 2 1/ 4 ( / ) 2 1/ 4  2
f

m R m R m m

m R m R m m
    

      
        

      
 

 

With  = 0.260 rad/s, we have f =0.347 rad/s.  

 

(b) We substitute I = L/ into K I
1

2

2  and obtain K L
1

2
 . Since we have Li = Lf, 

the kinetic energy ratio becomes 

0 0

/ 2
1.33.

/ 2

f f f

i i

LK

K L

 

 
    

 

(c) The cockroach does positive work while walking toward the center of the disk, 

increasing the total kinetic energy of the system. 

 

53. The axis of rotation is in the middle of the rod, with r = 0.25 m from either end. By 

Eq. 11-19, the initial angular momentum of the system (which is just that of the bullet, 

before impact) is rmv sin  where m = 0.003 kg and  = 60°. Relative to the axis, this is 

counterclockwise and thus (by the common convention) positive. After the collision, the 

moment of inertia of the system is  

I = Irod + mr
2
 

 

where Irod = ML
2
/12 by Table 10-2(e), with M = 4.0 kg and L = 0.5 m. Angular 

momentum conservation leads to 

 

2 21
sin .

12
rmv ML mr 

 
  
 

 

Thus, with  = 10 rad/s, we obtain 

 

       

  

2 2
1

12
3

4.0 kg 0.5 m 0.003 kg 0.25 m 10rad/s
1.3 10 m/s.

0.25 m 0.003 kg sin 60
v


  


 

 

54. We denote the cat with subscript 1 and the ring with subscript 2. The cat has a mass 

m1 = M/4, while the mass of the ring is m2 = M = 8.00 kg. The moment of inertia of the 

ring is 2 2

2 2 1 2( ) / 2I m R R   (Table 10-2), and I1 = m1r
2
 for the cat, where r is the 

perpendicular distance from the axis of rotation.  

 

Initially the angular momentum of the system consisting of the cat (at r = R2) and the ring 

is 
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2
2 2 2 2 2 1

1 1 1 2 2 1 0 2 2 1 2 0 1 2 0 2

1 2

1 1
( ) 1 1 .

2 2
i i i i

m R
L m v r I m R m R R m R

m R
   

  
         

  
 

 

After the cat has crawled to the inner edge at 
1r R  the final angular momentum of the 

system is 
2

2 2 2 2 2 2
1 1 2 1 2 1 1 2

1 1

1 1
( ) 1 1 .

2 2
f f f f

m R
L m R m R R m R

m R
  

  
       

  
 

Then from Lf = Li we obtain 

 

 

2

2 1
2 2

1 2 22

2
0 1 2 2

2

1 1

1
1 1

2 1 2(0.25 1)
(2.0) 1.273

1 2(1 4)1
1 1

2

f

m R

m RR

R m R

m R





 
  

    
   

      
 

. 

 

Thus, 01.273f  . Using  =8.00 rad/s, we have f =10.2 rad/s. By substituting I = 

L/ into 2 / 2K I , we obtain / 2K L . Since Li = Lf, the kinetic energy ratio 

becomes 

0

/ 2
1.273.

/ 2

f f f f

i i i

K L

K L

 

 
    

 

which implies 0.273f i iK K K K    . The cat does positive work while walking toward 

the center of the ring, increasing the total kinetic energy of the system. 

 

Since the initial kinetic energy is given by 

 

 

2
2 2 2 2 2 2 2 1

1 2 2 1 2 0 1 2 0 2

1 2

2 2 2

1 1 1 1
( ) 1 1

2 2 2 2

1
(2.00 kg)(0.800 m) (8.00 rad/s) [1+(1/2)(4)(0.5 +1)]

2

=143.36 J,

i

m R
K m R m R R m R

m R
 

   
        

    

  

 

the increase in kinetic energy is  

 

(0.273)(143.36 J) 39.1 J.K    

 

55. For simplicity, we assume the record is turning freely, without any work being done 

by its motor (and without any friction at the bearings or at the stylus trying to slow it 

down). Before the collision, the angular momentum of the system (presumed positive) is 

Ii i  where Ii   50 10 4. kg m2  and  i  4 7. .rad s  The rotational inertia afterward is  

 



 

  

553 

I I mRf i  2  

 

where m = 0.020 kg and R = 0.10 m. The mass of the record (0.10 kg), although given in 

the problem, is not used in the solution. Angular momentum conservation leads to 

 

I I
I

I mR
i i f f f

i i

i

  


  



2

34. rad / s.  

