
Contents

4 The Fokker-Planck and Master Equations 1

4.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4.2 Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.2.1 Forward and backward time equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.2.2 Surfaces and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.2.3 One-dimensional Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.2.4 Eigenfunction expansions for Fokker-Planck . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2.5 First passage problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.6 Escape from a metastable potential minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.7 Detailed balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.8 Multicomponent Ornstein-Uhlenbeck process . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.9 Nyquist’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Birth-death processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.2 Examples: reaction kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.3 Forward and reverse equations and boundary conditions . . . . . . . . . . . . . . . . . . . . 24

4.3.4 First passage times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.5 From Master equation to Fokker-Planck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.6 Extinction times in birth-death processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



ii CONTENTS



Chapter 4

The Fokker-Planck and Master Equations

4.1 References

– C. Gardiner, Stochastic Methods (4th edition, Springer-Verlag, 2010)
Very clear and complete text on stochastic methods, with many applications.

– N. G. Van Kampen Stochastic Processes in Physics and Chemistry (3rd edition, North-Holland, 2007)
Another standard text. Very readable, but less comprehensive than Gardiner.

– Z. Schuss, Theory and Applications of Stochastic Processes (Springer-Verlag, 2010)
In-depth discussion of continuous path stochastic processes and connections to partial differential equations.

– R. Mahnke, J. Kaupužs, and I. Lubashevsky, Physics of Stochastic Processes (Wiley, 2009)
Introductory sections are sometimes overly formal, but a good selection of topics.
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2 CHAPTER 4. THE FOKKER-PLANCK AND MASTER EQUATIONS

4.2 Fokker-Planck Equation

Here we mainly follow the discussion in chapter 5 of Gardiner, and chapter 4 of Mahnke et al.

4.2.1 Forward and backward time equations

We have already met the Fokker-Planck equation,

∂P (x, t |x′, t′)

∂t
= − ∂

∂xi

[
Ai(x, t)P (x, t |x′, t′)

]
+

1

2

∂2

∂xi ∂xj

[
Bij(x, t)P (x, t |x′, t′)

]
. (4.1)

Defining the probability flux,

Ji(x, t |x′, t′) = Ai(x, t)P (x, t |x′, t′)− 1

2

∂

∂xj

[
Bij(x, t)P (x, t |x′, t′)

]
, (4.2)

the Fokker-Planck equation takes the form of the continuity equation,

∂P (x, t |x′, t′)

∂t
+∇ · J(x, t |x′, t′) = 0 . (4.3)

The corresponding backward Fokker-Planck equation is given by

−∂P (x, t |x
′, t′)

∂t′
= +Ai(x

′, t′)
∂P (x, t |x′, t′)

∂x′i
+ 1

2Bij(x
′, t′)

∂2P (x, t |x′, t′)

∂x′i ∂x
′
j

. (4.4)

The initial conditions in both cases may be taken to be

P (x, t |x′, t) = δ(x− x′) . (4.5)

4.2.2 Surfaces and boundary conditions

Forward equation

Integrating Eqn. 4.3 over some region Ω, we have

d

dt

∫

Ω

dx P (x, t |x′, t′) = −
∫

∂Ω

dΣ n̂ · J(x, t |x′, t′) , (4.6)

where n̂ is locally normal to the surface ∂Ω. At surfaces we need to specify boundary conditions. Generally these
fall into one of three types:

(i) Reflecting surfaces satisfy n̂ · J(x, t |x′, t′)
∣∣
Σ
= 0 at the surface Σ.

(ii) Absorbing surfaces satisfy P (x, t |x′, t′)
∣∣
Σ
= 0.

(iii) Continuity at a surface entails

P (x, t |x′, t′)
∣∣
Σ

+

= P (x, t |x′, t′)
∣∣
Σ

−

, n̂ ·J(x, t |x′, t′)
∣∣
Σ

+

= n̂ ·J(x, t |x′, t′)
∣∣
Σ

−

. (4.7)

These conditions may be enforced even if the functions Ai(x, t) and Bij(x, t) may be discontinuous across Σ.
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Backward equation

For the backward FPE, we have the following1:

(i) Reflecting surfaces satisfy ni(x
′)Bij(x

′) ∂
∂x′

j

P (x, t |x′, t′)
∣∣
Σ
= 0 for x′ ∈ Σ.

(ii) Absorbing surfaces satisfy P (x, t |x′, t′)
∣∣
Σ
= 0.

4.2.3 One-dimensional Fokker-Planck equation

Consider the Fokker-Planck equation in d = 1. On an infinite interval x ∈ (−∞,+∞), normalization requires
P (±∞, t) = 0, which generally2 implies ∂xP (±∞, t) = 0. On a finite interval x ∈ [a, b], we may impose periodic
boundary conditions P (a) = P (b) and J(a) = J(b).

Recall that the Fokker-Planck equation follows from the stochastic differential equation

dx = f(x, t) dt+ g(x, t) dW (t) , (4.8)

with f(x, t) = A(x, t) and g(x, t) =
√
B(x, t) , and where W (t) is a Wiener process. In general3, a solution to the

above Itô SDE exists and is unique provided the quantities f and g satisfy a Lipschitz condition, which says that
there exists a K > 0 such that

∣∣f(x, t) − f(y, t)
∣∣ +
∣∣g(x, t)− g(y, t)

∣∣ < K|x− y| for x, y ∈ [a, b]4. Coupled with this
is a growth condition which says that there exists an L > 0 such that f2(x, t) + g2(x, t) < L(1 + x2) for x ∈ [a, b]. If
these two conditions are satisfied for t ∈ [0, T ], then there is a unique solution on this time interval.

Now suppose B(a, t) = 0, so there is no diffusion at the left endpoint. The left boundary is then said to be

prescribed. From the Lipschitz condition on
√
B, this says that B(x, t) vanishes no slower than (x− a)2, which says

that ∂xB(a, t) = 0. Consider the above SDE with the condition B(a, t) = 0. We see that

(i) If A(a, t) > 0, a particle at a will enter the region [a, b] with probability one. This is called an
entrance boundary.

(ii) If A(a, t) < 0, a particle at a will exit the region [a, b] with probability one. This is called an exit
boundary.

(iii) If A(a, t) = 0, a particle at a remain fixed with probability one. This is called a natural boundary.

Mutatis mutandis, similar considerations hold at x = b, whereA(b, t) > 0 for an exit andA(b, t) < 0 for an entrance.

Stationary solutions

We now look for stationary solutions P (x, t) = P
eq
(x). We assume A(x, t) = A(x) and B(x, t) = B(x). Then

J = A(x)P
eq
(x)− 1

2

d

dx

[
B(x)P

eq
(x)
]
= constant . (4.9)

Define the function

ψ(x) = exp

{
2

x∫

a

dx′
A(x′)

B(x′)

}
, (4.10)

1See Gardiner, §5.1.2.
2I.e. for well-behaved functions which you would take home to meet your mother.
3See L. Arnold, Stochastic Differential Equations (Dover, 2012).
4One can choose convenient dimensionless units for all quantities.
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so ψ′(x) = 2ψ(x)A(x)/B(x). Then

d

dx

(
B(x)P

eq
(x)

ψ(x)

)
= − 2J

ψ(x)
, (4.11)

with solution

P
eq
(x) =

B(a)

B(x)
· ψ(x)
ψ(a)

· P
eq
(a)− 2J ψ(x)

B(x)

x∫

a

dx′

ψ(x′)
. (4.12)

Note ψ(a) = 1. We now consider two different boundary conditions.

Zero current : In this case J = 0 and we have

P
eq
(x) =

B(a)

B(x)
· ψ(x)
ψ(a)

· P
eq
(a) . (4.13)

The unknown quantity P (a) is then determined by normalization:
b∫
a

dx P
eq
(x) = 1.

Periodic boundary conditions : Here we invoke P (a) = P (b), which requires a specific value for J ,

J =
P
eq
(a)

2

[
B(a)

ψ(a)
− B(b)

ψ(b)

]/ b∫

a

dx′

ψ(x′)
. (4.14)

This leaves one remaining unknown, P
eq
(a), which again is determined by normalization.

Examples

We conclude this section with two examples. The first is diffusion in a gravitational field, for which the Langevin
equation takes the form

dx = −v
D
dt+

√
2D dW (t) , (4.15)

where the drift velocity is v
D
= g/γ, with γ the frictional damping constant (Ffr = −γMẋ) and g the acceleration

due to gravity. Thus, the Fokker-Planck equation is ∂tP = v
D
∂xP +D∂2xP , whence the solution with a reflecting

(J = 0) condition at x = 0 is

P
eq
(x) =

D

v
D

exp
(
−v

D
x/D

)
, (4.16)

where we have normalized P (x) on the interval x ∈ [0,+∞). This steady state distribution reflects the fact that
particles tend to fall to the bottom. If we apply instead periodic boundary conditions at x = 0 and x = L, the
solution is a constant P (x) = P (0) = P (L). In this case the particles fall through the bottom x = 0 only to return
at the top x = L and keep falling, like in the game Portal 5.

Our second example is that of the Ornstein-Uhlenbeck process, described by ∂tP = ∂x(βxP )+D ∂2xP . The steady
state solution is

P
eq
(x) = P

eq
(0) exp

(
−βx2/2D

)
. (4.17)

This is normalizable over the real line x ∈ (−∞,∞). On a finite interval, we write

P
eq
(x) = P

eq
(a) eβ(a

2−x2)/2D . (4.18)

5The cake is a lie.
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4.2.4 Eigenfunction expansions for Fokker-Planck

We saw in §4.2.1 how the (forward) Fokker-Planck equation could be written as

∂P (x, t)

∂t
= LP (x, t) , L = − ∂

∂x
A(x) +

1

2

∂2

∂x2
B(x) , (4.19)

and how the stationary state solution P
eq
(x) satisfies J = AP

eq
− 1

2∂x(B Peq
). Consider the operator

L̃ = +A(x)
∂

∂x
+

1

2
B(x)

∂2

∂x2
, (4.20)

where, relative to L, the sign of the leading term is reversed. It is straightforward to show that, for any functions
f and g,

〈
f
∣∣ L̃
∣∣ g
〉
−
〈
g
∣∣L
∣∣ f
〉
=
[
g Jf − fKg

]b
a
, (4.21)

where

〈
g
∣∣L
∣∣ f
〉
=

a∫

0

dx g(x)L f(x) , (4.22)

and Jf = Af − 1
2 (Bf)

′ and Kg = − 1
2Bg

′. Thus we conclude that L̃ = L†, the adjoint of L, if either (i) Jf and
Kg vanish at the boundaries x = a and x = b (reflecting conditions), or (ii) the functions f and g vanish at the
boundaries (absorbing conditions).

