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Chapter 2

Stochastic Processes

2.1 References

– C. Gardiner, Stochastic Methods (4th edition, Springer-Verlag, 2010)
Very clear and complete text on stochastic methods, with many applications.

– N. G. Van Kampen Stochastic Processes in Physics and Chemistry (3rd edition, North-Holland, 2007)
Another standard text. Very readable, but less comprehensive than Gardiner.

– Z. Schuss, Theory and Applications of Stochastic Processes (Springer-Verlag, 2010)
In-depth discussion of continuous path stochastic processes and connections to partial differential equations.

– R. Mahnke, J. Kaupužs, and I. Lubashevsky, Physics of Stochastic Processes (Wiley, 2009)
Introductory sections are sometimes overly formal, but a good selection of topics.

– A. N. Kolmogorov, Foundations of the Theory of Probability (Chelsea, 1956)
The Urtext of mathematical probability theory.
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2 CHAPTER 2. STOCHASTIC PROCESSES

2.2 Introduction to Stochastic Processes

A stochastic process is one which is partially random, i.e. it is not wholly deterministic. Typically the randomness is
due to phenomena at the microscale, such as the effect of fluid molecules on a small particle, such as a piece of dust
in the air. The resulting motion (called Brownian motion in the case of particles moving in a fluid) can be described
only in a statistical sense. That is, the full motion of the system is a functional of one or more independent random
variables. The motion is then described by its averages with respect to the various random distributions.

2.2.1 Diffusion and Brownian motion

Fick’s law (1855) is a phenomenological relationship between number current j and number density gradient ∇n ,
given by j = −D∇n. Combining this with the continuity equation ∂tn + ∇ · j, one arrives at the diffusion
equation1,

∂n

∂t
= ∇·(D∇n) . (2.1)

Note that the diffusion constant D may be position-dependent. The applicability of Fick’s law was experimentally
verified in many different contexts and has applicability to a wide range of transport phenomena in physics,
chemistry, biology, ecology, geology, etc.

The eponymous Robert Brown, a botanist, reported in 1827 on the random motions of pollen grains suspended
in water, which he viewed through a microscope. Apparently this phenomenon attracted little attention until the
work of Einstein (1905) and Smoluchowski (1906), who showed how it is described by kinetic theory, in which the
notion of randomness is essential, and also connecting it to Fick’s laws of diffusion. Einstein began with the ideal
gas law for osmotic pressure, p = nk

B
T . In steady state, the osmotic force per unit volume acting on the solute (e.g.

pollen in water), −∇p, must be balanced by viscous forces. Assuming the solute consists of spherical particles of
radius a, the viscous force per unit volume is given by the hydrodynamic Stokes drag per particle F = −6πηav
times the number density n, where η is the dynamical viscosity of the solvent. Thus, j = nv = −D∇n , where
D = k

B
T/6πaη.

To connect this to kinetic theory, Einstein reasoned that the solute particles were being buffeted about randomly
by the solvent, and he treated this problem statistically. While a given pollen grain is not significantly effected by
any single collision with a water molecule, after some characteristic microscopic time τ the grain has effectively
forgotten it initial conditions. Assuming there are no global currents, on average each grain’s velocity is zero.
Einstein posited that over an interval τ , the number of grains which move a distance within d3∆ of∆ is nφ(∆) d3∆,
where φ(∆) = φ

(
|∆|
)

is isotropic and also normalized according to
∫
d3∆ φ(∆) = 1. Then

n(x, t+ τ) =

∫
d3∆ n(x−∆, t)φ(∆) , (2.2)

Taylor expanding in both space and time, to lowest order in τ one recovers the diffusion equation, ∂tn = D∇2n,
where the diffusion constant is given by

D =
1

6τ

∫
d3∆ φ(∆)∆2 . (2.3)

The diffusion equation with constant D is easily solved by taking the spatial Fourier transform. One then has, in
d spatial dimensions,

∂n̂(k, t)

∂t
= −Dk2n̂(k, t) ⇒ n(x, t) =

∫
ddk

(2π)d
n̂(k, t0) e

−Dk2(t−t0) eik·x . (2.4)

1The equation j = −D∇n is sometimes called Fick’s first law, and the continuity equation ∂tn = −∇·j Fick’s second law.
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If n(x, t0) = δ(x− x0), corresponding to n̂(k, t0) = e−ik·x0 , we have

n(x, t) =
(
4πD|t− t0|

)−d/2
exp

{
− (x− x0)

2

4D|t− t0|

}
, (2.5)

where d is the dimension of space.

WTF just happened?

We’re so used to diffusion processes that most of us overlook a rather striking aspect of the above solution to the
diffusion equation. At t = t0, the probability density is P (x, t = t0) = δ(x− x0), which means all the particles are
sitting at x = x0. For any t > t0, the solution is given by Eqn. 2.5, which is nonzero for all x. If we take a value
of x such that |x− x0| > ct, where c is the speed of light, we see that there is a finite probability, however small,
for particles to diffuse at superluminal speeds. Clearly this is nonsense. The error lies in the diffusion equation
itself, which does not recognize any limiting propagation speed. For most processes, this defect is harmless, as
we are not interested in the extreme tails of the distribution. Diffusion phenomena and the applicability of the
diffusion equation are well-established in virtually every branch of science. To account for a finite propagation
speed, one is forced to consider various generalizations of the diffusion equation. Some examples are discussed
in the appendix §2.7.

2.2.2 Langevin equation

Consider a particle of mass M subjected to dissipative and random forcing. We’ll examine this system in one
dimension to gain an understanding of the essential physics. We write

u̇+ γu =
F

M
+ η(t) . (2.6)

Here, u is the particle’s velocity, γ is the damping rate due to friction, F is a constant external force, and η(t) is a
stochastic random force. This equation, known as the Langevin equation, describes a ballistic particle being buffeted
by random forcing events2. Think of a particle of dust as it moves in the atmosphere. F would then represent the
external force due to gravity and η(t) the random forcing due to interaction with the air molecules. For a sphere
of radius a moving in a fluid of dynamical viscosity η, hydrodynamics gives γ = 6πηa/M , where M is the mass
of the particle. It is illustrative to compute γ in some setting. Consider a micron sized droplet (a = 10−4 cm) of
some liquid of density ρ ∼ 1.0 g/cm3 moving in air at T = 20◦C. The viscosity of air is η = 1.8 × 10−4 g/cm · s
at this temperature3. If the droplet density is constant, then γ = 9η/2ρa2 = 8.1× 104 s−1, hence the time scale for
viscous relaxation of the particle is τ = γ−1 = 12µs. We should stress that the viscous damping on the particle is
of course due to the fluid molecules, in some average ‘coarse-grained’ sense. The random component to the force
η(t) would then represent the fluctuations with respect to this average.

We can easily integrate this equation:

d

dt

(
u eγt

)
=

F

M
eγt + η(t) eγt

u(t) = u(0) e−γt +
F

γM

(
1− e−γt

)
+

t∫

0

ds η(s) eγ(s−t)
(2.7)

2See the appendix in §2.8 for the solution of the Langevin equation for a particle in a harmonic well.
3The cgs unit of viscosity is the Poise (P). 1P = 1 g/cm·s.



4 CHAPTER 2. STOCHASTIC PROCESSES

Note that u(t) is indeed a functional of the random function η(t). We can therefore only compute averages in order
to describe the motion of the system.

The first average we will compute is that of v itself. In so doing, we assume that η(t) has zero mean:
〈
η(t)

〉
= 0.

Then
〈
u(t)

〉
= u(0) e−γt +

F

γM

(
1− e−γt

)
. (2.8)

On the time scale γ−1, the initial conditions u(0) are effectively forgotten, and asymptotically for t≫ γ−1 we have〈
u(t)

〉
→ F/γM , which is the terminal momentum.

Next, consider

〈
u2(t)

〉
=
〈
u(t)

〉2
+

t∫

0

ds1

t∫

0

ds2 e
γ(s1−t) eγ(s2−t)

〈
η(s1) η(s2)

〉
. (2.9)

We now need to know the two-time correlator
〈
η(s1) η(s2)

〉
. We assume that the correlator is a function only of

the time difference ∆s = s1 − s2, and that the random force η(s) has zero average,
〈
η(s)

〉
= 0, and autocorrelation

〈
η(s1) η(s2)

〉
= φ(s1 − s2) . (2.10)

The function φ(s) is the autocorrelation function of the random force. A macroscopic object moving in a fluid is
constantly buffeted by fluid particles over its entire perimeter. These different fluid particles are almost completely
uncorrelated, hence φ(s) is basically nonzero except on a very small time scale τφ , which is the time a single fluid
particle spends interacting with the object. We can take τφ → 0 and approximate

φ(s) ≈ Γ δ(s) . (2.11)

We shall determine the value of Γ from equilibrium thermodynamic considerations below.

With this form for φ(s), we can easily calculate the equal time momentum autocorrelation:

〈
u2(t)

〉
=
〈
u(t)

〉2
+ Γ

t∫

0

ds e2γ(s−t)

=
〈
u(t)

〉2
+
Γ

2γ

(
1− e−2γt

)
.

(2.12)

Consider the case where F = 0 and the limit t ≫ γ−1. We demand that the object thermalize at temperature T .
Thus, we impose the condition

〈
1
2Mu2(t)

〉
= 1

2kB
T =⇒ Γ =

2γk
B
T

M
. (2.13)

This fixes the value of Γ .

We can now compute the general momentum autocorrelator:

〈
u(t)u(t′)

〉
−
〈
u(t)

〉〈
u(t′)

〉
=

t∫

0

ds

t′∫

0

ds′ eγ(s−t) eγ(s
′−t′)

〈
η(s) η(s′)

〉

=
Γ

2γ
e−γ|t−t′| (t, t′ → ∞ , |t− t′| finite) .

(2.14)
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Let’s now compute the position x(t). We find

x(t) =
〈
x(t)

〉
+

1

M

t∫

0

ds

s∫

0

ds1 η(s1) e
γ(s1−s) , (2.15)

where
〈
x(t)

〉
= x(0) +

1

γ

(
u(0)− F

γM

)(
1− e−γt

)
+

Ft

γM
. (2.16)

Note that for γt ≪ 1 we have
〈
x(t)

〉
= x(0) + u(0) t + 1

2M
−1Ft2 + O(t3), as is appropriate for ballistic particles

moving under the influence of a constant force. This long time limit of course agrees with our earlier evaluation
for the terminal velocity,

〈
u(∞)

〉
= F/γM . We next compute the position autocorrelation:

〈
x(t)x(t′)

〉
−
〈
x(t)

〉〈
x(t′)

〉
=

1

M2

t∫

0

ds

t′∫

0

ds′ e−γ(s+s′)

s∫

0

ds1

s′∫

0

ds′1 e
γ(s1+s2)

〈
η(s1) η(s2)

〉

=
2k

B
T

γM
min(t, t′) +O(1) .