 

56. Table 10-2 gives the rotational inertia of a thin rod rotating about a perpendicular axis 

through its center. The angular speeds of the two arms are, respectively, 

 

1

2

(0.500 rev)(2  rad/rev)
4.49 rad/s

0.700 s

(1.00 rev)(2  rad/rev)
8.98 rad/s.

0.700 s







 

 

 

 

Treating each arm as a thin rod of mass 4.0 kg and length 0.60 m, the angular momenta 

of the two arms are 

 

 

2 2 2

1 1 1

2 2 2

2 2 2

(4.0 kg)(0.60 m) (4.49rad/s) 6.46 kg m /s

(4.0 kg)(0.60 m) (8.98rad/s) 12.92 kg m /s.

L I mr

L I mr

 

 

    

    
 

 

From the athlete’s reference frame, one arm rotates clockwise, while the other rotates 

counterclockwise. Thus, the total angular momentum about the common rotation axis 

though the shoulders is 

 
2 2 2

2 1 12.92 kg m /s 6.46 kg m /s 6.46 kg m /s.L L L         

 

57. Their angular velocities, when they are stuck to each other, are equal, regardless of 

whether they share the same central axis. The initial rotational inertia of the system is, 

using Table 10-2(c), 

0 bigdisk smalldiskI I I   

 

where 2

bigdisk / 2I MR . Similarly, since the small disk is initially concentric with the big 

one, I mrsmalldisk 
1
2

2 . After it slides, the rotational inertia of the small disk is found from 

the parallel axis theorem (using h = R – r). Thus, the new rotational inertia of the system 

is 

 
22 21 1
.

2 2
I MR mr m R r     

 

(a) Angular momentum conservation, I00 = I, leads to the new angular velocity: 
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 

2 2

0 22 2

( / 2) ( / 2)
.

( / 2) ( / 2)

MR mr

MR mr m R r
 




  
 

 

Substituting M = 10m and R = 3r, this becomes  = 0(91/99). Thus, with 0 = 20 rad/s, 

we find  = 18 rad/s. 

 

(b) From the previous part, we know that 

 

0

0

91 91
, .

99 99

I

I




   

 

Plugging these into the ratio of kinetic energies, we have 

 
2 22

2

0 0 0 0 0

/ 2 99 91
0.92.

/ 2 91 99

K I I

K I I

 

 

   
      

  
 

 

58. The initial rotational inertia of the system is  Ii = Idisk + Istudent,  where Idisk = 300 

kg  m
2
 (which, incidentally, does agree with Table 10-2(c)) and Istudent = mR

2
 where 

60 kgm   and R = 2.0 m.  

 

The rotational inertia when the student reaches r = 0.5 m is If = Idisk + mr
2
. Angular 

momentum conservation leads to 

I I
I mR

I mr
i i f f f i     





disk

disk

2

2
 

 

which yields, for i = 1.5 rad/s, a final angular velocity of f = 2.6 rad/s. 

 

59. By angular momentum conservation (Eq. 11-33), the total angular momentum after 

the explosion must be equal to that before the explosion: 

 

 p r p rL L L L     
 

( )
L

2
mvp +  

1

12
 ML

2  = Ip  +  
1

12
 ML

2  

 

where one must be careful to avoid confusing the length of the rod (L = 0.800 m) with the 

angular momentum symbol.  Note that Ip = m(L/2)
2
 by Eq.10-33, and  

 

 = vend/r = (vp  6)/(L/2), 

 

where the latter relation follows from the penultimate sentence in the problem (and “6” 

stands for “6.00 m/s” here). Since M = 3m and  = 20 rad/s, we end up with enough 

information to solve for the particle speed: vp = 11.0 m/s. 
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60. (a) With r = 0.60 m, we obtain I = 0.060 + (0.501)r
2
 = 0.24 kg ∙ m

2
. 

 

(b) Invoking angular momentum conservation, with SI units understood, 

 

       0 0 00.001 0.60 0.24 4.5fL mv r I v      

 

which leads to v0 = 1.8  10
3
 m/s. 

 

61. We make the unconventional choice of clockwise sense as positive, so that the 

angular velocities in this problem are positive. With r = 0.60 m and I0 = 0.12 kg ∙ m
2
, the 

rotational inertia of the putty-rod system (after the collision) is  

 

I = I0 + (0.20)r
2
 = 0.19 kg ∙ m

2
. 

 

Invoking angular momentum conservation 0 fL L  or 0 0I I  , we have 

 

  
2

0
0 2

0.12 kg m
2.4rad/s 1.5rad/s.