We can use the zero current steady state distribution P
eq
(x) , for which J = AP

eq
− 1

2∂x(BPeq
) = 0 , to convert

between solutions of the forward and backward time Fokker-Planck equations. Suppose P (x, t) satisfies ∂tP =
LP . Then define Q(x, t) ≡ P (x, t)/P

eq
(x), in which case

Define P (x, t) = P
eq
(x)Q(x, t). Then

∂tP = P
eq
∂tQ = −∂x(APeq

Q) + 1
2∂

2
x(BPeq

Q)

=
{
− ∂x(APeq

) + 1
2∂

2
x(BPeq

)
}
Q+

{
−A∂xQ+ 1

2B ∂
2
xQ
}
P
eq
+ ∂x(BPeq

) ∂xQ

=
{
A∂xQ+ 1

2B ∂
2
xQ
}
P
eq
,

(4.23)

where we have used ∂x(BPeq
) = 2AP

eq
. Thus, we have that Q(x, t) satisfies ∂tQ = L̃Q. We saw in §4.2.1 how the

(forward) Fokker-Planck equation could be written as

∂Q(x, t)

∂t
= L†Q(x, t) , L† = A(x)

∂

∂x
+

1

2
B(x)

∂2

∂x2
, (4.24)

which is the backward Fokker-Planck equation when written in terms of the time variable s = −t.

Now let us seek eigenfunctions Pn(x) and Qn(x) which satisfy6

LPn(x) = −λnPn(x) , L†Qn(x) = −λnQn(x) . (4.25)

where now A(x, t) = A(x) and B(x, t) = B(x) are assumed to be time-independent. If the functions Pn(x) and
Qn(x) form complete sets, then a solution to the Fokker-Planck equations for P (x, t) and Q(x, t) is of the form7

P (x, t) =
∑

n

Cn Pn(x) e
−λnt , Q(x, t) =

∑

n

CnQn(x) e
−λnt . (4.26)

6In the eigensystem, the partial differential operators ∂

∂x
in L and L† may be regarded as ordinary differential operators d

dx
.

7Since Pn(x) = P
eq
(x)Qn(x), the same expansion coefficients {Cn} appear in both sums.
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To elicit the linear algebraic structure here, we invoke Eqn. 4.25 and write

(λm − λn)Qm(x)Pn(x) = Qm(x)LPn(x) − Pn(x)L†Qm(x) . (4.27)

Next we integrate over the interval [a, b], which gives

(λm − λn)

b∫

a

dx Qm(x)Pn(x) =
[
Qm(x)Jn(x)−Km(x)Pn(x)

]b
a
= 0 , (4.28)

where Jn(x) = A(x)Pn(x) − 1
2∂x
[
B(x)Pn(x)

]
and Km(x) = − 1

2B(x) ∂xQm(x). For absorbing boundary con-
ditions, the functions Pn(x) and Qn(x) vanish at x = a and x = b, so the RHS above vanishes. For reflecting
boundaries, it is the currents Jn and Km(x) which vanish at the boundaries. Thus (λm − λn)

〈
Qm

∣∣Pn

〉
= 0,

where the inner product is

〈
Q
∣∣P
〉
≡

b∫

a

dx Q(x)P (x) . (4.29)

Thus we obtain the familiar result from Sturm-Liouville theory that when the eigenvalues differ, the correspond-
ing eigenfunctions are orthogonal. In the case of eigenvalue degeneracy, we can invoke the Gram-Schmidt proce-
dure, in which case we may adopt the general normalization

〈
Qm

∣∣Pn

〉
=

b∫

a

dx Qm(x)Pn(x) =

b∫

a

dx P
eq
(x)Qm(x)Qn(x) =

b∫

a

dx
Pm(x)Pn(x)

P
eq
(x)

= δmn . (4.30)

A general solution to the Fokker-Planck equation with reflecting boundaries may now be written as

P (x, t) =
∑

n

Cn Pn(x) e
−λnt , (4.31)

where the expansion coefficients {Cn} are given by

Cn =

b∫

a

dx Qn(x)P (x, 0) =
〈
Qn

∣∣P (0)
〉
. (4.32)

Suppose our initial condition is P (x, 0 |x0, 0) = δ(x− x0). Then Cn = Qn(x0) , and

P (x, t |x0, 0) =
∑

n

Qn(x0)Pn(x) e
−λnt . (4.33)

We may now take averages, such as

〈
F
(
x(t)

)〉
=

b∫

a

dx F (x)
∑

n

Qn(x0)Pn(x) e
−λnt . (4.34)

Furthermore, if we also average over x0 = x(0), assuming is is distributed according to P
eq
(x0), we have the

correlator

〈
x(t)x(0)

〉
=

b∫

a

dx0

b∫

a

dx xx0 P (x, t |x0, 0)Peq
(x0)

=
∑

n

[ b∫

a

dx xPn(x)

]2
e−λnt =

∑

n

∣∣〈x
∣∣Pn

〉∣∣2 e−λnt .

(4.35)
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Absorbing boundaries

At an absorbing boundary x = a , one has P (a) = Q(a) = 0. We may still use the function P
eq
(x) obtained from

the J = 0 reflecting boundary conditions to convert between forward and backward Fokker-Planck equation
solutions.

Next we consider some simple examples of the eigenfunction formalism.

Heat equation

We consider the simplest possible Fokker-Planck equation,

∂P

∂t
= D

∂2P

∂x2
, (4.36)

which is of course the one-dimensional diffusion equation. We choose our interval to be x ∈ [0, L].

Reflecting boundaries : The normalized steady state solution is simply P
eq
(x) = 1/L. The eigenfunc-

tions are P0(x) = P
eq
(x) and

Pn(x) =

√
2

L
cos

(
nπx

L

)
, Qn(x) =

√
2 cos

(
nπx

L

)
(4.37)

for n > 0. The eigenvalues are λn = D (nπ/L)2. We then have

P (x, t |x0, 0) =
1

L
+

2

L

∞∑

n=1

cos

(
nπx0
L

)
cos

(
nπx

L

)
e−λnt . (4.38)

Note that as t → ∞ one has P (x,∞|x0, 0) = 1/L , which says that P (x, t) relaxes to P
eq
(x). Both

boundaries are natural boundaries, which prevent probability flux from entering or leaking out of the
region [0, L].

Absorbing boundaries : Now we have

Pn(x) =

√
2

L
sin

(
nπx

L

)
, Qn(x) =

√
2 sin

(
nπx

L

)
(4.39)

and

P (x, t |x0, 0) =
2

L

∞∑

n=1

sin

(
nπx0
L

)
sin

(
nπx

L

)
e−λnt , (4.40)

again with λn = D (nπ/L)2. Since λn > 0 for all allowed n, we have P (x,∞|x0, 0) = 0, and all
the probability leaks out by diffusion. The current is J(x) = −DP ′(x), which does not vanish at the
boundaries.

Mixed boundaries : Now suppose x = 0 is an absorbing boundary and x = L a reflecting boundary.
Then

Pn(x) =

√
2

L
sin

(
(2n+ 1)πx

2L

)
, Qn(x) =

√
2 sin

(
(2n+ 1)πx

2L

)
(4.41)

with n ≥ 0. The eigenvalues are λn = D
(
(n+ 1

2 )π/L
)2

.
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We can write the eigenfunctions in all three cases in the form Pn(x) =
√
2

L sin(knx + δ), where kn = nπx/L or
(n+ 1

2 )πx/L and δ = 0 or δ = 1
2π, with λn = Dk2n. One then has

〈
x
∣∣Pn

〉
=





1
2L reflecting, n = 0

−
(√

8/Lk2n
)
δn,odd reflecting, n > 0

(−1)n+1
√
2/kn absorbing, n > 0

(−1)n+1
√
2/Lk2n half reflecting, half absorbing, n > 0 .

(4.42)

Note that when a zero mode λmin = 0 is part of the spectrum, one has P0(x) = P
eq
(x), to which P (x, t) relaxes in

the t → ∞ limit. When one or both of the boundaries is absorbing, the lowest eigenvalue λmin > 0 is finite, hence
P (x, t → ∞) → 0, i.e. all the probability eventually leaks out of the interval.

Ornstein-Uhlenbeck process

The Fokker-Planck equation for the OU process is ∂tP = ∂x(βxP )+D∂
2
xP . Over the real line x ∈ R, the normalized

steady state distribution is P
eq
(x) = (β/2πD)1/2 exp(−βx2/2D). The eigenvalue equation for Qn(x) is

D
d2Qn

dx2
− βx

dQn

dx
= −λnQn(x) . (4.43)

Changing variables to ξ = x/ℓ, where ℓ = (2D/β)1/2, we obtain Q′′
n − 2ξQ′

n + (2λn/β)Qn = 0, which is Hermite’s
equation. The eigenvalues are λn = nβ, and the normalized eigenfunctions are then

Qn(x) =
1√
2n n!

Hn

(
x/ℓ
)

Pn(x) =
1√

2n n!πℓ2
Hn

(
x/ℓ
)
e−x2/ℓ2 ,

(4.44)

which satisfy the orthonormality relation 〈Qm|Pn〉 = δmn. Since H1(ξ) = 2ξ , one has 〈x|Pn〉 =
(
ℓ/
√
2
)
δn,1, hence

the correlator is given by
〈
x(t)x(0)

〉
= 1

2ℓ
2 e−βt.

4.2.5 First passage problems

Suppose we have a particle on an interval x ∈ [a, b] with absorbing boundary conditions, which means that
particles are removed as soon as they get to x = a or x = b and not replaced. Following Gardiner8, define the
quantity

G(x, t) =

b∫

a

dx′ P (x′, t |x, 0) . (4.45)

Thus, G(x, t) is the probability that x(t) ∈ [a, b] given that x(0) = x. Since the boundary conditions are absorbing,
there is no reentrance into the region, which means thatG(x, t) is strictly decreasing as a function of time, and that

−∂G(x, t)
∂t

dt = probability, starting from x at t = 0, to exit [a, b] during time interval [t, t+ dt] . (4.46)

8See Gardiner §5.5.
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If we assume the process is autonomous, then

G(x, t) =

b∫

a

dx′ P (x′, 0 |x,−t) , (4.47)

which satisfies the backward Fokker-Planck equation,

∂G

∂t
= A

∂G

∂x
+ 1

2B
∂2G

∂x2
= L†G . (4.48)

We may average functions of the exit time t according to

〈
f(t)

〉
x
=

∞∫

0

dt f(t)

(
− ∂G(x, t)

∂t

)
. (4.49)

In particular, the mean exit time T (x) is given by

T (x) = 〈t〉x =

∞∫

0

dt t

(
− ∂G(x, t)

∂t

)
=

∞∫

0

dt G(x, t) . (4.50)

From the Fokker-Planck equation for G(x, t), the mean exit time T (x) satisfies the ODE

1

2
B(x)

d2T

dx2
+A(x)

dT

dx
= −1 . (4.51)

This is derived by applying the operator L† = 1
2B(x) ∂2

∂x2 + A(x) ∂
∂x to the above expression for T (x). Acting on

the integrand G(x, t), this produces ∂G
∂t , according to Eq. 4.48, hence

∞∫
0

dt ∂tG(x, t) = G(x,∞) −G(x, 0) = −1.