In particular, the equal time autocorrelator is

〈
x2(t)

〉
−
〈
x(t)

〉2
=

2k
B
T t

γM
≡ 2D t , (2.17)

at long times, up to terms of order unity. Here,D = Γ/2γ2 = k
B
T/γM is the diffusion constant. For a liquid droplet

of radius a = 1µm moving in air at T = 293K, for which η = 1.8× 10−4P, we have

D =
k

B
T

6πηa
=

(1.38× 10−16 erg/K) (293K)

6π (1.8× 10−4P) (10−4 cm)
= 1.19× 10−7 cm2/s . (2.18)

This result presumes that the droplet is large enough compared to the intermolecular distance in the fluid that one
can adopt a continuum approach and use the Navier-Stokes equations, and then assuming a laminar flow.

If we consider molecular diffusion, the situation is quite a bit different. The diffusion constant is then D = ℓ2/2τ ,
where ℓ is the mean free path and τ is the collision time. Elementary kinetic theory gives that the mean free path
ℓ, collision time τ , number density n, and total scattering cross section σ are related by4 ℓ = v̄τ = 1/

√
2nσ, where

v̄ =
√
8k

B
T/πm is the average particle speed. Approximating the particles as hard spheres, we have σ = 4πa2,

where a is the hard sphere radius. At T = 293K, and p = 1 atm, we have n = p/k
B
T = 2.51×1019 cm−3. Since air is

predominantly composed of N2 molecules, we take a = 1.90× 10−8 cm and m = 28.0 amu = 4.65× 10−23 g, which
are appropriate for N2. We find an average speed of v̄ = 471m/s and a mean free path of ℓ = 6.21×10−6 cm. Thus,
D = 1

2ℓv̄ = 0.146 cm2/s. Though much larger than the diffusion constant for large droplets, this is still too small to
explain common experiences. Suppose we set the characteristic distance scale at d = 10 cm and we ask how much
time a point source would take to diffuse out to this radius. The answer is ∆t = d2/2D = 343 s, which is between
five and six minutes. Yet if someone in the next seat emits a foul odor, you detect the offending emission in on the
order of a second. What this tells us is that diffusion isn’t the only transport process involved in these and like
phenomena. More important are convection currents which distribute the scent much more rapidly.

4The scattering time τ is related to the particle density n, total scattering cross section σ, and mean speed v̄ through the relation nσv̄
rel

τ = 1,

which says that on average one scattering event occurs in a cylinder of cross section σ and length v̄
rel

τ . Here v̄
rel

=
√
v̄ is the mean relative

speed of a pair of particles.
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2.3 Distributions and Functionals

2.3.1 Basic definitions

Let x ∈ R be a random variable, and P (x) a probability distribution for x. The average of any function φ(x) is then

〈
φ(x)

〉
=

∞∫

−∞

dx P (x)φ(x)

/ ∞∫

−∞

dx P (x) . (2.19)

Let η(t) be a random function of t, with η(t) ∈ R, and let P
[
η(t)

]
be the probability distribution functional for η(t).

Then if Φ
[
η(t)

]
is a functional of η(t), the average of Φ is given by

∫
Dη P

[
η(t)

]
Φ
[
η(t)

]
/∫

Dη P
[
η(t)

]
(2.20)

The expression
∫
Dη P [η]Φ[η] is a functional integral. A functional integral is a continuum limit of a multivariable

integral. Suppose η(t) were defined on a set of t values tn = nτ . A functional of η(t) becomes a multivariable
function of the values ηn ≡ η(tn). The metric then becomes Dη =

∏
n dηn .

In fact, for our purposes we will not need to know any details about the functional measure Dη ; we will finesse
this delicate issue5. Consider the generating functional,

Z
[
J(t)

]
=

∫
Dη P [η] exp





∞∫

−∞

dt J(t) η(t)



 . (2.21)

It is clear that

1

Z[J ]

δnZ[J ]

δJ(t1) · · · δJ(tn)

∣∣∣∣∣
J(t)=0

=
〈
η(t1) · · · η(tn)

〉
. (2.22)

The function J(t) is an arbitrary source function. We functionally differentiate with respect to it in order to find
the η-field correlators. The functional derivative δZ

[
J(t)

]
/δJ(s) can be computed by substituting J(t) → J(t) +

ǫ δ(t− s) inside the functional Z[J ], and then taking the ordinary derivative with respect to ε, i.e.

δZ
[
J(t)

]

δJ(s)
=
dZ
[
J(t) + ε δ(t− s)

]

dε

∣∣∣∣
ε=0

. (2.23)

Thus the functional derivative δZ
[
J(t)

]
/δJ(s) tells us how the functional Z[J ] changes when the function J(t) is

replaced by J(t)+ε δ(t−s). Equivalently, one may eschew this ε prescription and use the familiar chain rule from
differential calculus, supplemented by the rule δJ(t)

/
δJ(s) = δ(t− s) .

Let’s compute the generating functional for a class of distributions of the Gaussian form,

P [η] = exp



−

1

2Γ

∞∫

−∞

dt
(
τ2 η̇2 + η2

)




= exp



−

1

2Γ

∞∫

−∞

dω

2π

(
1 + ω2τ2

) ∣∣η̂(ω)
∣∣2


 .

(2.24)

5A discussion of measure for functional integrals is found in R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals.
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Figure 2.1: Discretization of a continuous function η(t). Upon discretization, a functional Φ
[
η(t)

]
becomes an

ordinary multivariable function Φ({ηj}).

Then Fourier transforming the source function J(t), it is easy to see that

Z[J ] = Z[0] · exp




Γ

2

∞∫

−∞

dω

2π

∣∣Ĵ(ω)
∣∣2

1 + ω2τ2



 . (2.25)

Note that with η(t) ∈ R and J(t) ∈ R we have η∗(ω) = η(−ω) and Ĵ∗(ω) = Ĵ(−ω). Transforming back to real time,
we have

Z[J ] = Z[0] · exp





1

2

∞∫

−∞

dt

∞∫

−∞

dt′ J(t)G(t − t′)J(t′)



 , (2.26)

where

G(s) =
Γ

2τ
e−|s|/τ , Ĝ(ω) =

Γ

1 + ω2τ2
(2.27)

is the Green’s function, in real and Fourier space. Note that

∞∫

−∞

ds G(s) = Ĝ(0) = Γ . (2.28)

We can now compute

〈
η(t1) η(t2)

〉
= G(t1 − t2) (2.29)

〈
η(t1) η(t2) η(t3) η(t4)

〉
= G(t1 − t2)G(t3 − t4) +G(t1 − t3)G(t2 − t4) (2.30)

+G(t1 − t4)G(t2 − t3) .

The generalization is now easy to prove, and is known as Wick’s theorem:

〈
η(t1) · · · η(t2n)

〉
=

∑

contractions

G(ti
1
− ti

2
) · · · G(ti

2n−1
− ti

2n
) , (2.31)
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where the sum is over all distinct contractions of the sequence 1·2 · · · 2n into products of pairs. How many terms
are there? Some simple combinatorics answers this question. Choose the index 1. There are (2n − 1) other time
indices with which it can be contracted. Now choose another index. There are (2n − 3) indices with which that
index can be contracted. And so on. We thus obtain

C(n) ≡
{

# of contractions

of 1-2-3 · · · 2n

}
= (2n− 1)(2n− 3) · · · 3 · 1 =

(2n)!

2n n!
. (2.32)

2.3.2 Correlations for the Langevin equation

Now suppose we have the Langevin equation

du

dt
+ γu = η(t) (2.33)

with u(0) = 0. We wish to compute the joint probability density

P (u1, t1; . . . ;uN , tN ) =
〈
δ
(
u1 − u(t1)

)
· · · δ

(
uN − u(tN)

)〉
, (2.34)

where the average is over all realizations of the random variable η(t):

〈
F
[
η(t)

]〉
=

∫
Dη P

[
η(t)

]
F
[
η(t)

]
. (2.35)

Using the integral representation of the Dirac δ-function, we have

P (u1, t1; . . . ;uN , tN ) =

∞∫

0

dω1

2π
· · ·

∞∫

0

dωN

2π
e−i(ω1u1+...+ωNuN )

〈
eiω1u(t1) · · · eiωNu(tN )

〉
. (2.36)

Now integrating the Langevin equation with the initial condition u(0) = 0 gives

u(tj) =

tj∫

0

dt eγ(t−tj) η(t) , (2.37)

and therefore we may write
N∑

j=1

ωj u(tj) =

∞∫

−∞

dt f(t) η(t) (2.38)

with

f(t) =

N∑

j=1

ωj e
γ(t−tj) Θ(t)Θ(tj − t) . (2.39)

We assume that the random variable η(t) is distributed as a Gaussian, with
〈
η(t) η(t′)

〉
= G(t − t′), as described

above. Using our previous results, we may perform the functional integral over η(t) to obtain

〈
exp i

∞∫

−∞

dt f(t) η(t)
〉
= exp



−

1

2

∞∫

−∞

dt

∞∫

−∞

dt′ G(t− t′) f(t) f(t′)





= exp

{
− 1

2

N∑

j,j′=1

Mjj′ ωj ωj′

}
,

(2.40)
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where Mjj′ =M(tj, tj′ ) with

M(t, t′) =

t∫

0

ds

t′∫

0

ds′ G(s− s′) eγ(s−t) eγ(s
′−t′) . (2.41)

We now have

P (u1, t1; . . . ;uN , tN ) =

∞∫

0

dω1

2π
· · ·

∞∫

0

dωN

2π
e−i(ω1u1+...+ωNuN ) exp

{
− 1

2

N∑

j,j′=1

Mjj′ ωj ωj′

}

= det
−1/2(2πM) exp

{
− 1

2

N∑

j,j′=1

M−1
jj′ uj uj′

}
.