0.19 kg m

I

I
 


  


 

 

62. The aerialist is in extended position with 2

1 19.9 kg mI   during the first and last 

quarter of the turn, so the total angle rotated in 
1t  is 1 0.500 rev.   In 2t  he is in a tuck 

position with 2

2 3.93 kg mI   , and the total angle rotated is 2 3.500 rev.   Since there 

is no external torque about his center of mass, angular momentum is conserved, 

1 1 2 2I I  . Therefore, the total flight time can be written as 

 

 1 2 1 2 1
1 2 1 2

1 2 2 2 1 2 2 2

1
.

/

I
t t t

I I I

   
 

    

 
        

 
 

 

Substituting the values given, we find 2  to be 

 
2

1
2 1 2 2

2

1 1 19.9 kg m
(0.500 rev) 3.50 rev 3.23 rev/s.

1.87 s 3.93 kg m

I

t I
  

   
       

  
 

 

63. This is a completely inelastic collision, which we analyze using angular momentum 

conservation. Let m and v0 be the mass and initial speed of the ball and R the radius of the 

merry-go-round. The initial angular momentum is 

 

 
0 0 0 0 0 cos37r p R mv      

 

where = 37° is the angle between

v0 and the line tangent to the outer edge of the merry-

go-around. Thus, 0 19 kg m s2 . Now, with SI units understood, 
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     2 2 2

0 19 kg m 150 30 1.0fL I R R         

so that  = 0.070 rad/s. 

 

64. We treat the ballerina as a rigid object rotating around a fixed axis, initially and then 

again near maximum height. Her initial rotational inertia (trunk and one leg extending 

outward at a 90  angle) is  

 

 2 2 2

trunk leg 0.660 kg m 1.44 kg m 2.10 kg m .iI I I         

 

Similarly, her final rotational inertia (trunk and both legs extending outward at a 30    

angle) is  

 

 2 2 2 2 2

trunk leg2 sin 0.660 kg m 2(1.44 kg m )sin 30 1.38 kg m ,fI I I           

 

where we have used the fact that the effective length of the extended leg at an angle θ is 

sinL L    and 2 .I L Once airborne, there is no external torque about the ballerina’s  

center of mass  and her angular momentum cannot change. Therefore, i fL L  or 

i i f fI I  , and the ratio of the angular speeds is 

 
2

2

2.10 kg m
1.52.

1.38 kg m

f i

i f

I

I






  


 

 

65. THINK If we consider a short time interval from just before the wad hits to just after 

it hits and sticks, we may use the principle of conservation of angular momentum. The 

initial angular momentum is the angular momentum of the falling putty wad.  

 

EXPRESS The wad initially moves along a line that is d/2 distant from the axis of 

rotation, where d is the length of the rod. The angular momentum of the wad is mvd/2 

where m and v are the mass and initial speed of the wad. After the wad sticks, the rod has 

angular velocity  and angular momentum I, where I is the rotational inertia of the 

system consisting of the rod with the two balls (each having a mass M) and the wad at its 

end. Conservation of angular momentum yields mvd/2 = I where I = (2M + m)(d/2)
2
 . 

The equation allows us to solve for .  

 

ANALYZE (a) With M = 2.00 kg, d = 0.500 m, m = 0.0500 kg, and v = 3.00 m/s, we find 

the angular speed to be 

 

  

   

2 0.0500 kg 3.00 m/s2

2 2 2 2.00 kg 0.0500 kg 0.500 m

0.148 rad s.

mvd mv

I M m d
   

 


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(b) The initial kinetic energy is K mvi 
1
2

2 ,  the final kinetic energy is K If 
1
2

2 ,  and 

their ratio is  

K K I mvf i   2 2 .  

 

When I M m d 2 42b g  and   2 2mv M m db g  are substituted, the ratio becomes 

 

 
0.0500 kg

0.0123.
2 2 2.00 kg 0.0500 kg

f

i

K m

K M m
  

 
 

 

(c) As the rod rotates, the sum of its kinetic and potential energies is conserved. If one of 

the balls is lowered a distance h, the other is raised the same distance and the sum of the 

potential energies of the balls does not change. We need consider only the potential 

energy of the putty wad. It moves through a 90° arc to reach the lowest point on its path, 

gaining kinetic energy and losing gravitational potential energy as it goes. It then swings 

up through an angle , losing kinetic energy and gaining potential energy, until it 

momentarily comes to rest. Take the lowest point on the path to be the zero of potential 

energy. It starts a distance d/2 above this point, so its initial potential energy is 

( / 2)iU mg d . If it swings up to the angular position , as measured from its lowest 

point, then its final height is (d/2)(1 – cos ) above the lowest point and its final potential 

energy is  

U mg df  2 1b gb gcos .  