To solve Eqn. 4.51, we once again invoke the services of the function

ψ1(x) = exp






x∫

a

dx′
2A(x′)

B(x′)




 , (4.52)

which satisfies ψ′
1(x)/ψ1(x) = 2A(x)/B(x). Thus, we may reexpress eqn. 4.51 as

T ′′ +
ψ′
1

ψ1

T ′ = − 2

B
⇒

(
ψ1 T

′ )′ = −2ψ1

B
. (4.53)

We may integrate this to obtain

T ′(x) =
T ′(a)

ψ1(x)
− ψ2(x)

ψ1(x)
, (4.54)

where we have defined

ψ2(x) = 2

x∫

a

dx′
ψ1(x

′)

B(x′)
. (4.55)

Note that ψ1(a) = 1 and ψ2(a) = 0. We now integrate one last time to obtain

T (x) = T (a) + T ′(a)ψ3(x)− ψ4(x) , (4.56)
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where

ψ3(x) =

x∫

a

dx′

ψ1(x
′)

, ψ4(x) =

x∫

a

dx′
ψ2(x

′)

ψ1(x
′)
. (4.57)

Note that ψ3(a) = ψ4(a) = 0

Eqn. 4.56 involves two constants of integration, T (a) and T ′(a), which are to be determined by imposing two
boundary conditions. For an absorbing boundary at a, we have T (a) = 0. To determine the second unknown
T ′(a), we impose the condition T (b) = 0 , which yields T ′(a) = ψ4(b)/ψ3(b). The final result for the mean exit time
is then

T (x) =
ψ3(x)ψ4(b)− ψ3(b)ψ4(x)

ψ3(b)
. (4.58)

As an example, consider the case of pure diffusion: A(x) = 0 and B(x) = 2D. Then

ψ1(x) = 1 , ψ2(x) = (x − a)/D , ψ3(x) = (x− a) , ψ4(x) = (x− a)2/2D , (4.59)

whence

T (x) =
(x− a)(b − x)

2D
. (4.60)

A particle starting in the middle x = 1
2 (a+ b) at time t = 0 will then exit the region in an average time (b−a)2/8D.

One absorbing, one reflecting boundary

Suppose the boundary at a is now reflecting, while that at b remains absorbing. We then have the boundary
conditions ∂xG(a, t) = 0 and G(b, t) = 0, which entails T ′(a) = 0 and T (b) = 0. Then the general result of Eqn.
4.56 then gives T (x) = T (a)− ψ4(x). Requiring T (b) = 0 then yields the result

T (x) = T (b)− ψ4(x) = 2

b∫

x

dy

ψ1(y)

y∫

a

dz
ψ1(z)

B(z)
(x = a reflecting , x = b absorbing) . (4.61)

Under the opposite condition, where the boundary at a is absorbing while that at b is reflecting, we have T (a) = 0
and T ′(b) = 0. Eqn. 4.56 then gives T (x) = T ′(a)ψ3(x) − ψ4(x) , and imposing T ′(b) = 0 entails T ′(a) = ψ2(b),
hence

T (x) = ψ2(b)ψ3(x)− ψ4(x) = 2

x∫

a

dy

ψ1(y)

b∫

y

dz
ψ1(z)

B(z)
(x = a absorbing , x = b reflecting) . (4.62)

Escape through either boundary

Define the quantities

Ga(x, t) = −
∞∫

t

dt′ J(a, t′ |x, 0) =
∞∫

t

dt′
{
−A(a)P (a, t′ |x, 0) + 1

2∂a

[
B(a)P (a, t′ |x, 0)

]}

Gb(x, t) = +

∞∫

t

dt′ J(b, t′ |x, 0) =
∞∫

t

dt′
{
+A(b)P (b, t′ |x, 0)− 1

2∂b

[
B(b)P (b, t′ |x, 0)

]}
.

(4.63)
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Since −J(a, t |x, 0) is the left-moving probability flux at x = a , Ga(x, t) represents the probability that a particle
starting at x ∈ [a, b] exits at a sometime after a time t. The second expression for Gb(x, t) yields the probability
that a particle starting at x exits at b sometime after t. Note that

Ga(x, t) +Gb(x, t) =

∞∫

t

dt′
b∫

a

dx′ ∂x′

{
A(x′)P (x′, t′ |x, 0)− 1

2∂x′

[
B(x′)P (x′, t |x, 0)

]}

=

∞∫

t

dt′
b∫

a

dx′
[
− ∂t′ P (x

′, t′ |x, 0)
]
=

b∫

a

dx′ P (x′, t |x, 0) = G(x, t) ,

(4.64)

which is the total probability starting from x to exit the region after t.

Since P (a, t′ |x, 0) satisfies the backward Fokker-Planck equation, i.e. L† P (a, t′ |x, 0) = ∂t′P (a, t
′ |x, 0), we have

L†Ga(x, t) = J(a, t |x, 0) = +∂tGa(x, t)

L†Gb(x, t) = J(b, t |x, 0) = −∂tGb(x, t) .
(4.65)

Now let us evaluate the above equations in the limit t → 0. Since P (x′, 0 |x, 0) = δ(x − x′), there can only be an
infinitesimal particle current at any finite distance from the initial point x at an infinitesimal value of the elapsed
time t. Therefore we have

L†Gc(x, 0) =

{
A(x)

∂

∂x
+

1

2
B(x)

∂2

∂x2

}
Gc(x, 0) = 0 . (4.66)

Thus, Gc(x, 0) is the total probability for exit via c ∈ {a, b} over all time, conditioned at starting at x at time 0. The
boundary conditions here are

Ga(a, 0) = 1 , Ga(b, 0) = 0 ; Gb(b, 0) = 1 , Gb(a, 0) = 0 , (4.67)

which says that a particle starting at a is immediately removed with probability unity and therefore can never exit

through b, and vice versa. Solving using the function ψ1(x) = exp
x∫
a

dx 2A(x′)/B(x′) , we have

Ga(x, 0) =

b∫

x

dy ψ1(y)

/ b∫

a

dz ψ1(x)

Gb(x, 0) =

x∫

a

dy ψ1(y)

/ b∫

a

dz ψ1(x) .

(4.68)

Note Ga(x, 0) +Gb(x, 0) = 1, which says that eventually the particle exits via either a or b. We next define

Tc(x) =

∞∫

0

dt
Gc(x, t)

Gc(x, 0)
, (4.69)

which is the mean exit time through c, given that the particle did exit through that boundary. This then satisfies

L†
[
Gc(x, 0)Tc(x)

]
= −Gc(x, 0) . (4.70)
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For pure diffusion, A(x) = 0 and B(x) = 2D, and we found ψ1(x) = 1. Therefore

Ga(x, 0) =
b− x

b− a
, Gb(x, 0) =

x− a

b− a
. (4.71)

We may then solve the equations

D
d2

dx2

[
Gc(x, 0)Tc(x)

]
= −Gc(x, 0) (4.72)

to obtain

Ta(x) =
(x− a)(2b− x− a)

6D
, Tb(x) =

(b− x)(b + x− 2a)

6D
. (4.73)

Note that

Ga(x, 0)Ta(x) +Gb(x, 0)Tb(x) =
(x− a)(b − x)

2D
= T (x) , (4.74)

which we found previously in Eqn. 4.60.

4.2.6 Escape from a metastable potential minimum

In the presence of a local potential U(x), the local drift velocity is −U ′(x)/γm, wherem is the particle’s mass and γ
its frictional damping (Ffr = −γmẋ). An example potential U(x) is depicted in Fig. 4.1. Gardiner in §5.5.3 begins
with the equation

∂P

∂t
=

∂

∂x

(
U ′(x)

γm
P

)
+D

∂2P

∂x2
, (4.75)

which resembles a Fokker-Planck equation for P (x, t) with drift v
D
(x) = −U ′(x)/γm. However, Eqn. 4.75 is not

a Fokker-Planck equation but rather something called the Smoluchowski equation. Recall that the position x(t) of a
Brownian particle does not execute a Markov process. So where does Eqn. 4.75 come from, and under what conditions
is it valid?

It is the two-component phase space vector ϕ = (x, v) which executes a Markov process, and for whose condi-
tional probability density we can derive a Fokker-Planck equation, and not the position x alone. The Brownian
motion problem may be written as two coupled first order differential equations,

dx = v dt

dv = −
[
1

m
U ′(x) + γv

]
dt+

√
Γ dW (t) ,

(4.76)

where Γ = 2γk
B
T/m = 2γ2D, and where W (t) is a Wiener process. The first of these is an ODE and the second

an SDE. Viewed as a multicomponent SDE, the Fokker-Planck equation for P (x, v, t) is

∂P

∂t
= − ∂

∂x

(
vP ) +

∂

∂v

[(
U ′(x)

m
+ γv

)
P

]
+
γk

B
T

m

∂2P

∂v2
. (4.77)

Suppose though that the damping γ is large. Then we can approximate the second equation in 4.76 by assuming v
rapidly relaxes, which is to say dv ≈ 0. Then we have

v dt ≈ − 1

γm
U ′(x) dt+

√
2D dW (t) (4.78)

and replacing v in the first equation with this expression we obtain the SDE

dx = v
D
(x) dt +

√
2D dW (t) , (4.79)
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Figure 4.1: Escape from a metastable potential minimum.

which immediately yields the Smoluchowski equation 4.75. This procedure is tantamount to an adiabatic elimi-
nation of the fast variable. It is valid only in the limit of large damping γ = 6πηa/m , which is to say large fluid
viscosity η.

Taking the Smoluchowski equation as our point of departure, the steady state distribution is then found to be

P
eq
(x) = C e−U(x)/kBT , (4.80)

where we invoke the result D = k
B
T/γm from §2.2.2. We now consider the first passage time T (x |x0) for a

particle starting at x = x0 escaping to a point x ≈ x∗ in the vicinity of the local potential maximum. We apply the
result of our previous analysis, with (a, b, x) in Eqn. 4.61 replaced by (−∞, x, x0), respectively, and x>∼x∗. Note
that A(x) = −U ′(x)/γm, and B(x) = 2D, hence

lnψ1(x) =

x∫

a

dx′
2A(x′)

B(x′)
=
U(a)− U(x)

k
B
T

. (4.81)

Formally we may have U(a) = ∞, but it drops out of the expression for the mean exit time,

T (x |x0) =
1

D

x∫

x
0

dy

ψ1(y)

y∫

−∞

dz ψ1(z) =
1

D

x∫

x
0

dy eU(y)/kBT

y∫

−∞

dz e−U(z)/kBT . (4.82)

The above integrals can be approximated as follows. Expand U(x) about the local extrema at x0 and x∗ as

U(x0 + δx) = U(x0) +
1
2K0(δx)

2 + . . .