(2.42)

In the limit G(s) = Γ δ(s), we have

Mjj′ = Γ

min(tj ,tj′ )∫

0

dt e2γt e−γ(tj+t
j′
)

=
Γ

2γ

(
e−γ|tj−t

j′
| − e−γ(tj+t

j′
)
)
.

(2.43)

From this and the previous expression, we have, assuming t1,2 ≫ γ−1 but making no assumptions about the size
of |t1 − t2| ,

P (u1, t1) =

√
γ

πΓ
e−γu2

1/Γ . (2.44)

The conditional distribution P (u1, t1 |u2, t2) = P (u1, t1;u2, t2)/P (u2, t2) is found to be

P (u1, t1 |u2, t2) =
√

γ/πΓ

1− e−2γ(t
1
−t

2
)
exp

{
− γ

Γ
·
(
u1 − e−γ(t1−t2) u2

)2

1− e−2γ(t
1
−t

2
)

}
. (2.45)

Note that P (u1, t1 |u2, t2) tends to P (u1, t1) independent of the most recent condition, in the limit t1 − t2 ≫ γ−1.

As we shall discuss below, a Markov process is one where, at any given time, the statistical properties of the subse-
quent evolution are fully determined by state of the system at that time. Equivalently, every conditional probability
depends only on the most recent condition. Is u(t) a continuous time Markov process? Yes it is! The reason is that
u(t) satisfies a first order differential equation, hence only the initial condition on u is necessary in order to derive
its probability distribution at any time in the future. Explicitly, we can compute P (u1t1|u2t2, u3t3) and show that
it is independent of u3 and t3 for t1 > t2 > t3. This is true regardless of the relative sizes of tj − tj+1 and γ−1.

While u(t) defines a Markov process, its integral x(t) does not. This is because more information than the initial
value of x is necessary in order to integrate forward to a solution at future times. Since x(t) satisfies a second order
ODE, its conditional probabilities should in principle depend only on the two most recent conditions. We could also
consider the evolution of the pair ϕ = (x, u) in phase space, writing

d

dt

(
x
u

)
=

(
0 1
0 −γ

)(
x
u

)
+

(
0
η(t)

)
, (2.46)

or ϕ̇ = Aϕ + η(t), where A is the above 2 × 2 matrix, and the stochastic term η(t) has only a lower component.
The paths ϕ(t) are also Markovian, because they are determined by a first order set of coupled ODEs. In the limit
where tj−tj+1 ≫ γ−1, x(t) effectively becomes Markovian, because we interrogate the paths on time scales where
the separations are such that the particle has ’forgotten’ its initial velocity.
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2.3.3 General ODEs with random forcing

Now let’s make a leap to the general nth order linear autonomous inhomogeneous ODE

Lt x(t) = η(t) , (2.47)

where η(t) is a random function and where

Lt = an
dn

dtn
+ an−1

dn−1

dtn−1
+ · · ·+ a1

d

dt
+ a0 (2.48)

is an nth order differential operator. We are free, without loss of generality, to choose an = 1. In the appendix in
§2.9 we solve this equation using a Fourier transform method. But if we want to impose a boundary condition at
t = 0, it is more appropriate to consider a Laplace transform.

The Laplace transform x̌(z) is obtained from a function x(t) via

x̌(z) =

∞∫

0

dt e−zt x(t) . (2.49)

The inverse transform is given by

x(t) = 1
2πi

c+i∞∫

c−i∞

dz ezt x̌(z) , (2.50)

where the integration contour is a straight line which lies to the right of any singularities of x̌(z) in the complex z
plane. Now let’s take the Laplace transform of Eqn. 2.47. Note that integration by parts yields

∞∫

0

dt e−zt df

dt
= zf̌(z)− f(0) (2.51)

for any function f(t). Applying this result iteratively, we find that the Laplace transform of Eqn. 2.47 is

L(z) x̌(z) = η̌(z) +R0(z) , (2.52)

where

L(z) = anz
n + an−1z

n−1 + . . .+ a0 (2.53)

is an nth order polynomial in z with coefficients aj for j ∈ {0, . . . , n}, and

R0(z) = an x
(n−1)(0) +

(
zan + an−1

)
x(n−2)(0) + · · ·+

(
zn−1an + . . .+ a1

)
x(0) (2.54)

and x(k)(t) = dkx/dtk. We now have

x̌(z) =
1

L(z)

{
η̌(z) +R0(z)

}
. (2.55)

The formal solution to Eqn. 2.47 is then given by the inverse Laplace transform. One finds

x(t) =

t∫

0

dt′ K(t− t′) η(t′) + xh(t) , (2.56)
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where xh(t) is a solution to the homogeneous equation Lt x(t) = 0, and

K(s) = 1
2πi

c+i∞∫

c−i∞

dz
ezs

L(z)
=

n∑

l=1

ezls

L′(zl)
. (2.57)

Note that K(s) vanishes for s < 0 because then we can close the contour in the far right half plane. The RHS of
the above equation follows from the fundamental theorem of algebra, which allows us to factor L(z) as

L(z) = an(z − z1) · · · (z − zn) , (2.58)

with all the roots zl lying to the left of the contour. In deriving the RHS of Eqn. 2.57, we assume that all roots are
distinct6. The general solution to the homogeneous equation is

xh(t) =
n∑

l=1

Al e
zlt , (2.59)

again assuming the roots are nondegenerate7. In order that the homogeneous solution not grow with time, we
must have Re (zl) ≤ 0 for all l.

For example, if Lt = d
dt + γ , then L(z) = z + γ and K(s) = e−γs. If Lt = d2

dt2 + γ d
dt , then L(z) = z2 + γz and

K(s) = (1− e−γs)/γ.

Let us assume that all the initial derivatives dkx(t)/dtk vanish at t = 0 , hence xh(t) = 0. Now let us compute the
generalization of Eqn. 2.36,

P (x1, t1; . . . ;xN , tN ) =

∞∫

0

dω1

2π
· · ·

∞∫

0

dωN

2π
e−i(ω1x1+...+ωNxN )

〈
eiω1x(t1) · · · eiωNx(tN )

〉

= det
−1/2(2πM) exp

{
− 1

2

N∑

j,j′=1

M−1
jj′ xj xj′

}
,

(2.60)

where

M(t, t′) =

t∫

0

ds

t′∫

0

ds′ G(s− s′)K(t− s)K(t′ − s′) , (2.61)

with G(s − s′) =
〈
η(s) η(s′)

〉
as before. For t ≫ γ−1, we have K(s) = γ−1, and if we take G(s − s′) = Γ δ(s − s′)

we obtain M(t, t′) = Γ min(t, t′)/γ2 = 2Dmin(t, t′). We then have P (x, t) = exp
(
−x2/4Dt

)
/
√
4πDt , as expected.

2.4 The Fokker-Planck Equation

2.4.1 Basic derivation

Suppose x(t) is a stochastic variable. We define the quantity

δx(t) ≡ x(t+ δt)− x(t) , (2.62)

6If two or more roots are degenerate, one can still use this result by first inserting a small spacing ε between the degenerate roots and then
taking ε → 0.

7If a particular root zj appears k times, then one has solutions of the form ezjt, t ezjt, . . . tk−1 ezjt.
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Figure 2.2: Interpretive sketch of the mathematics behind the Chapman-Kolmogorov equation.

and we assume
〈
δx(t)

〉
= F1

(
x(t)

)
δt (2.63)

〈[
δx(t)

]2〉
= F2

(
x(t)

)
δt (2.64)

but
〈[
δx(t)

]n〉
= O

(
(δt)2

)
for n > 2. The n = 1 term is due to drift and the n = 2 term is due to diffusion. Now

consider the conditional probability density, P (x, t |x0, t0), defined to be the probability distribution for x ≡ x(t)
given that x(t0) = x0. The conditional probability density satisfies the composition rule,

P (x2, t2 |x0, t0) =
∞∫

−∞

dx1 P (x2, t2 |x1, t1)P (x1, t1 |x0, t0) , (2.65)

for any value of t1. This is also known as the Chapman-Kolmogorov equation. In words, what it says is that the
probability density for a particle being at x2 at time t2, given that it was at x0 at time t0, is given by the product of
the probability density for being at x2 at time t2 given that it was at x1 at t1, multiplied by that for being at x1 at t1
given it was at x0 at t0, integrated over x1. This should be intuitively obvious, since if we pick any time t1 ∈ [t0, t2],
then the particle had to be somewhere at that time. What is perhaps not obvious is why the conditional probability
P (x2, t2 |x1, t1) does not also depend on (x0, t0). This is so if the system is described by a Markov process, about
we shall have more to say below in §2.6.1. At any rate, a picture is worth a thousand words: see Fig. 2.2.

Proceeding, we may write

P (x, t+ δt |x0, t0) =
∞∫

−∞

dx′ P (x, t+ δt |x′, t)P (x′, t |x0, t0) . (2.66)

Now

P (x, t+ δt |x′, t) =
〈
δ
(
x− δx(t) − x′

)〉

=

{
1 +

〈
δx(t)

〉 d

dx′
+ 1

2

〈[
δx(t)

]2〉 d2

dx′2
+ . . .

}
δ(x− x′) (2.67)

= δ(x− x′) + F1(x
′)
d δ(x − x′)

dx′
δt+ 1

2F2(x
′)
d2δ(x− x′)

dx′2
δt+O

(
(δt)2

)
,
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where the average is over the random variables. We now insert this result into eqn. 2.66, integrate by parts, divide
by δt, and then take the limit δt→ 0. The result is the Fokker-Planck equation,

∂P

∂t
= − ∂

∂x

[
F1(x)P (x, t)

]
+

1

2

∂2

∂x2
[
F2(x)P (x, t)

]
. (2.68)

2.4.2 Brownian motion redux

Let’s apply our Fokker-Planck equation to a description of Brownian motion. From our earlier results, we have
F1(x) = F/γM and F2(x) = 2D . A formal proof of these results is left as an exercise for the reader. The Fokker-
Planck equation is then

∂P

∂t
= −u ∂P

∂x
+D

∂2P

∂x2
, (2.69)

where u = F/γM is the average terminal velocity. If we make a Galilean transformation and define y = x − ut
and s = t , then our Fokker-Planck equation takes the form

∂P

∂s
= D

∂2P

∂y2
. (2.70)

This is known as the diffusion equation. Eqn. 2.69 is also a diffusion equation, rendered in a moving frame.