 

The initial kinetic energy is the sum of that of the balls and wad:  

 

  
22 21 1

2 2 .
2 2

iK I M m d     

 

At its final position, we have Kf = 0. Conservation of energy provides the relation: 

 

   
2

21
2 1 cos .

2 2 2 2
i i f f

d d d
U K U K mg M m mg 

 
        

 
 

 

When this equation is solved for cos , the result is 

 

 
 

  
 

2

2

2

1 2
cos

2 2

2 2.00 kg 0.0500 kg1 0.500 m
0.148 rad s

2 20.0500 kg 9.8 m s

0.0226.

M m d

mg
 

   
    

  

       
  
 

 
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Consequently, the result for  is 91.3°. The total angle through which it has swung is 90° 

+ 91.3° = 181°. 

 

LEARN This problem is rather involved. To summarize, we calculated  using angular 

momentum conservation. Some energy is lost due to the inelastic collision between the 

putty wad and one of the balls. However, in the subsequent motion, energy is conserved, 

and we apply energy conservation to find the angle at which the system comes to rest 

momentarily.   

 

66. We make the unconventional choice of clockwise sense as positive, so that the 

angular velocities (and angles) in this problem are positive. Mechanical energy 

conservation applied to the particle (before impact) leads to 

 

mgh mv v gh  
1

2
22  

 

for its speed right before undergoing the completely inelastic collision with the rod. The 

collision is described by angular momentum conservation: 

 

mvd I md rod

2c h  

 

where Irod is found using Table 10-2(e) and the parallel axis theorem: 

 

I Md M
d

Mdrod  
F
HG
I
KJ 

1

12 2

1

3

2

2

2 .  

 

Thus, we obtain the angular velocity of the system immediately after the collision: 

 

2 2

2

( / 3)

md gh

Md md
 


 

 

which means the system has kinetic energy  2 2

rod / 2,I md   which will turn into 

potential energy in the final position, where the block has reached a height H (relative to 

the lowest point) and the center of mass of the stick has increased its height by H/2. From 

trigonometric considerations, we note that H = d(1 – cos), so we have 

 

  
 

 
2 2

2 2

rod 2 2

21 1
1 cos

2 2 2 ( / 3) 2

m d ghH M
I md mgH Mg m gd

Md md
 

 
       

  
 

 

from which we obtain 
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       

2
1 1

1 1

/
cos 1 cos 1

/ 2 / 3 1 / 2 1 / 3

(20 cm/ 40 cm)
cos 1 cos (0.85)

(1 1)(1 2/3)

32 .

m h h d

m M m M M m M m
  

 

   
               

 
   

  

 

 

 

67. (a) We consider conservation of angular momentum (Eq. 11-33) about the center of 

the rod: 

21
0

12
i fL L dmv ML      

 

where negative is used for “clockwise.” Item (e) in Table 11-2 and Eq. 11-21 (with r = d) 

have also been used.  This leads to 

 

d = 
ML

2 


12 m v
  =  

M(0.60 m)
2 

(80 rad/s)

12(M/3)(40 m/s)
  =  0.180 m . 

 

(b) Increasing d causes the magnitude of the negative (clockwise) term in the above 

equation to increase.  This would make the total angular momentum negative before the 

collision, and (by Eq. 11-33) also negative afterward. Thus, the system would rotate 

clockwise if d were greater. 

 

68. (a) The angular speed of the top is 30 rev/s 30(2 ) rad/s   . The precession rate of 

the top can be obtained by using Eq. 11-46: 

 

 
2

4 2

(0.50 kg)(9.8 m/s )(0.040 m)
2.08 rad/s 0.33 rev/s.

(5.0 10  kg m )(60  rad/s)

Mgr

I 
   

 
 

 

(b) The direction of the precession is clockwise as viewed from overhead. 

 

69. The precession rate can be obtained by using Eq. 11-46 with r = (11/2) cm = 0.055 m. 

Noting that Idisk = MR
2
/2 and its angular speed is 

 

22 (1000)
1000 rev/min  rad/s 1.0 10  rad/s,

60


      

we have  
2

2 2 2 2

2 2(9.8 m/s )(0.055 m)
0.041 rad/s.