U(x∗ + δx) = U(x∗)− 1
2K

∗(δx)2 + . . . ,
(4.83)

where K0 = U ′′(x0) and K∗ = −U ′′(x∗). At low temperatures, integrand e−U(z)/kBT is dominated by the region
z ≈ x0, hence

y∫

−∞

dz e−U(z)/kBT ≈
(
2πk

B
T

K0

)1/2
e−U(x0)/kBT . (4.84)
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Similarly, the integrand eU(y)/kBT is dominated by the region y ≈ x∗, so for x somewhere between x∗ and x1 , we
may write9

x∫

x
0

dy eU(y)/kBT ≈
(
2πk

B
T

K∗

)1/2
eU(x∗)/kBT . (4.85)

We then have

T (x1 |x0) ≈
2πk

B
T

D
√
K0K

∗ exp

(
U(x∗)− U(x0)

k
B
T

)
. (4.86)

Known as the Arrhenius law, this is one of the most ubiquitous results in nonequilibrium statistical physics, with
abundant consequences for chemistry, biology, and many other fields of science. With ∆E = U(x∗) − U(x0), the
energy necessary to surmount the barrier, the escape rate is seen to be proportional to exp(−∆E/k

B
T ).

4.2.7 Detailed balance

Let ϕ denote a coordinate vector in phase space. In classical mechanics, ϕ = (q, p) consists of all the generalized
coordinates and generalized momenta. The condition of detailed balance says that each individual transition bal-
ances precisely with its time reverse, resulting in no net probability currents in equilibrium. Note that this is a
much stronger condition than conservation of probability.

In terms of joint probability densities, detailed balance may be stated as follows:

P (ϕ, t ; ϕ′, t′) = P (ϕ′T ,−t′ ; ϕT ,−t) = P (ϕ′T , t ; ϕT , t′) , (4.87)

where we have assumed time translation invariance. Here, ϕT is the time reverse of ϕ. This is accomplished by
multiplying each component ϕi by a quantity εi = ±1. For positions ε = +1, while for momenta ε = −1. If we
define the diagonal matrix εij = εi δij (no sum on i), then ϕT

i = εijϕj (implied sum on j). Thus we may rewrite
the above equation as

P (ϕ, t ; ϕ′, t′) = P (εϕ′, t ; εϕ, t′) . (4.88)

In terms of the conditional probability distributions, we have

P (ϕ, t |ϕ′, 0)P
eq
(ϕ′) = P (εϕ′, t | εϕ, 0)P

eq
(εϕ) , (4.89)

where P
eq
(ϕ) is the equilibrium distribution, which we assume holds at time t′ = 0. Now in the limit t → 0 we

have P (ϕ, t→ 0 |ϕ′, 0) = δ(ϕ−ϕ′), and we therefore conclude

P
eq
(εϕ) = P

eq
(ϕ) . (4.90)

The equilibrium distribution P
eq
(ϕ) is time-reversal invariant. Thus, detailed balance entails

P (ϕ, t |ϕ′, 0)P
eq
(ϕ′) = P (εϕ′, t | εϕ, 0)P

eq
(ϕ) . (4.91)

One then has

〈
ϕi

〉
=

∫
dϕ P

eq
(ϕ)ϕi = εi

〈
ϕi

〉

Gij(t) ≡
〈
ϕi(t)ϕj(0)

〉
=

∫
dϕ

∫
dϕ′ ϕi ϕ

′
j P (ϕ, t |ϕ′, 0)P

eq
(ϕ′) = εi εiGji(t) .

(4.92)

Thus, as a matrix, G(t) = εGt(t) ε.

9We take x > x∗ to lie somewhere on the downslope of the potential curve, on the other side of the barrier from the metastable minimum.
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The conditions under which detailed balance holds are10

W (ϕ |ϕ′)P
eq
(ϕ′) =W (εϕ′ | εϕ)P

eq
(ϕ)

[
Ai(ϕ) + εiAi(εϕ)

]
P
eq
(ϕ) =

∂

∂ϕj

[
Bij(ϕ)Peq

(ϕ)
]

εiεjBij(εϕ) = Bij(ϕ) (no sum on i and j) .

(4.93)

Detailed balance for the Fokker-Planck equation

It is useful to define the reversible and irreversible drift as

Ri(ϕ) ≡
1

2

[
Ai(ϕ) + εiAi(εϕ)

]

Ii(ϕ) ≡
1

2

[
Ai(ϕ)− εiAi(εϕ)

]
.

(4.94)

Then we may subtract ∂i
[
εiAi(εϕ)Peq

(ϕ)
]
− 1

2∂i∂j
[
εiεj Bij(εϕ)Peq

(ϕ)
]

from ∂i
[
Ai(ϕ)Peq

(ϕ)
]
− 1

2∂i∂j
[
Bij(ϕ)Peq

(ϕ)
]

to obtain
∑

i

∂

∂ϕi

[
Ii(ϕ)Peq

(ϕ)
]
= 0 ⇒

∑

i

{
∂Ii(ϕ)

∂ϕi

+ Ii(ϕ)
∂ lnP

eq
(ϕ)

∂ϕi

}
= 0 . (4.95)

We may now write the second of Eqn. 4.93 as

Ri(ϕ) =
1
2∂j Bij(ϕ) +

1
2Bij(ϕ) ∂j lnPeq

(ϕ) , (4.96)

or, assuming the matrix B is invertible,

∂k lnPeq
(ϕ) = 2B−1

ki

(
Ri − 1

2∂jBij

)
≡ Zk(ϕ) . (4.97)

Since the LHS above is a gradient, the condition that P
eq
(ϕ) exists is tantamount to

∂Zi

∂ϕj

=
∂Zj

∂ϕi

(4.98)

for all i and j. If this is the case, then we have

P
eq
(ϕ) = exp

ϕ∫
dϕ′ ·Z(ϕ′) . (4.99)

Because of the condition 4.98, the integral on the RHS may be taken along any path. The constant associated with
the undetermined lower limit of integration is set by overall normalization.

Brownian motion in a local potential

Recall that the Brownian motion problem may be written as two coupled first order differential equations,

dx = v dt

dv = −
[
1

m
U ′(x) + γv

]
dt+

√
Γ dW (t) ,

(4.100)

10See Gardiner, §6.3.5.
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where Γ = 2γk
B
T/m = 2γ2D, and where W (t) is a Wiener process. The first of these is an ODE and the second

an SDE. Viewed as a multicomponent SDE with

ϕ =

(
x
v

)
, Ai(ϕ) =

(
v

−U ′(x)
m − γv

)
, Bij(ϕ) =

(
0 0

0
2γkBT

m

)
. (4.101)

We have already derived in Eqn. 4.77 the associated Fokker-Planck equation for P (x, v, t).

The time reversal eigenvalues are ε1 = +1 for x and ε2 = −1 for v. We then have

R(ϕ) =

(
0

−γv

)
, I(ϕ) =

(
v

−U ′(x)
m

)
. (4.102)

As the B matrix is not invertible, we appeal to Eqn. 4.96. The upper component vanishes, and the lower compo-
nent yields

−γv =
γk

B
T

m

∂ lnP
eq

∂v
, (4.103)

which says P
eq
(x, v) = F (x) exp(−mv2/2k

B
T ). To find F (x), we use Eqn. 4.95, which says

0 =

0︷︸︸︷
∂I1
∂x

+

0︷︸︸︷
∂I2
∂v

+I1
∂ lnP

eq

∂x
+ I2

∂ lnP
eq

∂v

= v
∂ lnF

∂x
− U ′(x)

m

(
− mv

k
B
T

)
⇒ F (x) = C e−U(x)/kBT .

(4.104)

Thus,
P
eq
(x, v) = C e−mv2/2kBT e−U(x)/kBT . (4.105)

4.2.8 Multicomponent Ornstein-Uhlenbeck process

In §3.4.3 we considered the case of coupled SDEs,

dϕi = Ai(ϕ) dt+ βij(ϕ) dWj(t) , (4.106)

where
〈
Wi(t)Wj(t

′)
〉
= δij min(t, t′). We showed in §3.4.3 that such a multicomponent SDE leads to the Fokker-

Planck equation
∂P

∂t
= − ∂

∂ϕi

(
Ai P

)
+

1

2

∂2

∂ϕi ∂ϕj

(
Bij P

)
, (4.107)

where B = ββt , i.e. Bij =
∑

k βikβjk .

Now consider such a process with

Ai(ϕ) = Aij ϕj , Bij(ϕ) = Bij , (4.108)

where Aij and Bij are independent of ϕ . The detailed balance conditions are written as εBε = B, and

(
A+ εA ε

)
ϕ = B∇ lnP

eq
(ϕ) . (4.109)

This equation says that P
eq
(ϕ) must be a Gaussian, which we write as

P
eq
(ϕ) = P

eq
(0) exp

[
− 1

2 ϕiM
−1
ij ϕj

]
, (4.110)
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Obviously we can take M−1 to be symmetric, since any antisymmetric part of M−1 is projected out in the expres-
sion ϕiM

−1
ij ϕj . Thus M is also symmetric. Substituting this solution into the stationary Fokker-Planck equation

∂i
[
AijϕjPeq

]
= 1

2 ∂i∂j
(
BijPeq

)
yields

TrA+ 1
2 Tr

(
BM−1

)
= ϕi

[
M−1A+ 1

2 M
−1BM−1

]

ij
ϕj = 0 . (4.111)

This must be satisfied for all ϕ, hence both the LHS and RHS of this equation must vanish separately. This entails

A+MAtM−1 +BM−1 = 0 . (4.112)

We now invoke the detailed balance condition of Eqn. 4.109, which says

A+ εA ε+BM−1 = 0 . (4.113)

Combining this with our previous result, we conclude

εAM = (AM)tε , (4.114)

which are known as the Onsager conditions. If we define the phenomenological force

F = ∇ lnP
eq

= −M−1ϕ , (4.115)

then we have
d〈ϕ〉
dt

= A 〈ϕ〉 = −AMF , (4.116)

and defining L = −AM which relates the fluxes J = 〈ϕ̇〉 to the forces F , viz. Ji = Lik Fk, we have the celebrated
Onsager relations, εLε = Lt. A more general formulation, allowing for the presence of a magnetic field, is

Lik(B) = εi εk Lki(−B) . (4.117)

We shall meet up with the Onsager relations again when we study the Boltzmann equation.

4.2.9 Nyquist’s theorem

Consider the electrical circuit in Fig. 4.2. Kirchoff’s laws say that the current flowing through the resistor r is
IS − IB , and that

(IS − IB) r =
Q

C
= VS − L

dIA
dt

−RIA (4.118)

and
dQ

dt
= IA + IB . (4.119)

Thus, we have the coupled ODEs for Q and IA,

dQ

dt
= IA − Q

rC
+ IS(t)

dIA
dt

= −RIA
L

− Q

LC
+
VS(t)

L
.

(4.120)

If we assume VS(t) and IS(t) are fluctuating sources each described by a Wiener process, we may write

VS(t) dt =
√
ΓV dWV (t) , IS(t) dt =

√
ΓI dWI(t) . (4.121)
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Figure 4.2: Electrical circuit containing a fluctuating voltage source Vs(t) and a fluctuating current source Is(t).