While the Galilean transformation is illuminating, we can easily solve eqn. 2.69 without it. Let’s take a look at this
equation after Fourier transforming from x to q:

P (x, t) =

∞∫

−∞

dq

2π
eiqx P̂ (q, t) (2.71)

P̂ (q, t) =

∞∫

−∞

dx e−iqx P (x, t) . (2.72)

Then as should be well known to you by now, we can replace the operator ∂
∂x with multiplication by iq, resulting

in
∂

∂t
P̂ (q, t) = −(Dq2 + iqu) P̂ (q, t) , (2.73)

with solution

P̂ (q, t) = e−Dq2t e−iqut P̂ (q, 0) . (2.74)

We now apply the inverse transform to get back to x-space:

P (x, t) =

∞∫

−∞

dq

2π
eiqx e−Dq2t e−iqut

∞∫

−∞

dx′ e−iqx′

P (x′, 0)

=

∞∫

−∞

dx′ P (x′, 0)

∞∫

−∞

dq

2π
e−Dq2t eiq(x−ut−x′) =

∞∫

−∞

dx′ K(x− x′, t)P (x′, 0) ,

(2.75)

where

K(x, t) =
1√
4πDt

e−(x−ut)2/4Dt (2.76)
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is the diffusion kernel. We now have a recipe for obtaining P (x, t) given the initial conditions P (x, 0). If P (x, 0) =
δ(x), describing a particle confined to an infinitesimal region about the origin, then P (x, t) = K(x, t) is the prob-
ability distribution for finding the particle at x at time t. There are two aspects to K(x, t) which merit comment.
The first is that the center of the distribution moves with velocity u. This is due to the presence of the external

force. The second is that the standard deviation σ =
√
2Dt is increasing in time, so the distribution is not only

shifting its center but it is also getting broader as time evolves. This movement of the center and broadening are
what we have called drift and diffusion, respectively.

2.4.3 Ornstein-Uhlenbeck process

Starting from any initial condition P (x, 0), the Fokker-Planck equation for Brownian motion, even with drift,
inexorably evolves the distribution P (x, t) toward an infinitesimal probability uniformly spread throughout all
space. Consider now the Fokker-Planck equation with F2(x) = 2D as before, but with F1(x) = −βx. Thus we
have diffusion but also drift, where the local velocity is −βx. For x > 0, probability which diffuses to the right
will also drift to the left, so there is a competition between drift and diffusion. Who wins?

We can solve this model exactly. Starting with the FPE

∂tP = ∂x(βxP ) +D∂2xP , (2.77)

we first Fourier transform

P̂ (k, t) =

∞∫

−∞

dx P (x, t) e−ikx . (2.78)

Expressed in terms of independent variables k and t, one finds that the FPE becomes

∂tP̂ + βk ∂kP̂ = −Dk2P̂ . (2.79)

This is known as a quasilinear partial differential equation, and a general method of solution for such equations is
the method of characteristics, which is briefly reviewed in appendix §2.10. A quasilinear PDE in N independent
variables can be transformed into N + 1 coupled ODEs. Applying the method to Eqn. 2.79, one finds

P̂ (k, t) = P̂
(
k e−βt, t = 0

)
exp

{
− D

2β

(
1− e−2βt

)
k2
}
. (2.80)

Suppose P (x, 0) = δ(x− x0), in which case P̂ (k, 0) = e−ikx0 . We may now apply the inverse Fourier transform to
obtain

P (x, t) =

√
β

2πD
· 1

1− e−2βt
exp

{
− β

2D

(
x− x0 e

−βt
)2

1− e−2βt

}
. (2.81)

Taking the limit t→ ∞, we obtain the asymptotic distribution

P (x, t → ∞) =

√
β

2πD
e−βx2/2D , (2.82)

which is a Gaussian centered at x = 0, with standard deviation σ =
√
D/β .

Physically, the drift term F1(x) = −βx arises when the particle is confined to a harmonic well. The equation of
motion is then ẍ+ γẋ+ω2

0x = η, which is discussed in the appendix, §2.8. If we average over the random forcing,
then setting the acceleration to zero yields the local drift velocity vdrift = −ω2

0 x/γ, hence β = ω2
0/γ. Solving by

Laplace transform, one has L(z) = z2 + γz + ω2
0 , with roots z± = − γ

2 ±
√

γ2

4 − ω2
0 , and

K(s) =
ez+s − ez−s

z+ − z−
Θ(s) . (2.83)
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Note that Re (z±) < 0. Plugging this result into Eqn. 2.61 and integrating, we find

lim
t→∞

M(t, t) =
γΓ

ω2
0

, (2.84)

hence the asymptotic distribution is

P (x, t→ ∞) =

√
γω2

0

2πΓ
e−γω2

0x
2/2Γ . (2.85)

Comparing with Eqn. 2.82, we once again findD = Γ/2γ2. Does the Langevin particle in a harmonic well describe
an Ornstein-Uhlenbeck process for finite t? It does in the limit γ → ∞ , ω0 → ∞ , Γ → ∞ , with β = ω2

0/γ and
D = Γ/2γ2 finite. In this limit, one has M(t, t) = β−1D

(
1−e−βt

)
. For γ <∞, the velocity relaxation time is finite,

and on time scales shorter than γ−1 the path x(t) is not Markovian.

In the Ornstein-Uhlenbeck model, drift would like to collapse the distribution to a delta-function at x = 0, whereas
diffusion would like to spread the distribution infinitely thinly over all space. In that sense, both terms represent
extremist inclinations. Yet in the limit t → ∞, drift and diffusion gracefully arrive at a grand compromise, with
neither achieving its ultimate goal. The asymptotic distribution is centered about x = 0, but has a finite width.
There is a lesson here for the United States Congress, if only they understood math.

2.5 The Master Equation

Let Pi(t) be the probability that the system is in a quantum or classical state i at time t. Then write

dPi

dt
=
∑

j

(
Wij Pj −Wji Pi

)
, (2.86)

where Wij is the rate at which j makes a transition to i. This is known as the Master equation. Note that we can
recast the Master equation in the form

dPi

dt
= −

∑

j

Γij Pj , (2.87)

with

Γij =

{
−Wij if i 6= j∑′

kWkj if i = j ,
(2.88)

where the prime on the sum indicates that k = j is to be excluded. The constraints on the Wij are that Wij ≥ 0 for
all i, j, and we may take Wii ≡ 0 (no sum on i). Fermi’s Golden Rule of quantum mechanics says that

Wij =
2π

~

∣∣〈 i | V̂ | j 〉
∣∣2 ρ(Ej) , (2.89)

where Ĥ0

∣∣ i
〉
= Ei

∣∣ i
〉
, V̂ is an additional potential which leads to transitions, and ρ(Ei) is the density of final

states at energy Ei. The fact that Wij ≥ 0 means that if each Pi(t = 0) ≥ 0, then Pi(t) ≥ 0 for all t ≥ 0. To see this,
suppose that at some time t > 0 one of the probabilities Pi is crossing zero and about to become negative. But

then eqn. 2.86 says that Ṗi(t) =
∑

j WijPj(t) ≥ 0. So Pi(t) can never become negative.



16 CHAPTER 2. STOCHASTIC PROCESSES

2.5.1 Equilibrium distribution and detailed balance

If the transition rates Wij are themselves time-independent, then we may formally write

Pi(t) =
(
e−Γt

)
ij
Pj(0) . (2.90)

Here we have used the Einstein ‘summation convention’ in which repeated indices are summed over (in this case,
the j index). Note that ∑

i

Γij = 0 , (2.91)

which says that the total probability
∑

i Pi is conserved:

d

dt

∑

i

Pi = −
∑

i,j

Γij Pj = −
∑

j

(
Pj

∑

i

Γij

)
= 0 . (2.92)

We conclude that ~φ = (1, 1, . . . , 1) is a left eigenvector of Γ with eigenvalue λ = 0. The corresponding right
eigenvector, which we write as P eq

i , satisfies ΓijP
eq
j = 0, and is a stationary (i.e. time independent) solution to the

Master equation. Generally, there is only one right/left eigenvector pair corresponding to λ = 0, in which case
any initial probability distribution Pi(0) converges to P eq

i as t→ ∞.

In equilibrium, the net rate of transitions into a state | i 〉 is equal to the rate of transitions out of | i 〉. If, for each
state | j 〉 the transition rate from | i 〉 to | j 〉 is equal to the transition rate from | j 〉 to | i 〉, we say that the rates
satisfy the condition of detailed balance. In other words,

Wij P
eq
j =Wji P

eq
i . (2.93)

Assuming Wij 6= 0 and P eq
j 6= 0, we can divide to obtain

Wji

Wij

=
P eq
j

P eq
i

. (2.94)

Note that detailed balance is a stronger condition than that required for a stationary solution to the Master equa-
tion.

If Γ = Γ t is symmetric, then the right eigenvectors and left eigenvectors are transposes of each other, hence
P eq = 1/N , where N is the dimension of Γ . The system then satisfies the conditions of detailed balance. See
Appendix II (§2.5.3) for an example of this formalism applied to a model of radioactive decay.

2.5.2 Boltzmann’s H-theorem

Suppose for the moment that Γ is a symmetric matrix, i.e. Γij = Γji. Then construct the function

H(t) =
∑

i

Pi(t) lnPi(t) . (2.95)

Then

dH

dt
=
∑

i

dPi

dt

(
1 + lnPi) =

∑

i

dPi

dt
lnPi

= −
∑

i,j

Γij Pj lnPi

=
∑

i,j

Γij Pj

(
lnPj − lnPi

)
,

(2.96)
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where we have used
∑

i Γij = 0. Now switch i↔ j in the above sum and add the terms to get

dH

dt
=

1

2

∑

i,j

Γij

(
Pi − Pj

) (
lnPi − lnPj

)
. (2.97)

Note that the i = j term does not contribute to the sum. For i 6= j we have Γij = −Wij ≤ 0, and using the result

(x− y) (lnx− ln y) ≥ 0 , (2.98)

we conclude
dH

dt
≤ 0 . (2.99)

In equilibrium, P eq
i is a constant, independent of i. We write

P eq
i =

1

Ω
, Ω =

∑

i

1 =⇒ H = − lnΩ . (2.100)

If Γij 6= Γji, we can still prove a version of the H-theorem. Define a new symmetric matrix

W ij ≡Wij P
eq
j =Wji P

eq
i =W ji , (2.101)

and the generalized H-function,

H(t) ≡
∑

i

Pi(t) ln

(
Pi(t)

P eq
i

)
. (2.102)

Then
dH

dt
= −1

2

∑

i,j

W ij

(
Pi

P eq
i

−
Pj

P eq
j

)[
ln

(
Pi

P eq
i

)
− ln

(
Pj

P eq
j

)]
≤ 0 . (2.103)

2.5.3 Formal solution to the Master equation

Recall the Master equation Ṗi = −Γij Pj . The matrix Γij is real but not necessarily symmetric. For such a matrix,

the left eigenvectors φαi and the right eigenvectors ψβ
j are not the same: general different:

φαi Γij = λα φ
α
j

Γij ψ
β
j = λβ ψ

β
i .