( / 2) (0.50 m) (1.0 10  rad/s)

Mgr gr

MR R 
   


 

 

70. Conservation of energy implies that mechanical energy at maximum height up the 

ramp is equal to the mechanical energy on the floor. Thus, using Eq. 11-5, we have 
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2 2 2 2

com com

1 1 1 1

2 2 2 2
f fmv I mgh mv I      

 

where vf  = f = 0 at the point on the ramp where it (momentarily) stops.  We note that the 

height h relates to the distance traveled along the ramp d by h = d sin(15º).  Using item (f) 

in Table 10-2 and Eq. 11-2, we obtain 

 

 

2

2 2 2 2 21 1 2 1 1 7
sin15 .

2 2 5 2 5 10

v
mgd mv mR mv mv mv

R

  
       

  
 

 

After canceling m and plugging in d = 1.5 m, we find v = 2.33 m/s. 

 

71. THINK The applied force gives rise to a torque that causes the cylinder to rotate to 

the right at a constant angular acceleration.  

 

EXPRESS We make the unconventional choice of clockwise sense as positive, so that 

the angular acceleration is positive (as is the linear acceleration of the center of mass, 

since we take rightwards as positive). We approach this in the manner of Eq. 11-3 (pure 

rotation about point P) but use torques instead of energy. The torque (relative to point P) 

is PI  , where 

2 2 21 3

2 2
PI MR MR MR    

 

with the use of the parallel-axis theorem and Table 10-2(c). The torque is due to the appF  

force and can be written as app (2 )F R  . In this way, we find 

 

2

app

3
2

2
PI MR RF  

 
   

 
. 

 

The equation allows us to solve for the angular acceleration , which is related to the 

acceleration of the center of mass as com /a R  . 

 

ANALYZE (a) With 10 kgM  , R = 0.10 m and app 12 N,F   we obtain 

 

 2

app app 2

com 2

2 4 4 12 N
1.6 m/s .

3 /2 3 3(10 kg)

R F F
a R

MR M
      

 

(b) The magnitude of the angular acceleration is 

 
2 2

com / (1.6 m/s ) /(0.10 m) 16 rad/sa R    . 
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(c) Applying Newton’s second law in its linear form yields 12 N comb g f Ma .  

Therefore, f = –4.0 N. Contradicting what we assumed in setting up our force equation, 

the friction force is found to point rightward with magnitude 4.0 N, i.e., ˆ(4.0 N)if  . 

 

LEARN As the cylinder rolls to the right, the frictional force also points to the right to 

oppose the tendency to slip.    

 

72. The rotational kinetic energy is K I 1
2

2 ,  where I = mR
2
 is its rotational inertia 

about the center of mass (Table 10-2(a)), m = 140 kg, and   = vcom/R (Eq. 11-2). The 

ratio is 

  

21
comtransl 2

221
rot com2

1.00.
mvK

K mR v R
   

 

73. This problem involves the vector cross product of vectors lying in the xy plane. For 

such vectors, if we write 

   r x y i + j , then (using Eq. 3-30) we find 

 
 
     r v x v y vy xd i k.  

 

(a) Here, 

r  points in either the i  or the i  direction (since the particle moves along 

the x axis). It has no y  or z  components, and neither does 

v , so it is clear from the 

above expression (or, more simply, from the fact that  i i = 0 ) that 



 
   m r vb g 0  in 

this case. 

 

(b) The net force is in the i  direction (as one finds from differentiating the velocity 

expression, yielding the acceleration), so, similar to what we found in part (a), we obtain 

    
 
r F 0 . 

 

(c) Now, 
  
  r r ro  where 


ro i j 2 0 50.  .   (with SI units understood) and points from (2.0, 

5.0, 0) to the instantaneous position of the car (indicated by 

r , which points in either the 

+x or –x directions, or nowhere (if the car is passing through the origin)). Since 
 
r v  0  

we have (plugging into our general expression above) 

 



   
         m r v m r v tb g b g b g b gb g b gc he jo k30 2 0 0 50 2 0 3. . . .   

 

which yields 3 2ˆ( 30 k) kg m/st   .  

 

(d) The acceleration vector is given by 
 
a tdv

dt
  6 0 2. i  in SI units, and the net force on 

the car is ma

.  In a similar argument to that given in the previous part, we have 

 
    
          m r a m r a tb g b g b g b gb g b gc he jo k30 2 0 0 50 6 0 2. . . .   
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which yields 2 ˆ( 90 k) N m.t     

 

(e) In this situation, 
  
  r r ro  where 


ro i j 2 0 50.  .   (with SI units understood) and 

points from (2.0, –5.0, 0) to the instantaneous position of the car (indicated by 

r , which 

points in either the +x or –x directions, or nowhere (if the car is passing through the 

origin)). Since 
 
r v  0  we have (plugging into our general expression above) 

 



   
          m r v m r v tb g b g b g b gb g b gc he jo k30 2 0 0 50 2 0 3. . . .   