Then

dQ =

(
− Q

rC
+ IA

)
dt+

√
ΓI dWI(t)

dIA = −
(
Q

LC
+
RIA
L

)
dt+

1

L

√
ΓV dWV (t) .

(4.122)

We now see that Eqn. 4.122 describes a two component Ornstein-Uhlenbeck process, with ϕt = (Q, IA), and

Aij = −
(
1/rC −1
1/LC R/L

)
, Bij =

(
ΓI 0
0 ΓV /L

2

)
. (4.123)

The ε matrix for this problem is ε =

(
1 0
0 −1

)
since charge is even and current odd under time reversal. Thus,

A+ εAε = −
(
2/rC 0
0 2R/L

)
= −BM−1 , (4.124)

from which we may obtain M−1 and then

M =

(
ΓI rC/2 0

0 ΓV /2LR

)
. (4.125)

The equilibrium distribution is then

P
eq
(Q, IA) = N exp

{
− Q2

rCΓI

− RL I2A
ΓV

}
. (4.126)

We now demand that equipartition hold, i.e.

〈
Q2

2C

〉
=

〈
LI2A
2

〉
= 1

2kB
T , (4.127)

which fixes
ΓV = 2Rk

B
T , ΓI = 2k

B
T/r . (4.128)



4.3. MASTER EQUATION 19

Therefore, the current and voltage fluctuations are given by

〈
VS(0)VS(t)

〉
= 2k

B
TRδ(t) ,

〈
IS(0) IS(t)

〉
=

2k
B
T

r
δ(t) ,

〈
VS(0) IS(t)

〉
= 0 . (4.129)

4.3 Master Equation

In §2.6.3 we showed that the differential Chapman-Kolmogorov equation with only jump processes yielded the
Master equation,

∂P (x, t |x′, t′)

∂t
=

∫
dy
[
W (x |y, t)P (y, t |x′, t′)−W (y |x, t)P (x, t |x′, t′)

]
. (4.130)

Here W (x |y, t) is the rate density of transitions from y to x at time t, and has dimensions T−1L−d. On a discrete
state space, we have

∂P (n, t |n′, t′)

∂t
=
∑

m

[
W (n |m, t)P (m, t |n′, t′)−W (m |n, t)P (n, t |n′, t′)

]
, (4.131)

where W (n |m, t) is the rate of transitions from m to n at time t, with dimensions T−1.

4.3.1 Birth-death processes

The simplest case is that of one variable n, which represents the number of individuals in a population. Thus
n ≥ 0 and P (n, t |n′, t′) = 0 if n < 0 or n′ < 0. If we assume that births and deaths happen individually and at
with a time-independent rate, then we may write

W (n |m, t) = t+(m) δn,m+1 + t−(m) δn,m−1 . (4.132)

Here t+(m) is the rate for m→ m+ 1, and t−(m) is the rate for m→ m− 1. We require t−(0) = 0, since the dying
rate for an entirely dead population must be zero11. We then have the Master equation

∂P (n, t |n0, t0)

∂t
= t+(n−1)P (n−1, t |n0, t0)+t

−(n+1)P (n+1, t |n0, t0)−
[
t+(n)+t−(n)

]
P (n, t |n0, t0) . (4.133)

This may be written in the form
∂P (n, t |n0, t0)

∂t
+∆J(n, t |n0, t0) = 0 , (4.134)

where the lattice current operator on the link (n, n+ 1) is

J(n, t |n0, t0) = t+(n)P (n, t |n0, t0)− t−(n+ 1)P (n+ 1, t |n0, t0) . (4.135)

The lattice derivative ∆ is defined by
∆f(n) = f(n)− f(n− 1) , (4.136)

for any lattice function f(n). One then has

d〈n〉t
dt

=
∞∑

n=0

[
t+(n)− t−(n)

]
P (n, t |n0, t0) =

〈
t+(n)

〉
t
−
〈
t−(n)

〉
. (4.137)

11We neglect here the important possibility of zombies.
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Steady state solution

We now seek a steady state solution P
eq
(n), as we did in the case of the Fokker-Planck equation. This entails

∆nJ(n) = 0, where we suppress the initial conditions (n0, t0). Now J(−1) = 0 because t−(0) = 0 and P (−1) = 0,
hence 0 = J(0)− J(−1) entails J(0) = 0, and since 0 = ∆nJ(n) we have J(n) = 0 for all n ≥ 0. Therefore

P
eq
(j + 1) =

t+(j)

t−(j + 1)
P
eq
(j) , (4.138)

which means

P
eq
(n) = P

eq
(0)

n∏

j=1

t+(j − 1)

t−(j)
. (4.139)

4.3.2 Examples: reaction kinetics

First example

Consider the example in Gardiner §11.1.2, which is the reaction

X
k2

⇋

k
1

A . (4.140)

We assume the concentration [A] = a is fixed, and denote the number of X reactants to be n. The rates are
t−(n) = k2n and t+(n) = k1a, hence we have the Master equation

∂tP (n, t) = k2(n+ 1)P (n+ 1, t) + k1aP (n− 1, t)−
(
k2n+ k1a

)
P (n, t) , (4.141)

with P (−1, t) ≡ 0. We solve this using the generating function formalism, defining

P̃ (z, t) =

∞∑

n=0

zn P (n, t) . (4.142)

Note that P̃ (1, t) =
∑∞

n=0 P (n, t) = 1 by normalization. Multiplying both sides of Eqn. 4.141 by zn and then
summing from n = 0 to n = ∞, we obtain

∂tP̃ (z, t) = k1a

zP (z,t)︷ ︸︸ ︷
∞∑

n=0

P (n− 1, t) zn − k1a

P (z,t)︷ ︸︸ ︷
∞∑

n=0

P (n, t) zn + k2

∂zP (z,t)
︷ ︸︸ ︷
∞∑

n=0

(n+ 1)P (n+ 1, t) zn − k2

z∂zP (z,t)
︷ ︸︸ ︷
∞∑

n=0

nP (n, t) zn

= (z − 1)
{
k1a P̃ (z, t)− k2 ∂zP̃ (z, t)

}
.

(4.143)

We now define the function Q̃(z, t) via
P̃ (z, t) = ek1az/k2 Q̃(z, t) , (4.144)

so that
∂tQ̃+ k2(z − 1) ∂zQ̃ = 0 , (4.145)

and defining w = − ln(1− z), this is recast as ∂tQ̃− k2∂wQ̃ = 0, whose solution is

Q̃(z, t) = F (w + k2t) , (4.146)
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where F is an arbitrary function of its argument. To determine the function F (w), we invoke our initial conditions,

Q̃(z, 0) = e−k1az/k2 P̃ (z, 0) = F (w) . (4.147)

We then have

F (w) = exp

{
− k1a

k2
(1− e−w)

}
P̃
(
1− e−w, 0

)
, (4.148)

and hence

P̃ (z, t) = exp

{
− k1a

k2
(1− z)(1− e−k2t)

}
P̃
(
1− (1− z) e−k2t, 0

)
. (4.149)

We may then obtain P (n, t) via contour integration, i.e. by extracting the coefficient of zn in the above expression:

P (n, t) =
1

2πi

∮

|z|=1

dz

zn+1
P̃ (z, t) . (4.150)

Note that setting t = 0 in Eqn. 4.149 yields the identity P̃ (z, 0) = P̃ (z, 0). As t → ∞, we have the steady state
result

P̃ (z,∞) = ek1a(z−1)/k2 ⇒ P (n,∞) =
λn

n!
e−λ , (4.151)

where λ = k1a/k2, which is a Poisson distribution. Indeed, suppose we start at t = 0 with the Poisson distribution

P (n, 0) = e−α0αn
0/n!. Then P̃ (z, 0) = exp

[
α0(z − 1)

]
, and Eqn. 4.149 gives

P̃ (z, t) = exp

{
− k1a

k2
(1− z)(1− e−k2t)

}
exp

{
− α0(1− z) e−k2t

}
= eα(t) (z−1) , (4.152)

where

α(t) = α0 e
−k2t +

k1
k2
a
(
1− e−k2t

)
. (4.153)

Thus, α(0) = α0 and α(∞) = k1a/k2 = λ. The distribution is Poisson all along, with a time evolving Poisson pa-
rameter α(t). The situation is somewhat reminiscent of the case of updating conjugate Bayesian priors, where the
prior distribution was matched with the likelihood function so that the updated prior retains the same functional
form.

If we start instead with P (n, 0) = δn,n
0
, then we have P̃ (z, 0) = zn0 , and

P̃ (z, t) = exp

{
− k1a

k2
(1− z)(1− e−k2t)

}(
1− (1− z) e−k2t

)n0

. (4.154)

We then have

〈
n(t)

〉
=
∂P̃ (z, t)

∂z

∣∣∣∣
z=1

=
k1a

k2

(
1− e−k2t

)
+ n0 e

−k2t

〈
n2(t)

〉
=

(
∂2P̃ (z, t)

∂z2
+
∂P̃ (z, t)

∂z

)

z=1

= 〈n(t)〉2 + 〈n(t)〉 − n0 e
−2k2t

Var
[
n(t)

]
=

(
k1a

k2
+ n0 e

−k2t

)(
1− e−k2t

)
.

(4.155)
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Second example

Gardiner next considers the reactions

X
k2

⇋

k
1

A , B + 2X
k3

⇋

k
4

3X , (4.156)

for which we have

t+(n) = k1a+ k3b n(n− 1)

t−(n) = k2n+ k4n(n− 1)(n− 2) .
(4.157)

The reason here is that for the second equation to proceed to the left, we need to select three X molecules to take
part in the reaction, and there are n(n− 1)(n− 2) ordered triples (i, j, k). Now Eqn. 4.137 gives

d〈n〉
dt

= k1a+ k3
〈
n(n− 1)

〉
− k2〈n〉 − k4

〈
n(n− 1)(n− 2)

〉
. (4.158)

For a Poisson distribution Pn = e−λ λn/n! , it is easy to see that

〈
n(n− 1) · · · (n− k + 1)

〉
=
〈
n
〉k

(Poisson) . (4.159)

Suppose the distribution P (n, t) is Poissonian for all t. This is not necessarily the case, but we assume it to be so
for the purposes of approximation. Then the above equation closes, and with x = 〈n〉, we have

dx

dt
= −k4 x3 + k3 x

2 − k2 x+ k1 a

= −k4(x− x1)(x− x2)(x − x3) ,
(4.160)

where x1,2,3 are the three roots of the cubic on the RHS of the top equation. Since the coefficients of this equation
are real numbers, the roots are either real or come in complex conjugate pairs. We know that the product of the
roots is x1x2x3 = k1a/k4 and that the sum is x1 + x2 + x3 = k3/k4 , both of which are positive. Clearly when x
is real and negative, all terms in the cubic are of the same sign, hence there can be no real roots with x < 0. We
assume three real positive roots with x1 < x2 < x3.