(2.104)

Note that the eigenvalue equation for the right eigenvectors is Γψ = λψ while that for the left eigenvectors is
Γ tφ = λφ. The characteristic polynomial is the same in both cases:

F (λ) ≡ det (λ− Γ ) = det (λ− Γ t) , (2.105)

which means that the left and right eigenvalues are the same. Note also that
[
F (λ)

]∗
= F (λ∗), hence the eigenval-

ues are either real or appear in complex conjugate pairs. Multiplying the eigenvector equation for φα on the right

by ψβ
j and summing over j, and multiplying the eigenvector equation for ψβ on the left by φαi and summing over

i, and subtracting the two results yields
(
λα − λβ

) 〈
φα
∣∣ψβ

〉
= 0 , (2.106)

where the inner product is 〈
φ
∣∣ψ
〉
=
∑

i

φi ψi . (2.107)
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We can now demand 〈
φα
∣∣ψβ

〉
= δαβ , (2.108)

in which case we can write

Γ =
∑

α

λα
∣∣ψα

〉〈
φα
∣∣ ⇐⇒ Γij =

∑

α

λα ψ
α
i φ

α
j . (2.109)

We have seen that ~φ = (1, 1, . . . , 1) is a left eigenvector with eigenvalue λ = 0, since
∑

i Γij = 0. We do not know
a priori the corresponding right eigenvector, which depends on other details of Γij . Now let’s expand Pi(t) in the
right eigenvectors of Γ , writing

Pi(t) =
∑

α

Cα(t)ψ
α
i . (2.110)

Then

dPi

dt
=
∑

α

dCα

dt
ψα
i

= −Γij Pj = −
∑

α

Cα Γij ψ
α
j = −

∑

α

λα Cα ψ
α
i ,

(2.111)

and linear independence of the eigenvectors |ψα 〉 allows us to conclude

dCα

dt
= −λα Cα =⇒ Cα(t) = Cα(0) e

−λαt . (2.112)

Hence, we can write

Pi(t) =
∑

α

Cα(0) e
−λαt ψα

i . (2.113)

It is now easy to see that Re (λα) ≥ 0 for all λ, or else the probabilities will become negative. For suppose
Re (λα) < 0 for some α. Then as t → ∞, the sum in eqn. 2.113 will be dominated by the term for which λα has
the largest negative real part; all other contributions will be subleading. But we must have

∑
i ψ

α
i = 0 since

∣∣ψα
〉

must be orthogonal to the left eigenvector ~φα=0 = (1, 1, . . . , 1). Therefore, at least one component of ψα
i (i.e. for

some value of i) must have a negative real part, which means a negative probability!8 As we have already proven
that an initial nonnegative distribution {Pi(t = 0)} will remain nonnegative under the evolution of the Master
equation, we conclude that Pi(t) → P eq

i as t→ ∞, relaxing to the λ = 0 right eigenvector, with Re (λα) ≥ 0 ∀ α.

Poisson process

Consider the Poisson process, for which

Wmn =

{
λ if m = n+ 1

0 if m 6= n+ 1 .
(2.114)

We then have
dPn

dt
= λ

(
Pn−1 − Pn

)
. (2.115)

8Since the probability Pi(t) is real, if the eigenvalue with the smallest (i.e. largest negative) real part is complex, there will be a corresponding
complex conjugate eigenvalue, and summing over all eigenvectors will result in a real value for Pi(t).
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The generating function P (z, t) =
∑∞

n=0 z
nPn(t) then satisfies

∂P

∂t
= λ(z − 1)P ⇒ P (z, t) = e(z−1)λt P (z, 0) . (2.116)

If the initial distribution is Pn(0) = δn,0 , then

Pn(t) =
(λt)n

n!
e−λt , (2.117)

which is known as the Poisson distribution. If we define α ≡ λt, then from Pn = αn e−α/n! we have

〈nk〉 = e−α

(
α
∂

∂α

)k
eα . (2.118)

Thus, 〈n〉 = α , 〈n2〉 = α2 + α , etc.

Radioactive decay

Consider a group of atoms, some of which are in an excited state which can undergo nuclear decay. Let Pn(t) be
the probability that n atoms are excited at some time t. We then model the decay dynamics by

Wmn =





0 if m ≥ n

nγ if m = n− 1

0 if m < n− 1 .

(2.119)

Here, γ is the decay rate of an individual atom, which can be determined from quantum mechanics. The Master
equation then tells us

dPn

dt
= (n+ 1) γ Pn+1 − n γ Pn . (2.120)

The interpretation here is as follows: let
∣∣n
〉

denote a state in which n atoms are excited. ThenPn(t) =
∣∣〈ψ(t) |n 〉

∣∣2.
Then Pn(t) will increase due to spontaneous transitions from |n+1 〉 to |n 〉, and will decrease due to spontaneous
transitions from |n 〉 to |n−1 〉.

The average number of particles in the system is N(t) =
∑∞

n=0 nPn(t). Note that

dN

dt
=

∞∑

n=0

n
[
(n+ 1) γ Pn+1 − n γ Pn

]
= −γ

∞∑

n=0

nPn = −γ N . (2.121)

Thus, N(t) = N(0) e−γt. The relaxation time is τ = γ−1, and the equilibrium distribution is P eq
n = δn,0, which

satisfies detailed balance.

Making use again of the generating function P (z, t) =
∑∞

n=0 z
n Pn(t) , we derive the PDE

∂P

∂t
= γ

∞∑

n=0

zn
[
(n+ 1)Pn+1 − nPn

]
= γ

∂P

∂z
− γz

∂P

∂z
. (2.122)

Thus, we have ∂tP = γ(1 − z) ∂zP , which is solved by any function f(ξ), where ξ = γt− ln(1 − z). Thus, we can
write P (z, t) = f

(
γt− ln(1− z)

)
. Setting t = 0 we have P (z, 0) = f

(
−ln(1 − z)

)
, whence f(u) = P (1 − e−u, 0) is

now given in terms of the initial distribution P (z, t = 0). Thus, the full solution for P (z, t) is

P (z, t) = P
(
1 + (z − 1) e−γt , 0

)
. (2.123)

The total probability is P (z=1, t) =
∑∞

n=0 Pn , which clearly is conserved: P (1, t) = P (1, 0). The average particle

number is then N(t) = ∂z P (z, t)
∣∣
z=1

= e−γt P (1, 0) = e−γtN(0).
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2.6 Formal Theory of Stochastic Processes

Here we follow the presentation in chapter 3 in the book by C. Gardiner. Given a time-dependent random variable
X(t), we define the probability distribution

P (x, t) =
〈
δ
(
x−X(t)

)〉
, (2.124)

where the average is over different realizations of the random process. P (x, t) is a density with units L−d. This
distribution is normalized according to

∫
dx P (x, t) = 1 , where dx = ddx is the differential for the spatial volume,

and does not involve time. If we integrate over some region A, we obtain

PA(t) =

∫

A

dx P (x, t) = probability that X(t) ∈ A . (2.125)

We define the joint probability distributions as follows:

P (x1, t1 ; x2, t2 ; . . . ; xN , tN ) =
〈
δ
(
x1 −X(t1)

)
· · · δ

(
xN −X(tN )

)〉
. (2.126)

From the joint probabilities we may form conditional probability distributions

P (x1, t1 ; x2, t2 ; . . . ; xN , tN |y1, τ1 ; . . . ; yM , τM ) =
P (x1, t1 ; . . . ; xN , tN ; y1, τ1 ; . . . ; yM , τM )

P (y1, τ1 ; . . . ; yM , τM )
. (2.127)

Although the times can be in any order, by convention we order them so they decrease from left to right:

t1 > · · · > tN > τ1 > · · · τM . (2.128)

2.6.1 Markov processes

In a Markov process, any conditional probability is determined by its most recent condition. Thus,

P (x1, t1 ; x2, t2 ; . . . ; xN , tN |y1, τ1 ; . . . ; yM , τM ) = P (x1, t1 ; x2, t2 ; . . . ; xN , tN |y1, τ1) , (2.129)

where the ordering of the times is as in Eqn. 2.128. This definition entails that all probabilities may be constructed
from P (x, t) and from the conditional P (x, t |y, τ). Clearly P (x1, t1 ; x2, t2) = P (x1, t1 |x2, t2)P (x2, t2). At the
next level, we have

P (x1, t1 ; x2, t2 ; x3, t3) = P (x1, t1 |x2, t2 ; x3, t3)P (x2, t2 ; x3, t3)

= P (x1, t1 |x2, t2)P (x2, t2 |x3, t3)P (x3, t3) .

Proceeding thusly, we have

P (x1, t1 ; . . . ; xN , tN) = P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) · · ·P (xN−1, tN−1 |xN , tN )P (xN , tN ) , (2.130)

so long as t1 > t2 > . . . > tN .

Chapman-Kolmogorov equation

The probability density P (x1, t1) can be obtained from the joint probability density P (x1, t1 ; x2, t2) by integrating
over x2:

P (x1, t1) =

∫
dx2 P (x1, t1 ; x2, t2) =

∫
dx2 P (x1, t1 |x2, t2)P (x2, t2) . (2.131)
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Similarly9,

P (x1, t1 |x3, t3) =

∫
dx2 P (x1, t1 |x2, t2 ; x3, t3)P (x2, t2 |x3, t3) . (2.132)

For Markov processes, then,

P (x1, t1 |x3, t3) =

∫
dx2 P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) . (2.133)

For discrete spaces, we have
∫
dx →

∑
x , and

∑
x

2
P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) is a matrix multiplication.

Do Markov processes exist in nature and are they continuous?