 

which yields 3 2ˆ(30 k) kg m /s.t    

 

(f) Again, the acceleration vector is given by 

a t 6 0 2. i  in SI units, and the net force on 

the car is ma

.  In a similar argument to that given in the previous part, we have 

 
    
           m r a m r a tb g b g b g b gb g b gc he jo k30 2 0 0 50 6 0 2. . . .   

 

which yields 2 ˆ(90 k) N m.t     

 

74. For a constant (single) torque, Eq. 11-29 becomes 

 

 .
dL L

dt t



 


 

Thus, we obtain  

 
2600 kg m /s

12 s
50 N m

L
t



 
   


. 



75. THINK No external torque acts on the system consisting of the child and the merry-

go-round, so the total angular momentum of the system is conserved.  

 

EXPRESS An object moving along a straight line has angular momentum about any 

point that is not on the line. The magnitude of the angular momentum of the child about 

the center of the merry-go-round is given by Eq. 11-21, mvR, where R is the radius of the 

merry-go-round. 

 

ANALYZE (a) In terms of the radius of gyration k, the rotational inertia of the merry-go-

round is I = Mk
2
. With M = 180 kg and k = 0.91 m, we obtain  

 

I = (180 kg) (0.910 m)
2
 = 149 kg m

2
. 

 

(b) The magnitude of angular momentum of the running child about the axis of rotation 

of the merry-go-round is 
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    2

child 44.0 kg 3.00 m s 1.20 m 158 kg m /s.L mvR     

 

(c) The initial angular momentum is given by child ;iL L mvR   the final angular 

momentum is given by Lf = (I + mR
2
) , where  is the final common angular velocity of 

the merry-go-round and child. Thus mvR I mR  2c h  and 

 

 





 


mvR

I mR2 2

158

149 44 0 120
0 744

kg m s

kg m kg m
rad s

2

2 . .
. .b gb g  

 

LEARN The child initially had an angular velocity of  

 

0

3.00 m/s
2.5 rad/s

1.20 m

v

R
    . 

 

After he jumped onto the merry-go-round, the rotational inertia of the system (merry-go-

round + child) increases, so the angular velocity decreases by angular momentum 

conservation.    

 

76. Item (i) in Table 10-2 gives the moment of inertia about the center of mass in terms of 

width a (0.15 m) and length b (0.20 m).  In using the parallel axis theorem, the distance 

from the center to the point about which it spins (as described in the problem) is 

(a/4)
2
 + (b/4)

2 
.  If we denote the thickness as h (0.012 m) then the volume is abh, which 

means the mass is abh (where = 2640 kg/m
3
 is the density).  We can write the kinetic 

energy in terms of the angular momentum by substituting = L/I  into Eq. 10-34: 

 

K = 
1

2
  
L

2

I
  =  

1

2
  

(0.104)
2

abh((a
2
 + b

2
)/12 + (a/4)

2
 + (b/4)

2 
)
  =  0.62 J . 

 

77. THINK Our system consists of two particles moving in opposite directions along 

parallel lines. The angular momentum of the system about a point is the vector sum of the 

two individual angular momenta.  

 
 

EXPRESS The diagram above shows the particles and their lines of motion. The origin 

is marked O and may be anywhere. We set up our coordinate system in such a way that  
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+x is to the right, +y up and +z out of the page. The angular momentum of the system 

about O is 

 
1 2 1 1 2 2 1 1 2 2( )r p r p m r v r v           

since 1 2m m m  .   

 

ANALYZE (a) With 
1 1îv v , the angular momentum of particle 1 has magnitude  

 

 1 1 1sin  mvr mv d h    

 

and is in the –z-direction, or into the page. On the other hand, with 
2 2îv v  , the angular 

momentum of particle 2 has magnitude 2 2 2 mvr mvhsin , and is in the +z-direction, 

or out of the page. The net angular momentum has magnitude  

 

( )mv d h mvh mvd     

 

which depends only on the separation between the two lines and not on the location of the 

origin. Thus, if O is midway between the two lines, the total angular momentum is 

 
4 5 2(2.90 10  kg)(5.46 m/s)(0.042 m) 6.65 10  kg m /smvd         

 

and is into the page.  

 

(b) As indicated above, the expression does not change. 