Further examining Eqn. 4.160, we see that x1 and x3 are stable fixed points and that x2 is an unstable fixed point
of this one-dimensional dynamical system. Thus, there are two possible stable equilibria. If x(0) < x2 the flow
will be toward x1 , while if x(0) > x2 the flow will be toward x3. We can integrate Eqn. 4.160 using the method of
partial fractions. First, we write

1

(x− x1)(x− x2)(x− x3)
=

A1

x− x1
+

A2

x− x2
+

A3

x− x3
, (4.161)

with (x− x2)(x − x3)A1 + (x− x1)(x− x3)A2 + (x− x1)(x − x2)A3 = 1. This requires

0 = A1 +A2 +A3

0 = (x2 + x3)A1 + (x1 + x3)A2 + (x1 + x2)A3

1 = x2x3A1 + x1x3A2 + x1x2A3 ,

(4.162)

with solution

A1 =
1

(x2 − x1)(x3 − x1)
, A2 = − 1

(x2 − x1)(x3 − x2)
, A3 =

1

(x3 − x1)(x3 − x2)
. (4.163)
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Figure 4.3: Geometric interpretation of the ODE in Eqn. 4.160.

Thus, Eqn. 4.160 may be recast as

(x3 − x2) d ln(x− x1)− (x3 −x1) d ln(x− x2)+ (x2 −x1) d ln(x−x3) = −k4(x2 −x1)(x3 − x1)(x3 − x2) dt . (4.164)

The solution is given in terms of t(x):

t(x) =
1

k4(x2 − x1)(x3 − x1)
ln

(
x0 − x1
x− x1

)
(4.165)

− 1

k4(x2 − x1)(x3 − x2)
ln

(
x0 − x2
x− x2

)
+

1

k4(x3 − x1)(x3 − x2)
ln

(
x0 − x2
x− x3

)
,

where x0 = x(0).

Going back to Eqn. 4.139, we have that the steady state distribution is

P
eq
(n) = P

eq
(0)

n∏

j=1

t+(j − 1)

t−(j)
= P

eq
(0)

n∏

j=1

k1 a+ k3 b (j − 1) (j − 2)

k2 j + k4 j (j − 1) (j − 2)
. (4.166)

The product is maximized for when the last term with j = n is unity. If we call this value n∗, then n∗ is a root of
the equation

k1 a+ k3 b (n− 1) (n− 2) = k2 n+ k4 n (n− 1) (n− 2) . (4.167)

If n ≫ 1 and all the terms are roughly the same size, this equation becomes k1 a+ k3 b n
2 = k2 n+ k4 n

3, which is
the same as setting the RHS of Eqn. 4.160 to zero in order to find a stationary solution.
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4.3.3 Forward and reverse equations and boundary conditions

In §2.6.3 we discussed the forward and backward differential Chapman-Kolmogorov equations, from which, with
Aµ = 0 and Bµν = 0 , we obtain the forward and reverse Master equations,

∂P (n, t | · )
∂t

=
∑

m

{
W (n |m, t)P (m, t | · )−W (m |n, t)P (n, t | · )

}

−∂P ( · |n, t)
∂t

=
∑

m

W (m |n, t)
{
P ( · |m, t)− P ( · |n, t)

}
,

(4.168)

where we have suppressed the initial conditions in the forward equation and the final conditions in the backward
equation. Consider the one-dimensional version, and take the transition rates to be

W (j′ | j, t) = t+(j) δj′,j+1 + t−(j) δj′,j−1 . (4.169)

We may then write

∂P (n, t | · )
∂t

= LP (n, t | · ) =

J(n−1 , t | · )︷ ︸︸ ︷{
t+(n− 1)P (n− 1, t | · )− t−(n)P (n, t | · )

}
−

J(n , t | · )︷ ︸︸ ︷{
t+(n)P (n, t | · )− t−(n+ 1)P (n+ 1, t | · )

}

−∂P ( · |n, t)
∂t

= L̃P ( · |n, t) = t+(n)

K( · |n+1 , t)︷ ︸︸ ︷{
P ( · |n+ 1, t)− P ( · |n, t)

}
− t−(n)

K( · |n , t)︷ ︸︸ ︷{
P ( · |n, t)− P ( · |n− 1, t)

}
, (4.170)

where we have defined the quantities J(n, t | · ) and K( · |n, t) . Here (Lf)n = Lnn′ fn′ and (L̃f)n = L̃nn′ fn′ ,

where L and L̃ are matrices, viz.

Lnn′ = t+(n′) δn′,n−1 + t−(n′) δn′,n+1 − t+(n′) δn′,n − t−(n′) δn′,n

L̃nn′ = t+(n) δn′,n+1 + t−(n) δn′,n−1 − t+(n) δn′,n − t−(n) δn′,n .

(4.171)

Clearly L̃nn′ = Ln′n, hence L̃ = Lt, the matrix transpose, if we can neglect boundary terms. For n, n′ ∈ Z , we
could specify P (±∞, t | · ) = P ( · | ±∞, t) = 0 .

Consider now a birth-death process where we focus on a finite interval n ∈ {a, . . . , b}. Define the inner product

〈 g | O | f 〉 =
b∑

n=a

g(n)
(
Of
)
(n) . (4.172)

One then has

〈 g | L | f 〉 − 〈 f | L̃ | g 〉 = t−(b+ 1) f(b+ 1) g(b)− t+(b) f(b) g(b+ 1)

+ t+(a− 1) f(a− 1) g(a)− t−(a) f(a) g(a− 1) .
(4.173)

Thus, if f(a− 1) = g(a− 1) = f(b+ 1) = g(b+ 1) = 0, we have L̃ = Lt = L†, the adjoint. In the suppressed initial
and final conditions, we always assume the particle coordinate n lies within the interval.

We now must specify appropriate boundary conditions on our interval. These conditions depend on whether we
are invoking the forward or backward Master equation:
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Forward equation : For reflecting boundaries, we set t−(a) = 0 and t+(b) = 0, assuring that a particle
starting from inside the region can never exit. We also specify P (a− 1, t | · ) = 0 and P (b+ 1, t | · ) = 0
so that no particles can enter from the outside. This is equivalent to specifying that the boundary
currents vanish, i.e. J(a − 1, t | · ) = 0 and J(b, t | · ) = 0, respectively. For absorbing boundaries, we
choose t+(a− 1) = 0 and t−(b + 1) = 0 , which assures that a particle which exits the region can never
reenter. This is equivalent to demanding P (a− 1, t | · ) = 0 and P (b+ 1, t | · ) = 0, respectively.

Backward equation : From Eqn. 4.170, it is clear that the reflecting conditions t−(a) = 0 and t+(b) = 0
are equivalent to K( · | a, t) = 0 and K( · | b+ 1, t) = 0, where these functions. Neither of the quantities
in the absorbing conditions t+(a − 1) = 0 and t−(b + 1) = 0 enter in the backward Master equation.
The effect of these conditions on the data outside the interval is to preserve P ( · | a − 1, t) = 0 and
P ( · | b+ 1, t) = 0, respectively.

The situation is summarized in Tab. 4.3.3 below.

conditions equivalent conditions

equation boundary reflecting absorbing reflecting absorbing

FORWARD left t−(a) = 0 t+(a− 1) = 0 J(a− 1, t | · ) = 0 P (a− 1, t | · )

right t+(b) = 0 t−(b+ 1) = 0 J(b, t | · ) = 0 P (b + 1, t | · )

BACKWARD left t−(a) = 0 t+(a− 1) = 0 K( · | a, t) = 0 P ( · | a− 1, t)

right t+(b) = 0 t−(b+ 1) = 0 K( · | b+ 1, t) = 0 P ( · | b+ 1, t)

Table 4.1: Absorbing and reflecting boundary conditions for the Master equation on the interval {a, . . . , b}.

4.3.4 First passage times

The treatment of first passage times within the Master equation follows that for the Fokker-Planck equation in
§4.2.5. If our discrete particle starts at n at time t0 = 0, the probability that it lies within the interval {a, . . . , b} at
some later time t is

G(n, t) =

b∑

n′=a

P (n′, t |n, 0) =
b∑

n′=a

P (n′, 0 |n,−t) , (4.174)

and therefore −∂tG(n, t) dt is the probability that the particle exits the interval within the time interval [t, t + dt].
Therefore the average first passage time out of the interval, starting at n at time t0 = 0, is

T (n) =

∞∫

0

dt t

(
− ∂G(n, t)

∂t

)
=

∞∫

0

dt G(n, t) . (4.175)

Applying L̃, we obtain

L̃T (n) = t+(n)
{
T (n+ 1)− T (n)

}
− t−(n)

{
T (n)− T (n− 1)

}
= −1 . (4.176)
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Let a be a reflecting barrier and b be absorbing. Since t−(a) = 0 we are free to set T (a − 1) = T (a). At the right
boundary we have T (b+1) = 0, because a particle starting at b+1 is already outside the interval. Eqn. 4.176 may
be written

t+(n)∆T (n)− t−(n)∆T (n− 1) = −1 , (4.177)

with ∆T (n) ≡ T (n+ 1)− T (n). Now define the function

φ(n) =

n∏

j=a+1

t−(j)

t+(j)
, (4.178)

with φ(a) ≡ 1. This satisfies φ(n)/φ(n− 1) = t−(n)/t+(n) , and therefore Eqn. 4.177 may be recast as

∆T (n)

φ(n)
=

∆T (n− 1)

φ(n− 1)
− 1

t+(n)φ(n)
. (4.179)

Since ∆T (a) = −1/t+(a) from Eqn. 4.176, the first term on the RHS above vanishes for n = a. We then have

∆T (n) = −φ(n)
n∑

j=a

1

t+(j)φ(j)
, (4.180)

and therefore, working backward from T (b+ 1) = 0, we have

T (n) =
b∑

k=n

φ(k)
k∑

j=a

1

t+(j)φ(j)
(a reflecting , b absorbing). (4.181)

One may also derive

T (n) =
n∑

k=a

φ(k)
b∑

j=k

1

t+(j)φ(j)
(a absorbing , b reflecting). (4.182)

Example

Suppose a = 0 is reflecting and b = N − 1 is absorbing, and furthermore suppose that t±(n) = t± are site-
independent. Then φ(n) = r−n, where r ≡ t+/t−. The mean escape time starting from site n is

T (n) =
1

t+

N−1∑

k=n

r−k
k∑

j=0

rj

=
1

(r − 1)2 t+

{
(N − n)(r − 1) + r−N − r−n

}
.