A random walk in which each step is independently and identically distributed is a Markov process. Consider
now the following arrangement. You are given a bag of marbles, an initial fraction p0 of which are red, q0 of which
are green, and r0 of which are blue, with p0 + q0 + r0 = 1. Let σj = +1, 0, or −1 according to whether the jth

marble selected is red, green, or blue, respectively, and define Xn =
∑n

j=1 σj , which would correspond to the
position of a random walker who steps either to the right (σj = +1), remain stationary (σj = 0), or steps left
(σj = −1) during each discrete time interval. If the bag is infinite, then {X1, X2 , . . .} is a Markov process. The
probability for σj = +1 remains at p = p0 and is unaffected by the withdrawal of any finite number of marbles
from the bag. But if the contents of the bag are finite, then the probability p changes with discrete time, and in
such a way that cannot be determined from the instantaneous value of Xn alone. Note that if there were only two
colors of marbles, and σj ∈ {+1 , −1}, then given X0 = 0 and knowledge of the initial number of marbles in the
bag, specifying Xn tells us everything we need to know about the composition of the bag at time n. But with three
possibilities σj ∈ {+1 , 0 , −1} we need to know the entire history in order to determine the current values of p, q,

and r. The reason is that the sequences 0000, 0011, 1111 (with 1 ≡ −1) all have the same effect on the displacement
X , but result in a different composition of marbles remaining in the bag.

In physical systems, processes we might model as random have a finite correlation time. We saw above that the
correlator of the random force η(t) in the Langevin equation is written

〈
η(t) η(t+ s)

〉
= φ(s), where φ(s) decays to

zero on a time scale τφ. For time differences |s| < τφ , the system is not Markovian. In addition, the system itself

may exhibit some memory. For example, in the Langevin equation u̇ + γu = η(t), there is a time scale γ−1 over
which the variable p(t) forgets its previous history. Still, if τφ = 0 , u(t) is a Markov process, because the equation
is first order and therefore only the most recent condition is necessary in order to integrate forward from some
past time t = t0 to construct the statistical ensemble of functions u(t) for t > t0. For second order equations, such
as ẍ+γẋ = η(t), two initial conditions are required, hence diffusion paths X(t) are only Markovian on time scales
beyond γ−1, over which the memory of the initial velocity is lost. More generally, if ϕ is an N -component vector
in phase space, and

dϕi

dt
= Ai(ϕ, t) +Bij(ϕ, t) ηj(t) , (2.134)

where we may choose
〈
ηi(t) ηj(t

′)
〉
= δij δ(t− t′), then the path ϕ(t) is a Markov process.

While a random variable X(t) may take values in a continuum, as a function of time it may still exhibit dis-
continuous jumps. That is to say, even though time t may evolve continuously, the sample paths X(t) may be
discontinuous. As an example, consider the Brownian motion of a particle moving in a gas or fluid. On the scale
of the autocorrelation time, the velocity changes discontinuously, while the position X(t) evolves continuously
(although not smoothly). The condition that sample paths X(t) evolve continuously is known as the Lindeberg
condition,

lim
τ→0

1

τ

∫

|x−y|>ε

dy P (y, t+ τ |x, t) = 0 . (2.135)

9Because P (x
1
, t

1
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3
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3
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3
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[

P (x
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·
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]

.
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Figure 2.3: (a) Wiener process sample path W (t). (b) Cauchy process sample path C(t). From K. Jacobs and D. A.
Steck, New J. Phys. 13, 013016 (2011).

If this condition is satisfied, then the sample paths X(t) are continuous with probability one. Two examples:

(1) Wiener process: As we shall discuss below, this is a pure diffusion process with no drift or jumps, with

P (x, t |x′, t′) = 1√
4πD|t− t′|

exp

(
− (x− x′)2

4D|t− t′|

)
(2.136)

in one space dimension. The Lindeberg condition is satisfied, and the sample paths X(t) are continuous.

(2) Cauchy process: This is a process in which sample paths exhibit finite jumps, and hence are not continuous.
In one space dimension,

P (x, t |x′, t′) = |t− t′|
π
[
(x− x′)2 + (t− t′)2

] . (2.137)

Note that in both this case and the Wiener process described above, we have limt−t′→0 P (xt |x′t′) = δ(x−x′).
However in this example the Lindeberg condition is not satisfied.

To simulate, given xn = X(t = nτ), choose y ∈ Db(xn), where Db(xn) is a ball of radius b > ε centered at xn.
Then evaluate the probability p ≡ P (y, (n + 1)τ |x, nτ). If p exceeds a random number drawn from a uniform
distribution on [0, 1], accept and set xn+1 = X

(
(n + 1)τ

)
= y. Else reject and choose a new y and proceed as

before.

2.6.2 Martingales

A Martingale is a stochastic process for which the conditional average of the random variable X(t) does not change
from its most recent condition. That is,

〈
x(t)

∣∣ {y1 τ1 ; y2, τ2 ; . . . ; yM , τM
}〉

=

∫
dx P (x, t |y1, τ1 ; . . . ; yM , τM )x = y1 . (2.138)

In this sense, a Martingale is a stochastic process which represents a ’fair game’. Not every Martingale is a Markov
process, and not every Markov process is a Martingale. The Wiener process is a Martingale.
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One very important fact about Martingales, which we will here derive in d = 1 dimension. For t1 > t2,

〈
x(t1)x(t2)

〉
=

∫
dx1

∫
dx2 P (x1, t1 ; x2, t2)xx2 =

∫
dx1

∫
dx2 P (x1, t1 ; x2, t2)P (x2, t2)x1 x2

=

∫
dx2 P (x2, t2)x2

∫
dx1 P (x1, t1 |x2, t2)x1 =

∫
dx2 P (x2, t2)x

2
2

=
〈
x2(t2)

〉
.

(2.139)

One can further show that, for t2 > t2 > t3 ,
〈[
x(t1)− x(t2)

][
x(t2)− x(t3)

]〉
= 0 , (2.140)

which says that at the level of pair correlations, past performance provides no prediction of future results.

2.6.3 Differential Chapman-Kolmogorov equations

Suppose the following conditions apply:

|y − x| > ε =⇒ lim
τ→0

1

τ
P (y, t+ τ |x, t) =W (y |x, t) (2.141)

lim
τ→0

1

τ

∫

|y−x|<ε

dy (yµ − xµ)P (y, t+ τ |x, t) = Aµ(x, t) +O(ε) (2.142)

lim
τ→0

1

τ

∫

|y−x|<ε

dy (yµ − xµ) (yν − xν)P (y, t+ τ |x, t) = Bµν(x, t) +O(ε) , (2.143)

where the last two conditions hold uniformly in x, t, and ε. Then following §3.4.1 and §3.6 of Gardiner, one obtains
the forward differential Chapman-Kolmogorov equation (DCK+),

∂P (x, t |x′, t′)

∂t
= −

∑

µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
+

1

2

∑

µ,ν

∂2

∂xµ ∂xν

[
Bµν(x, t)P (x, t |x′, t′)

]

+

∫
dy
[
W (x |y, t)P (y, t |x′, t′)−W (y |x, t)P (x, t |x′, t′)

]
,

(2.144)

and the backward differential Chapman-Kolmogorov equation (DCK−),

∂P (x, t |x′, t′)

∂t′
= −

∑

µ

Aµ(x
′, t′)

∂P (x, t |x′, t′)

∂x′µ
+

1

2

∑

µ,ν

Bµν(x
′, t′)

∂2P (x, t |x′, t′)

∂x′µ ∂x
′
ν

+

∫
dyW (y |x′, t′)

[
P (x, t |x′, t′)− P (x, t |y, t′)

]
.

(2.145)

Note that the Lindeberg condition requires that

lim
τ→0

1

τ

∫

|x−y|>ε

dy P (y, t+ τ |x, t) =
∫

|x−y|>ε

dyW (y |x, t) = 0 , (2.146)

which must hold for any ε > 0. Taking the limit ε → 0, we conclude10 W (y |x, t) = 0 if the Lindeberg condition
is satisfied. If there are any jump processes, i.e. if W (y |x, t) does not identically vanish for all values of its
arguments, then Lindeberg is violated, and the paths are discontinuous.

10What about the case y = x, which occurs for ε = 0, which is never actually reached throughout the limiting procedure? The quantity
W (x |x, t) corresponds to the rate at which the system jumps from x to x at time t, which is not a jump process at all. Note that the
contribution from y = x cancels from the DCK± equations. In other words, we can set W (x |x, t) ≡ 0.
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Some applications:

(1) Master equation: If Aµ(x, t) = 0 and Bµν(x, t) = 0, then we have from DCK+,

∂P (x, t |x′, t′)

∂t
=

∫
dy
[
W (x |y, t)P (y, t |x′, t′)−W (y |x, t)P (x, t |x′, t′)

]
. (2.147)

Let’s integrate this equation over a time interval ∆t. Assuming P (x, t |x′, t) = δ(x− x′), we have

P (x, t+∆t |x′, t) =
[
1−∆t

∫
dyW (y |x′, t)

]
δ(x− x′) +W (x |x′, t)∆t . (2.148)

Thus,

Q(x′, t+∆t, t) = 1−∆t

∫
dyW (y |x′, t) (2.149)

is the probability for a particle to remain at x′ over the interval
[
t, t + ∆t

]
given that it was at x′ at time t.

Iterating this relation, we find

Q(x, t, t0) =
(
1− Λ(x, t−∆t)∆t

)(
1− Λ(x, t− 2∆t)∆t

)
· · ·
(
1− Λ(x, t0)∆t

) 1︷ ︸︸ ︷
Q(x, t0, t0)

= P exp

{
−

t∫

t
0

dt′ Λ(x, t′)

}
,

(2.150)

where Λ(x, t) =
∫
dyW (y |x, t) and P is the path ordering operator which places earlier times to the right.

The interpretation of the function W (y |x, t) is that it is the probability density rate for the random variable
X to jump from x to y at time t. Thus, the dimensions of W (y |x, t) are L−d T−1. Such processes are called
jump processes. For discrete state spaces, the Master equation takes the form

∂P (n, t |n′, t′)

∂t
=
∑

m

[
W (n |m, t)P (m, t |n′, t′)−W (m |n, t)P (n, t |n′, t′)

]
. (2.151)

Here W (n |m, t) has units T−1, and corresponds to the rate of transitions from state m to state n at time t.