 

(c) Suppose particle 2 is traveling to the right. Then  

 

( ) ( 2 )mv d h mvh mv d h     . 

 

This result now depends on h, the distance from the origin to one of the lines of motion. 

If the origin is midway between the lines of motion, then h d  2  and 0 .  

 

(d) As we have seen in part (c), the result depends on the choice of origin.  

 

LEARN Angular momentum is a vector quantity. For a system of many particles, the 

total angular momentum about a point is  

 

1 2 i i i i

i i

m r v       . 

 

78. (a) Using Eq. 2-16 for the translational (center-of-mass) motion, we find 

 

v v a x a
v

x

2

0

2 0

2

2
2

    

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which yields a = –4.11 for v0 = 43 and x  225  (SI units understood). The magnitude of 

the linear acceleration of the center of mass is therefore 4.11 m/s
2
. 

 

(b) With R = 0.250 m, Eq. 11-6 gives  

 
2| | / 16.4rad/s .a R    

 

If the wheel is going rightward, it is rotating in a clockwise sense. Since it is slowing 

down, this angular acceleration is counterclockwise (opposite to ) so (with the usual 

convention that counterclockwise is positive) there is no need for the absolute value signs 

for . 

 

(c) Equation 11-8 applies with Rfs representing the magnitude of the frictional torque. 

Thus,  

Rfs = I = (0.155 kg·m
2
) (16.4 rad/s

2
) = 2.55 N m . 

 

79. We use L = I and K I 1
2

2  and observe that the speed of points on the rim 

(corresponding to the speed of points on the belt) of wheels A and B must be the same (so 

ARA = BrB).  

 

(a) If LA = LB (call it L) then the ratio of rotational inertias is 

 

1
0.333.

3

A A A A

B B B B

I L R

I L R

 

 
      

 

(b) If we have KA = KB (call it K) then the ratio of rotational inertias becomes 

 
2 2

2

2

2 1
0.111.

2 9

A A B A

B B A B

I K R

I K R

 

 

   
       

   
 

 

80. The total angular momentum (about the origin) before the collision (using Eq. 11-18 

and Eq. 3-30 for each particle and then adding the terms) is  

 

Li 
  

 = [(0.5 m)(2.5 kg)(3.0 m/s) + (0.1 m)(4.0 kg)(4.5 m/s)]k
^
. 

 

The final angular momentum of the stuck-together particles (after the collision) measured 

relative to the origin is (using Eq. 11-33) 

 

Lf 
  

 = Li 
  

 = (5.55 2kg m /s )k
^
. 

 

81. THINK As the wheel rolls without slipping down an inclined plane, its gravitational 

potential energy is converted into translational and rotational kinetic energies.  
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EXPRESS As the wheel-axel system rolls down the inclined plane by a distance d, the 

change in potential energy is sinU mgd   . By energy conservation, the total kinetic 

energy gained is  

 2 2

trans rot

1 1
sin

2 2
U K K K mgd mv I        . 

 

Since the axel rolls without slipping, the angular speed is given by /v r  , where r is 

the radius of the axel. The above equation then becomes 

 
2 2

2

rot

1
sin 1 1

2

mr mr
mgd I K

I I
 

   
      

   
. 

 

ANALYZE (a) With m=10.0 kg, d = 2.00 m, r = 0.200 m, and 20.600 kg m ,I    the 

rotational kinetic energy may be obtained as 

 
2

rot 2 2

2

sin (10.0 kg)(9.80 m/s )(2.00 m)sin 30.0
58.8 J

(10.0 kg)(0.200 m)
1 1

0.600 kg m

mgd
K

mr

I

 
   

 


. 

 

(b) The translational kinetic energy is trans rot 98 J 58.8 J 39.2 J.K K K       

 

LEARN One may show that 2 / 2 /3mr I  , which implies that trans rot/ 2 /3K K   . 

Equivalently, we may write trans / 2 /5K K    and rot / 3/5.K K    So as the wheel 

rolls down, 40% of the kinetic energy is translational while the other 60% is rotational.  

 

82. (a) We use Table 10-2(e) and the parallel-axis theorem to obtain the rod’s rotational 

inertia about an axis through one end: 

 

I I Mh ML M
L

ML   
F
HG
I
KJ com

2 2

2

21

12 2

1

3
 

 

where L = 6.00 m and M = 10.0/9.8 = 1.02 kg. Thus, the inertia is 212.2 kg mI   . 

 

(b) Using  = (240)(2/60) = 25.1 rad/s, Eq. 11-31 gives the magnitude of the angular 

momentum as  

  2 212.2 kg m 25.1rad/s 308 kg m /sI     . 