(4.183)

If t+ = t−, so the walk is unbiased, then r = 1. We can then evaluate by taking r = 1 + ε with ε → 0, or, more
easily, by evaluating the sum in the first line when r = 1. The result is

T (n) =
1

t+

{
1
2N(N − 1)− 1

2n(n+ 1) +N − n
}

(r = 1) . (4.184)

By taking an appropriate limit, we can compare with the Fokker-Planck result of Eqn. 4.61, which for an interval
[a, b] with a = 0 reflecting and b absorbing yields T (x) = (b2 − x2)/2D. Consider the Master equation,

∂P (n, t)

∂t
= β

[
P (n+ 1, t) + P (n− 1, t)− 2P (n, t)

]
= β

∂2P

∂n2
+ 1

12β
∂4P

∂n4
+ . . . , (4.185)
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where β = t+ = t−. Now define n ≡ Nx/b, and rescale both time t ≡ Nτ and hopping β ≡ Nγ , resulting in

∂P

∂τ
= D

∂2P

∂x2
+

Db2

12N2

∂4P

∂x4
+ . . . , (4.186)

where D = b2γ is the diffusion constant. In the continuum limit, N → ∞ and we may drop all terms beyond
the first on the RHS, yielding the familiar diffusion equation. Taking this limit, Eqn. 4.184 may be rewritten as
T (x)/N = (N/2t+b2)(b2 − x2) = (b2 − x2)/2D , which agrees with the result of Eqn. 4.61.

4.3.5 From Master equation to Fokker-Planck

Let us start with the Master equation,

∂P (x, t)

∂t
=

∫
dx′

[
W (x |x′)P (x′, t)−W (x′ |x)P (x, t)

]
, (4.187)

and define W (z | z0) ≡ t(z − z0 | z0), which rewrites the rate W (z | z0) from z0 to z as a function of z0 and the
distance z − z0 to z. Then the Master equation may be rewritten as

∂P (x, t)

∂t
=

∫
dy
[
t(y |x− y)P (x− y, t)− t(y |x)P (x, t)

]
. (4.188)

Now expand t(y |x− y)P (x− y) as a power series in the jump distance y to obtain12

∂P (x, t)

∂t
=

∫
dy

∞∑

n=1

(−1)n

n!
yα

1
· · · yαn

∂n

∂xα
1
· · · ∂xαn

[
t(y |x)P (x, t)

]

=
∞∑

n=1

(−1)n

n!

∂n

∂xα
1
· · ·∂xαn

[
Rα1···αn(x)P (x, t)

]
,

(4.189)

where

Rα1···αn(x) =

∫
dy yα

1
· · · yαn

t(y |x) . (4.190)

For d = 1 dimension, we may write

∂P (x, t)

∂t
=

∞∑

n=1

(−1)n

n!

∂n

∂xn

[
Rn(x)P (x, t)

]
, Rn(x) ≡

∫
dy yn t(y |x) . (4.191)

This is known as the Kramers-Moyal expansion. If we truncate at order n = 2, we obtain the Fokker-Planck
equation,

∂P (x, t)

∂t
= − ∂

∂x

[
R1(x)P (x, t)

]
+

1

2

∂2

∂x2

[
R2(x)P (x, t)

]
. (4.192)

The problem is that the FPE here is akin to a Procrustean bed. We have amputated the n > 2 terms from the
expansion without any justification at all, and we have no reason to expect this will end well. A more systematic
approach was devised by N. G. van Kampen, and goes by the name of the size expansion. One assumes that there
is a large quantity lurking about, which we call Ω. Typically this can be the total system volume, or the total
population in the case of an ecological or epidemiological model. One assumes that t(y |x) obeys a scaling form,

t(∆z | z0) = Ω τ

(
∆z
∣∣∣
z0
Ω

)
. (4.193)

12We only expand the second argument of t(y |x− y) in y. We retain the full y-dependence of the first argument.
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From the second of Eqn. 4.191, we then have

Rn(x) = Ω

∫
dy yn τ

(
y
∣∣∣
x

Ω

)
≡ Ω R̃n(x/Ω) . (4.194)

We now proceed by defining

x = Ω φ(t) +
√
Ω ξ , (4.195)

where φ(t) is an as-yet undetermined function of time, and ξ is to replace x, so that our independent variables are
now (ξ, t). We therefore have

Rn(x) = Ω R̃n

(
φ(t) +Ω−1/2ξ

)
. (4.196)

Now we are set to derive a systematic expansion in inverse powers ofΩ . We define P (x, t) = Π(ξ, t), and we note

that dx = Ω φ̇ dt+
√
Ω dξ, hence dξ

∣∣
x
= −

√
Ω φ̇ dt , which means

∂P (x, t)

∂t
=
∂Π(ξ, t)

∂t
−
√
Ω φ̇

∂Π(ξ, t)

∂ξ
. (4.197)

We therefore have, from Eqn. 4.191,

∂Π(ξ, t)

∂t
−
√
Ω φ̇

∂Π

∂ξ
=

∞∑

n=1

(−1)nΩ(2−n)/2

n!

∂n

∂ξn

[
R̃n

(
φ(t) +Ω−1/2ξ

)
Π(ξ, t)

]
. (4.198)

Further expanding R̃n(φ +Ω−1/2ξ) in powers of Ω−1/2, we obtain

∂Π(ξ, t)

∂t
−
√
Ω φ̇

∂Π

∂ξ
=

∞∑

k=0

∞∑

n=1

(−1)nΩ(2−n−k)/2

n! k!

dkR̃n(φ)

dφk

∣∣∣∣
φ(t)

∂n

∂ξn

[
ξkΠ(ξ, t)

]
. (4.199)

Let’s define an index l ≡ n + k, which runs from 1 to ∞. Clearly n = l − k , which for fixed l runs from 1 to l. In
this way, we can reorder the terms in the sum, according to

∞∑

k=0

∞∑

n=1

A(k, n) =

∞∑

l=1

l∑

n=1

A(l − n, n) . (4.200)

The lowest order term on the RHS of Eqn. 4.199 is the term with n = 1 and k = 0, corresponding to l = n = 1 if

we eliminate the k index in favor of l. It is equal to −
√
Ω R̃1

(
φ(t)

)
∂ξΠ , hence if we demand that φ(t) satisfy

dφ

dt
= R̃1(φ) , (4.201)

these terms cancel from either side of the equation. We then have

∂Π(ξ, t)

∂t
=

∞∑

l=2

Ω(2−l)/2
l∑

n=1

(−1)n

n! (l − n)!
R̃(l−n)

n

(
φ(t)

) ∂n
∂ξn

[
ξl−nΠ(ξ, t)

]
, (4.202)

where R̃
(k)
n (φ) = dkR̃n/dφ

k. We are now in a position to send Ω → ∞ , in which case only the l = 2 term survives,
and we are left with

∂Π

∂t
= −R̃′

1

(
φ(t)

) ∂ (ξΠ)

∂ξ
+ 1

2 R̃2

(
φ(t)

) ∂2Π
∂ξ2

, (4.203)

which is a Fokker-Planck equation.
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Birth-death processes

Consider a birth-death process in which the states |n 〉 are labeled by nonnegative integers. Let αn denote the
rate of transitions from |n 〉 → |n+ 1 〉 and let βn denote the rate of transitions from |n 〉 → |n− 1 〉. The Master
equation then takes the form13

dPn

dt
= αn−1Pn−1 + βn+1Pn+1 −

(
αn + βn

)
Pn , (4.204)

where we abbreviate Pn(t) for P (n, t |n0, t0) and suppress the initial conditions (n0, t0).

Let us assume we can write αn = Kᾱ(n/K) and βn = Kβ̄(n/K), where K ≫ 1. Define x ≡ n/K , so the Master
equation becomes

∂P

∂t
= Kᾱ(x− 1

K )P (x− 1
K ) +Kβ̄(x + 1

K )P (x + 1
K )−K

(
ᾱ(x) + β̄(x)

)
P (x)

= − ∂

∂x

[(
ᾱ(x) − β̄(x)

)
P (x, t)

]
+

1

2K

∂2

∂x2

[(
ᾱ(x) + β̄(x)

)
P (x, t)

]
+O(K−2) .

(4.205)

If we truncate the expansion after the O(K−1) term, we obtain

∂P

∂t
= − ∂

∂x

[
f(x)P (x, t)

]
+

1

2K

∂2

∂x2

[
g(x)P (x, t)

]
, (4.206)

where we have defined

f(x) ≡ ᾱ(x) − β̄(x) , g(x) ≡ ᾱ(x) + β̄(x) . (4.207)

This FPE has an equilibrium solution

Peq(x) =
A

g(x)
e−KΦ(x) , Φ(x) = −2

x∫

0

dx′
f(x′)

g(x′)
, (4.208)

where the constant A is determined by normalization. If K is large, we may expand about the minimum of Φ(x)

Φ(x) = Φ(x∗)− 2f(x∗)

g(x∗)
(x − x∗) +

2f(x∗) g′(x∗)− 2g(x∗) f ′(x∗)

g2(x∗)
(x− x∗)2 + . . .

= Φ(x∗)− 2f ′(x∗)

g(x∗)
(x− x∗)2 + . . . .

(4.209)

Thus, we obtain a Gaussian distribution

Peq(x) ≃
√

K

2πσ2
e−K(x−x∗)2/2σ2

with σ2 = − g(x∗)

2f ′(x∗)
. (4.210)

In order that the distribution be normalizable, we must have f ′(x∗) < 0.

In §4.3.6, we will see how the Fokker-Planck expansion fails to account for the large O(K) fluctuations about a
metastable equilibrium which lead to rare extinction events in this sort of birth-death process.

13We further demand β
n=0

= 0 and P−1
(t) = 0 at all times.
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van Kampen treatment

We now discuss the same birth-death process using van Kampen’s size expansion. Assume the distribution Pn(t)

has a time-dependent maximum at n = Kφ(t) and a width proportional to
√
K. We expand relative to this

maximum, writing n ≡ Kφ(t)+
√
K ξ and we define Pn(t) ≡ Π(ξ, t). We now rewrite the Master equation in eqn.