(2) Fokker-Planck equation: If W (x |y, t) = 0, DCK+ gives

∂P (x, t |x′, t′)

∂t
= −

∑

µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
+ 1

2

∑

µ,ν

∂2

∂xµ ∂xν

[
Bµν(x, t)P (x, t |x′, t′)

]
, (2.152)

which is a more general form of the Fokker-Planck equation we studied in §2.4 above. Defining the average〈
F (x, t)

〉
=
∫
ddx F (x, t)P (x, t |x′, t′) , via integration by parts we derive

d

dt

〈
xµ
〉
=
〈
Aµ

〉

d

dt

〈
xµ xν

〉
=
〈
xµAν

〉
+
〈
Aµ xν

〉
+ 1

2

〈
Dµν +Dνµ

〉
.

(2.153)

For the case where Aµ(x, t) and Bµν(x, t) are constants independent of x and t, we have the solution

P (x, t |x′, t′) = det
−1/2

[
2πB∆t

]
exp

{
− 1

2∆t

(
∆xµ −Aµ ∆t

)
B−1

µν

(
∆xν −Aν ∆t

)
}
, (2.154)
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where ∆x ≡ x−x′ and ∆t ≡ t− t′. This is normalized so that the integral over x is unity. If we subtract out
the drift A∆t, then clearly 〈(

∆xν −Aν ∆t
) (

∆xµ −Aµ ∆t
)〉

= Bµν ∆t , (2.155)

which is diffusive.

(3) Liouville equation: If W (x |y, t) = 0 and Bµν(x, t) = 0, then DCK+ gives

∂P (x, t |x′, t′)

∂t
= −

∑

µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
. (2.156)

This is Liouville’s equation from classical mechanics, also known as the continuity equation. Suppressing
the (x′, t′) variables, the above equation is equivalent to

∂̺

∂t
+∇·(̺v) = 0 , (2.157)

where ̺(x, t) = P (x, t |x′, t′) and v(x, t) = A(x, t). The product of A and P is the current is j = ̺v. To find
the general solution, we assume the initial conditions are P (x, t |x′, t) = δ(x − x′). Then if x(t;x′) is the
solution to the ODE

dx(t)

dt
= A

(
x(t), t

)
(2.158)

with boundary condition x(t′) = x′, then by applying the chain rule, we see that

P (x, t |x′, t′) = δ
(
x− x(t;x′)

)
(2.159)

solves the Liouville equation. Thus, the probability density remains a δ-function for all time.

2.6.4 Stationary Markov processes and ergodic properties

Stationary Markov processes satisfy a time translation invariance:

P (x1, t1 ; . . . ; xN , tN ) = P (x1, t1 + τ ; . . . ; xN , tN + τ) . (2.160)

This means

P (x, t) = P (x)

P (x1, t1 |x2, t2) = P (x1, t1 − t2 |x2, 0) .
(2.161)

Consider the case of one space dimension and define the time average

XT ≡ 1

T

T/2∫

T/2

dt x(t) . (2.162)

We use a bar to denote time averages and angular brackets 〈 · · · 〉 to denote averages over the randomness. Thus,

〈XT 〉 = 〈x〉, which is time-independent for a stationary Markov process. The variance of XT is

Var
(
XT

)
=

1

T 2

T/2∫

T/2

dt

T/2∫

T/2

dt′
〈
x(t)x(t′)

〉
c
, (2.163)



26 CHAPTER 2. STOCHASTIC PROCESSES

where the connected average is 〈AB〉c = 〈AB〉 − 〈A〉〈B〉. We define

C(t1 − t2) ≡ 〈x(t1)x(t2)
〉
=

∞∫

−∞

dx1

∞∫

−∞

dx2 x1 x2 P (x1, t1 ; x2, t2) . (2.164)

If C(τ) decays to zero sufficiently rapidly with τ , for example as an exponential e−γτ , then Var
(
XT

)
→ 0 as

T → ∞, which means that XT→∞ = 〈x〉. Thus the time average is the ensemble average, which means the process
is ergodic.

Wiener-Khinchin theorem

Define the quantity

x̂T (ω) =

T/2∫

T/2

dt x(t) eiωt . (2.165)

The spectral function ST (ω) is given by

ST (ω) =
〈 1

T

∣∣x̂T (ω)
∣∣2
〉
. (2.166)

We are interested in the limit T → ∞. Does S(ω) ≡ ST→∞(ω) exist?

Observe that

〈∣∣x̂T (ω)
∣∣2
〉
=

T/2∫

T/2

dt1

T/2∫

T/2

dt2 e
iω(t2−t1)

C(t1−t2)︷ ︸︸ ︷〈
x(t1)x(t2)

〉

=

T∫

−T

dτ e−iωτ C(τ)
(
T − |τ |

)
.

(2.167)

Thus,

S(ω) = lim
T→∞

∞∫

−∞

dτ e−iωτ C(τ)

(
1− |τ |

T

)
Θ
(
T − |τ |

)
=

∞∫

−∞

dτ e−iωτ C(τ) . (2.168)

The second equality above follows from Lebesgue’s dominated convergence theorem, which you can look up
on Wikipedia11. We therefore conclude the limit exists and is given by the Fourier transform of the correlation
function C(τ) =

〈
x(t)x(t + τ)

〉
.

2.6.5 Approach to stationary solution

We have seen, for example, how in general an arbitrary initial state of the Master equation will converge exponen-
tially to an equilibrium distribution. For stationary Markov processes, the conditional distribution P (x, t |x′, t′)
converges to an equilibrium distribution Peq(x) as t− t′ → ∞. How can we understand this convergence in terms
of the differential Chapman-Kolmogorov equation? We summarize here the results in §3.7.3 of Gardiner.

11If we define the one parameter family of functions CT (τ) = C(τ)
(

1− |τ |
T

)

Θ(T − |τ |), then as T → ∞ the function CT (τ) e−iωτ

converges pointwise to C(τ) e−iωτ , and if |C(τ)| is integrable on R, the theorem guarantees the second equality in Eqn. 2.168.
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Suppose P1(x, t) and P2(x, t) are each solutions to the DCK+ equation, and furthermore that W (x |x′, t), Aµ(x, t),
and Bµν(x, t) are all independent of t. Define the Lyapunov functional

K[P1, P2, t] =

∫
dx
(
P1 ln(P1/P2) + P2 − P1

)
. (2.169)

Since P1,2(x, t) are both normalized, the integrals of the last two terms inside the big round brackets cancel.
Nevertheless, it is helpful to express K in this way since, factoring out P1 from the terms inside the brackets, we
may use f(z) = z − ln z − 1 ≥ 0 for z ∈ R+ , where z = P2/P1. Thus, K ≥ 0, and the minimum value is obtained
for P1(x, t) = P2(x, t).

Next, evaluate the time derivative K̇ :

dK

dt
=

∫
dx

{
∂P1

∂t
·
[
lnP1 − lnP2 + 1

]
− ∂P2

∂t
· P1

P2

}
. (2.170)

We now use DCK+ to obtain ∂tP1,2 and evaluate the contributions due to drift, diffusion, and jump processes.
One finds

(
dK

dt

)

drift

= −
∑

µ

∫
dx

∂

∂xµ

[
Aµ P1 ln

(
P1/P2

)]
(2.171)

(
dK

dt

)

diff

= −1

2

∑

µ,ν

∫
dxBµν

∂ ln(P1/P2)

∂xµ

∂ ln(P1/P2)

∂xν
+

1

2

∫
dx

∂2

∂xµ ∂xν

[
Bµν P1 ln(P1/P2)

]
(2.172)

(
dK

dt

)

jump

=

∫
dx

∫
dx′ W (x |x′)P2(x

′, t)
[
φ′ ln(φ/φ′)− φ+ φ′

]
, (2.173)

where φ(x, t) ≡ P1(x, t)/P2(x, t) in the last line. Dropping the total derivative terms, which we may set to zero at

spatial infinity, we see that K̇drift = 0, K̇diff ≤ 0, and K̇jump ≤ 0. Barring pathological cases12, one has that K(t)
is a nonnegative decreasing function. Since K = 0 when P1(x, t) = P2(x, t) = Peq(x), we see that the Lyapunov
analysis confirms that K is strictly decreasing. If we set P2(x, t) = Peq(x), we conclude that P1(x, t) converges to
Peq(x) as t→ ∞.

2.7 Appendix : Nonlinear diffusion

2.7.1 PDEs with infinite propagation speed

Starting from an initial probability density P (x, t = 0) = δ(x), we saw how Fickian diffusion, described by the
equation ∂tP = ∇·(D∇P ), gives rise to the solution

P (x, t) = (4πDt)−d/2 e−x2/4Dt , (2.174)

for all t > 0, assuming D is a constant. As remarked in §2.2.1, this violates any physical limits on the speed of
particle propagation, including that set by special relativity, because P (x, t) > 0 for all x at any finite value of t.

It’s perhaps good to step back at this point and recall the solution to the one-dimensional discrete random walk,
where after each time increment the walker moves to the right (∆X = 1) with probability p and to the left (∆X =

12See Gardiner, §3.7.3.
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−1) with probability 1 − p. To make things even simpler we’ll consider the case with no drift, i.e. p = 1
2 . The

distribution for X after N time steps is of the binomial form:

PN (X) = 2−N

(
N

1
2 (N −X)

)
. (2.175)

Invoking Stirling’s asymptotic result lnK! = K lnK −K +O(lnK) for K ≫ 1, one has13

PN (X) ≃
√

2

πN
e−X2/2N . (2.176)

We note that the distribution in Eqn. 2.175 is cut off at |X | = N , so that PN (X) = 0 for |X | > N . This reflects the
fact that the walker travels at a fixed speed of one step per time interval. This feature is lost in Eqn. 2.176, because
the approximation which led to this result is not valid in the tails of the distribution. One might wonder about the
results of §2.3 in this context, since we ultimately obtained a diffusion form for P (x, t) using an exact functional
averaging method. However, since we assumed a Gaussian probability functional for the random forcing η(t),
there is a finite probability for arbitrarily large values of the forcing. For example, consider the distribution of the

integrated force φ =
∫ t2
t1
dt η(t):

P (φ,∆t) =

〈
δ

(
φ−

t2∫

t
1

dt η(t)

)〉
=

1√
2πΓ ∆t

e−φ2/2Γ∆t , (2.177)

where ∆t = t2 − t1. This distribution is nonzero for arbitrarily large values of φ.