 

Since it is rotating clockwise as viewed from above, then the right-hand rule indicates 

that its direction is down. 
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83. We note that its mass is M = 36/9.8 = 3.67 kg and its rotational inertia is 

I MRcom 
2

5

2  (Table 10-2(f)). 

 

(a) Using Eq. 11-2, Eq. 11-5 becomes 

 
2

2 2 2 2 2com
com com com com

1 1 1 2 1 7

2 2 2 5 2 10

v
K I Mv MR Mv Mv

R


  
       

   
 

 

which yields K = 61.7 J for vcom = 4.9 m/s. 

 

(b) This kinetic energy turns into potential energy Mgh at some height h = d sin  where 

the sphere comes to rest. Therefore, we find the distance traveled up the  = 30° incline 

from energy conservation: 

 
2

2 com
com

77
sin   3.43m.

10 10 sin

v
Mv Mgd d

g



     

 

(c) As shown in the previous part, M cancels in the calculation for d. Since the answer is 

independent of mass, then it is also independent of the sphere’s weight. 

 

84. (a) The acceleration is given by Eq. 11-13: 

 

a
g

I MR
com

com


1 0

2
 

 

where upward is the positive translational direction. Taking the coordinate origin at the 

initial position, Eq. 2-15 leads to 

 

y v t a t v t
gt

I MR
com com,0 com com,0

com

   


1

2 1

2
1
2

2

0

2
 

 

where ycom = – 1.2 m and  vcom,0 = – 1.3 m/s. Substituting Icom kg m 0 000095 2. , M = 

0.12 kg, R0 = 0.0032 m, and g = 9.8 m/s
2
, we use the quadratic formula and find 

 

  

  

  

   

com

2
0

2

com
2

com 0

2

2

com,0 com,0

2 9.8 1.22

1 0.000095 0.12 0.0032

2

1

0.000095

0.12 0.0032

1

1 1.3 (1.3)

9.8

21.7 or 0.885

I

MR

gy

I MR
v v

t
g






 



    
 



 
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where we choose t = 0.89 s as the answer. 

 

(b) We note that the initial potential energy is Ui = Mgh and h = 1.2 m (using the bottom 

as the reference level for computing U). The initial kinetic energy is as shown in Eq. 11-5, 

where the initial angular and linear speeds are related by Eq. 11-2. Energy conservation 

leads to 

        

2

com,02

com,0

0

2
2 5 2 2

1 1

2 2

1 1 1.3 m/s
0.12 kg 1.3 m/s 9.5 10 kg m 0.12 kg 9.8 m/s 1.2 m

2 2 0.0032 m

9.4 J.

f i i

v
K K U mv I Mgh

R



 
     

 

 
     

 


 

(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11: 

 

v v a t v
gt

I MR
com com com com

com

   


, , .0 0

0

21
 

Thus, we obtain 

  

  

2

com 2

2

9.8 m/s 0.885 s
1.3 m/s 1.41 m/s

0.000095 kg m
1

0.12 kg 0.0032 m

v     




  

 

so its linear speed at that moment is approximately 14. m s . 

 

(d) The translational kinetic energy is  

 

  
221 1

com2 2
0.12 kg 1.41m/s 0.12 J.mv     

 

(e) The angular velocity at that moment is given by 

 

2com

0

1.41m/s
441rad/s 4.4 10 rad/s

0.0032 m

v

R



       . 

 

(f) And the rotational kinetic energy is 

 

1

2

1

2
9 50 10 441 9 22 5 2 2

Icom kg m rad s J    . . .c hb g  

 

85. The initial angular momentum of the system is zero. The final angular momentum of 

the girl-plus-merry-go-round is (I + MR
2
)  which we will take to be positive. The final 

angular momentum we associate with the thrown rock is negative: –mRv, where v is the 

speed (positive, by definition) of the rock relative to the ground. 
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(a) Angular momentum conservation leads to 

 

 2

2
0 .

mRv
I MR mRv

I MR
     


 

 

(b) The girl’s linear speed is given by Eq. 10-18: 

 

R
mvR

I MR
 



2

2
.  

 

86. (a) Interpreting h as the height increase for the center of mass of the body, then (using 

Eq. 11-5) mechanical energy conservation, i fK U ,  leads to 
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from which v cancels and we obtain I mR 1
2

2 . 

 

(b) From Table 10-2(c), we see that the body could be a solid cylinder. 

 

 

 

 

 

 

 

 

 

 

 