4.204 in terms of Π(ξ, t). Since n is an independent variable, we set

dn = Kφ̇dt+
√
K dξ ⇒ dξ

∣∣
n
= −

√
K φ̇ dt . (4.211)

Therefore
dPn

dt
= −

√
K φ̇

∂Π

∂ξ
+
∂Π

∂t
. (4.212)

We now write

αn−1 Pn−1 = K ᾱ
(
φ+K−1/2ξ −K−1

)
Π
(
ξ −K−1/2

)

βn+1 Pn+1 = K β̄
(
φ+K−1/2ξ +K−1

)
Π
(
ξ +K−1/2

)
(
αn + βn

)
Pn = K ᾱ

(
φ+K−1/2ξ

)
Π(ξ) +K β̄

(
φ+K−1/2ξ

)
Π(ξ) ,

(4.213)

and therefore Eqn. 4.204 becomes

−
√
K
∂Π

∂ξ
φ̇+

∂Π

∂t
=

√
K (β̄ − ᾱ)

∂Π

∂ξ
+ (β̄′ − ᾱ′) ξ

∂Π

∂ξ
+ (β̄′ − ᾱ′)Π + 1

2 (ᾱ+ β̄)
∂2Π

∂ξ2
+O

(
K−1/2

)
, (4.214)

where ᾱ = ᾱ(φ) and β̄ = β̄(φ). Equating terms of order
√
K yields the equation

φ̇ = f(φ) ≡ ᾱ(φ) − β̄(φ) , (4.215)

which is a first order ODE for the quantity φ(t). Equating terms of order K0 yields the Fokker-Planck equation,

∂Π

∂t
= −f ′(φ(t)

) ∂
∂ξ

(
ξΠ
)
+ 1

2 g
(
φ(t)

) ∂2Π
∂ξ2

, (4.216)

where g(φ) ≡ ᾱ(φ) + β̄(φ). If in the limit t → ∞, eqn. 4.215 evolves to a stable fixed point φ∗, then the stationary
solution of the Fokker-Planck eqn. 4.216,Πeq(ξ) = Π(ξ, t = ∞) must satisfy

−f ′(φ∗)
∂

∂ξ

(
ξ Πeq

)
+ 1

2 g(φ
∗)
∂2Πeq

∂ξ2
= 0 ⇒ Πeq(ξ) =

1√
2πσ2

e−ξ2/2σ2

, (4.217)

where

σ2 = − g(φ∗)

2f ′(φ∗)
. (4.218)

Now both α and β are rates, hence both are positive and thus g(φ) > 0. We see that the condition σ2 > 0 , which
is necessary for a normalizable equilibrium distribution, requires f ′(φ∗) < 0, which is saying that the fixed point
in Eqn. 4.215 is stable.

We thus arrive at the same distribution as in Eqn. 4.210. The virtue of this latter approach is that we have a better
picture of how the distribution evolves toward its equilibrium value. The condition of normalizability f ′(x∗) < 0
is now seen to be connected with the dynamics of location of the instantaneous maximum of P (x, t), namely
x = φ(t). If the dynamics of the FPE in Eqn. 4.216 are fast compared with those of the simple dynamical system
in Eqn. 4.215, we may regard the evolution of φ(t) as adiabatic so far as Π(ξ, t) is concerned.
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4.3.6 Extinction times in birth-death processes

In §4.3.1 we discussed the Master equation for birth-death processes,

dPn

dt
= t+(n− 1)Pn−1 + t−(n+ 1)Pn+1 −

[
t+(n) + t−(n)

]
Pn . (4.219)

At the mean field level, we have for the average population n̄ =
∑

n nPn ,

dn̄

dt
= t+(n̄)− t−(n̄) . (4.220)

Two models from population biology that merit our attention here:

Susceptible-infected-susceptible (SIS) model : Consider a population of fixed total size N , among
which n individuals are infected and the remaining N − n are susceptible. The number of possible
contacts between infected and susceptible individuals is then n(N − n), and if the infection rate per
contact is Λ/N and the recovery rate of infected individuals is set to unity14, then we have

t+(n) = Λn

(
1− n

N

)
, t−(n) = n . (4.221)

Verhulst model : Here the birth rate is B and the death rate is unity plus a stabilizing term (B/N)n
which increases linearly with population size. Thus,

t+(n) = Bn , t−(n) = n+
Bn2

N
. (4.222)

The mean field dynamics of both models is the same, with

dn̄

dt
= (Λ − 1)n̄− Λn̄2

N
(4.223)

for the SIS model; take Λ → B for the Verhulst model. This is known as the logistic equation: ˙̄n = rn̄(K − n̄),
with r = Λ/N the growth rate and K = (Λ − 1)/Λ the equilibrium population. If Λ > 1 then K > 0, in which
case the fixed point at n̄ = 0 is unstable and the fixed point at n̄ = K is stable. The asymptotic state is one of an
equilibrium number K of infected individuals. At Λ = 1 there is a transcritical bifurcation, and for 0 < Λ < 1 we
have K < 0, and the unphysical fixed point at n̄ = K is unstable, while the fixed point at n̄ = 0 is stable. The
infection inexorably dies out. So the mean field dynamics for Λ > 1 are a simple flow to the stable fixed point
(SFP) at n̄ = K , and those for Λ < 1 are a flow to the SFP at n̄ = 0. In both cases, the approach to the SFP takes a
logarithmically infinite amount of time.

Although the mean field solution for Λ > 1 asymptotically approaches an equilibrium number of infected indi-
viduals K , the stochasticity in this problem means that there is a finite extinction time for the infection. The extinction
time is the first passage time to the state n = 0. Once the population of infected individuals goes to zero, there is
no way for new infections to spontaneously develop. The mean first passage time was studied in §4.3.4. We have
an absorbing boundary at n = 1 , since t+(0) = 0, and a reflecting boundary at n = N , since t+(N) = 0 , and Eqn.
4.182 gives the mean first passage time for absorption as

T (n) =

n∑

k=1

φ(k)

N∑

j=k

1

t+(j)φ(j)
, (4.224)

14That is, we measure time in units of the recovery time.
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where15

φ(k) =

k∏

l=1

t−(l)

t+(l)
. (4.225)

The detailed analysis of T (n) is rather tedious, and is described in the appendices to C. Doering et al., Multiscale
Model Simul. 3, 283 (2005). For our purposes, it suffices to consider the behavior of the function φ(n). Let
x ≡ n/N ∈ [0, 1]. Then with y ≡ j/N define

ρ(y) ≡ t+(j)

t−(j)
= Λ(1− y) , (4.226)

in which case, using the trapezoidal rule, and setting x ≡ n/N ,

− lnφ(n) =

n∑

l=1

ln ρ(l/N)

≈ − 1
2 ln ρ(0)− 1

2 ln ρ(x) +N

x∫

0

du ln ρ(u)

= N
{
ln Λ−(1− x) ln Λ− (1− x) ln(1− x) − x

}
− ln Λ− 1

2 ln(1− x) .

(4.227)

In the N → ∞ limit, the maximum occurs at x∗ = (Λ− 1)/Λ, which for Λ > 1 is the scaled mean field equilibrium
population of infected individuals. For x ≈ x∗, the mean extinction time for the infection is therefore

T (x∗) ∼ eNΦ(Λ) , Φ(Λ) = lnΛ− 1 + Λ−1 . (4.228)

The full result, from Doering et al., is

T (x∗) =
Λ

(Λ− 1)2

√
2π

N
eN(ln Λ−1+Λ−1) ×

(
1 +O(N−1)

)
(4.229)

The extinction time is exponentially large in the population size.

Below threshold, when Λ < 1, Doering et al. find

T (x) =
ln(Nx)

1− Λ
+O(1) , (4.230)

which is logarithmic in N . From the mean field dynamics ˙̄n = (Λ − 1)n̄ − Λn̄2, if we are sufficiently close to the
SFP at n̄ = 0 , we can neglect the nonlinear term, in which case the solution becomes n̄(t) = n̄(0) e(Λ−1)t . If we set
n̄(T ) ≡ 1 and n̄(0) = Nx , we obtain T (x) = ln(Nx)/(1− Λ) , in agreement with the above expression.

Fokker-Planck solution

Another approach to this problem is to map the Master equation onto a Fokker-Planck equation, as we did in
§4.3.5. The corresponding FPE is

∂P

∂t
= − ∂

∂x

(
fP
)
+

1

2N

∂2

∂x2
(
gP
)

, (4.231)

15In §4.3.4, we defined φ(a) = 1 where a = 1 is the absorbing boundary here, whereas in Eqn. 4.225 we have φ(1) = t+(1)/t−(1). Since
the mean first passage time T (n) does not change when all φ(n) are multiplied by the same constant, we are free to define φ(a) any way we
please. In this chapter it pleases me to define it as described.
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where

f(x) = (Λ− 1)x− Λx2 = Λ x (x∗ − x)

g(x) = (Λ + 1)x− Λx2 = Λ x (x∗ + 2Λ−1 − x) .
(4.232)

The mean extinction time, from Eqn. 4.63, is

T (x) = 2N

x∫

0

dy

ψ(y)

1∫

y

dz
ψ(z)

g(z)
, (4.233)

where

ψ(x) = exp

{
2N

x∫

0

dy
f(y)

g(y)

}
≡ e2Nσ(x) (4.234)

and

σ(x) = x+ 2Λ−1 ln

(
x∗ + 2Λ−1 − x

x∗ + 2Λ−1

)
. (4.235)

Thus,

T (x) =
2N

Λ

x∫

0

dy

1∫

y

dz
e2Nσ(z) e−2Nσ(y)

z(x∗ + 2Λ−1 − z)
. (4.236)

The z integral is dominated by z ≈ x∗, and the y integral by y ≈ 0. Computing the derivatives for the Taylor
series,

σ(x∗) =
Λ − 1

Λ
− 2

Λ
ln

(
Λ + 1

2

)
, σ′(x∗) = 0 , σ′′(x∗) = − 1

2Λ (4.237)

and also σ(0) = 0 and σ′(0) = (Λ− 1)/(Λ + 1). One then finds

T (x∗) ≈ Λ

(Λ− 1)2

√
2π

NΛ
e2Nσ(x∗) . (4.238)

Comparison of Master and Fokker-Planck equation predictions for extinction times

How does the FPE result compare with the earlier analysis of the extinction time from the Master equation? If we
expand about the threshold value Λ = 1 , writing Λ = 1 + ε , we find

Φ(Λ) = lnΛ− 1 + Λ−1 = 1
2 ε

2 − 2
3 ε

3 + 3
4 ε

4 − 4
5 ε

5 + . . .

2σ(x∗) =
2(Λ− 1)

Λ
− 4

Λ
ln

(
Λ + 1

2

)
= 1

2 ε
2 − 2

3 ε
3 + 35

48 ε
4 − 181

240 ε
5 + . . .

(4.239)

The difference only begins at fourth order in ε viz.

lnTME(x∗)− lnT FPE(x∗) = N

(
ε4

48
− 11 ε5

240
+

11 ε6

160
+ . . .

)
+O(1) , (4.240)

where the superscripts indicate Master equation (ME) and Fokker-Planck equation (FPE), respectively. While the
term inside the parentheses impressively small when ε ≪ 1, it is nevertheless finite, and, critically, it is multiplied
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by N . Thus, the actual mean extinction time, as computed from the original Master equation, is exponentially
larger than the Fokker-Planck result.

What are we to learn from this? The origin of the difference lies in the truncations we had to do in order to derive
the Fokker-Planck equation itself. The FPE fails to accurately capture the statistics of large deviations from the
metastable state. D. Kessler and N. Shnerb, in J. Stat. Phys. 127, 861 (2007), show that the FPE is only valid for
fluctuations about the metastable state whose size is O(N2/3) , whereas to reach the absorbing state requires a
fluctuation of O(N) . As these authors put it, ”In order to get the correct statistics for rare and extreme events one should
base the estimate on the exact Master equation that describes the stochastic process. . . ”. They also derive a real space
WKB method to extract the correct statistics from the Master equation. Another WKB-like treatment, and one
which utilizes the powerful Doi-Peliti field theory formalism, is found in the paper by V. Elgart and A. Kamenev,
Phys. Rev. E 70, 041106 (2004).