Mathematically, the diffusion equation is an example of what is known as a parabolic partial differential equation.
The Navier-Stokes equations of hydrodynamics are also parabolic PDEs. The other two classes are called elliptical
and hyperbolic. Paradigmatic examples of these classes include Laplace’s equation (elliptical) and the Helmholtz
equation (hyperbolic). Hyperbolic equations propagate information at finite propagation speed. For second order
PDEs of the form

Aij

∂2Ψ

∂xi ∂xj
+Bi

∂Ψ

∂xi
+ CΨ = S , (2.178)

the PDE is elliptic if the matrix A is positive definite or negative definite, parabolic if A has one zero eigenvalue,
and hyperbolic if A is nondegenerate and indefinite (i.e. one positive and one negative eigenvalue). Accordingly,
one way to remedy the unphysical propagation speed in the diffusion equation is to deform it to a hyperbolic PDE
such as the telegrapher’s equation,

τ
∂2Ψ

∂t2
+
∂Ψ

∂t
+ γΨ = D

∂2Ψ

∂x2
. (2.179)

When γ = 0, the solution for the initial condition Ψ(x, 0) = δ(x) is

Ψ(x, t) =
1√
4Dt

e−t/2τ I0



√(

t

2τ

)2
− x2

4Dτ


Θ

(√
D/τ t− |x|

)
. (2.180)

Note that Ψ(x, t) vanishes for |x| > ct , where c =
√
D/τ is the maximum propagation speed. One can check that

in the limit τ → 0 one recovers the familiar diffusion kernel.

13The prefactor in this equation seems to be twice the expected (2πN)−1/2 , but since each step results in ∆X = ±1, if we start from X
0
= 0

then after N steps X will be even if N is even and odd if N is odd. Therefore the continuum limit for the normalization condition on PN (X)

is
∑

X PN (X) ≈ 1

2

∫∞
−∞ dX PN (X) = 1.
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The telegrapher’s equation

To derive the telegrapher’s equation, consider the section of a transmission line shown in Fig. 2.4. Let V (x, t) be
the electrical potential on the top line, with V = 0 on the bottom (i.e. ground). Per unit length a, the potential
drop along the top line is ∆V = a ∂xV = −IR − L∂tI , and the current drop is ∆I = a ∂xI = −GV − C ∂tV .
Differentiating the first equation with respect to x and using the second for ∂xI , one arrives at Eqn. 2.179 with
τ = LC/(RC +GL), γ = RG/(RC +GL), and D = a2/(RC +GL).

2.7.2 The porous medium and p-Laplacian equations

Another way to remedy this problem with the diffusion equation is to consider some nonlinear extensions thereof14.
Two such examples have been popular in the mathematical literature, the porous medium equation (PME),

∂u

∂t
= ∇2

(
um
)
, (2.181)

and the p-Laplacian equation,
∂u

∂t
= ∇·

(
|∇u|p−2

∇u
)
. (2.182)

Both these equations introduce a nonlinearity whereby the diffusion constant D depends on the field u. For
example, the PME can be rewritten ∂tu = ∇ ·

(
mum−1

∇u
)
, whence D = mum−1. For the p-Laplacian equation,

D = |∇u|p−2. These nonlinearities strangle the diffusion when u or |∇u| gets small, preventing the solution from
advancing infinitely fast.

As its name betokens, the PME describes fluid flow in a porous medium. A fluid moving through a porous
medium is described by three fundamental equations:

(i) Continuity: In a medium with porosity ε, the continuity equation becomes ε ∂t̺ + ∇·(̺v) = 0, where ̺ is
the fluid density. This is because in a volume Ω where the fluid density is changing at a rate ∂t̺, the rate of
change of fluid mass is εΩ ∂t̺.

(ii) Darcy’s law: First articulated in 1856 by the French hydrologist Henry Darcy, this says that the flow ve-
locity is directly proportional to the pressure gradient according to the relation v = −(K/µ)∇p, where the
permeability K depends on the medium but not on the fluid, and µ is the shear viscosity of the fluid.

(iii) Fluid equation of state: This is a relation between the pressure p and the density ̺ of the fluid. For ideal
gases, p = A̺γ where A is a constant and γ = cp/cV is the specific heat ratio.

14See J. L. Vazquez, The Porous Medium Equation (Oxford, 2006).

Figure 2.4: Repeating unit of a transmission line. Credit: Wikipedia
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Putting these three equations together, we obtain

∂̺

∂t
= C∇2

(
̺m
)
, (2.183)

where C = Aγk/(k + 1)εµ and m = 1 + γ.

2.7.3 Illustrative solutions

A class of solution to the PME was discussed in the Russian literature in the early 1950’s in a series of papers by
Zeldovich, Kompaneets, and Barenblatt. The ZKB solution, which is isotropic in d space dimensions, is of the
scaling form,

U(r, t) = t−α F
(
r t−α/d

)
; F (ξ) =

(
C − k ξ2

) 1
m−1

+
, (2.184)

where r = |x| ,
α =

d

(m− 1)d+ 2
, k =

m− 1

2m
· 1

(m− 1)d+ 2
, (2.185)

and the + subscript in the definition of F (ξ) in Eqn. 2.184 indicates that the function is cut off and vanishes when
the quantity inside the round brackets becomes negative. We also take m > 1, which means that α < 1

2d. The
quantity C is determined by initial conditions. The scaling form is motivated by the fact that the PME conserves
the integral of u(x, t) over all space, provided the current j = −mum−1

∇u vanishes at spatial infinity. Explicitly,
we have ∫

ddx U(x, t) = Ωd

∞∫

0

dr rd−1 t−α F
(
r t−α/d

)
= Ωd

∞∫

0

ds sd−1 F (s) , (2.186)

where Ωd is the total solid angle in d space dimensions. The above integral is therefore independent of t, which
means that the integral of U is conserved. Therefore as t → 0, we must have U(x, t = 0) = Aδ(x), where A
is a constant which can be expressed in terms of C, m, and d. We plot the behavior of this solution for the case
m = 2 and d = 1 in Fig. 2.5, and compare and contrast it to the solution of the diffusion equation. Note that the

solutions to the PME have compact support, i.e. they vanish identically for r >
√
C/k tα/d, which is consistent

with a finite maximum speed of propagation. A similar point source solution to the p-Laplacian equation in d = 1
was obtained by Barenblatt:

U(x, t) = t−m
(
C − k |ξ|1+m−1

) m
m−1

, (2.187)

for arbitrary C > 0, with ξ = x t−1/2m, and k = (m− 1)(2m)−(m+1)/m.

To derive the ZKB solution of the porous medium equation, it is useful to write the PME in terms of the ’pressure’
variable v = m

m−1 u
m−1. The PME then takes the form

∂v

∂t
= (m− 1) v∇2v + (∇v)2 . (2.188)

We seek an isotropic solution in d space dimensions, and posit the scaling form

V (x, t) = t−λG
(
r t−µ

)
, (2.189)

where r = |x|. Acting on isotropic functions, the Laplacian is given by ∇2 = ∂2

∂r2 + d−1
r

∂
∂r . Defining ξ = r t−µ, we

have

∂V

∂t
= −t−1

[
λG+ µ ξ G′

]
,

∂V

∂r
= t−(λ+µ)G′ ,

∂2V

∂r2
= t−(λ+2µ)G′′ , (2.190)
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Figure 2.5: Top panel: evolution of the diffusion equation with D = 1 and σ = 1 for times t = 0.1, 0.25, 0.5, 1.0,
and 2.0. Bottom panel: evolution of the porous medium equation with m = 2 and d = 1 and C chosen so that
P (x = 0, t = 0.1) is equal to the corresponding value in the top panel (i.e. the peak of the blue curve).

whence

−
[
λG+ µ ξ G′

]
t−1 =

[
(m− 1)GG′′ + (m− 1) (d− 1) ξ−1GG′ + (G′)2

]
t−2(λ+µ) . (2.191)

At this point we can read off the result λ + µ = 1
2 and eliminate the t variable, which validates our initial scaling

form hypothesis. What remains is

λG+ µ ξG′ + (m− 1)GG′′ + (m− 1)(d− 1) ξ−1GG′ + (G′)2 = 0 . (2.192)

Inspection now shows that this equation has a solution of the form G(ξ) = A− b ξ2. Plugging this in, we find

λ = (m− 1)α , µ =
α

d
, b =

α

2d
, α ≡ d

(m− 1) d+ 2
. (2.193)

The quadratic function G(ξ) = A − b ξ2 goes negative for ξ2 > A/b, which is clearly unphysical in the context of
diffusion. To remedy this, Zeldovich et al. proposed to take the maximum value ofG(ξ) and zero. ClearlyG = 0 is

a solution, hence G(ξ) =
(
A− b ξ2

)
+

is a solution for |ξ| <
√
A/b and for |ξ| >

√
A/b , but what about the points

ξ = ±
√
A/b ? The concern is that the second derivative G′′(ξ) has a delta function singularity at those points,

owing to the discontinuity of G′(ξ). However, an examination of Eqn. 2.192 shows that G′′ is multiplied by G,
and we know that limx→0 x δ(x) = 0. The remaining nonzero terms in this equation are then

[
µ ξ + G′(ξ)

]
G′(ξ) ,
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which agreeably vanishes. So we have a solution of the form15

V (x, t) =
1

t

(
A′ t2α/d − αx2

)
+

, (2.194)

where A′ = 2dA.

2.8 Appendix : Langevin equation for a particle in a harmonic well

Consider next the equation

Ẍ + γẊ + ω2
0X =

F

M
+ η(t) , (2.195)

where F is a constant force. We write X = x0 + x and measure x relative to the potential minimum x0 = F/Mω2
0 ,

yielding
ẍ+ γ ẋ+ ω2

0 x = η(t) . (2.196)

We solve via Laplace transform. Recall

x̌(z) =

∞∫

0

dt e−zt x(t)

x(t) =

∫

C

dz

2πi
e+zt x̌(z) ,

(2.197)

where the contour C proceeds from c− i∞ to c+ i∞ such that all poles of the integrand lie to the left of C. Then

∞∫

0

dt e−zt
(
ẍ+ γ ẋ+ ω2

0 x
)
= −(z + γ)x(0)− ẋ(0) +

(
z2 + γz + ω2

0

)
x̌(z)

=

∞∫

0

dt e−zt η(t) = η̌(z) .

(2.198)

Thus, we have

x̌(z) =
(z + γ)x(0) + ẋ(0)

z2 + γz + ω2
0

+
1

z2 + γz + ω2
0

∞∫

0

dt e−zt η(t) . (2.199)

Now we may write
z2 + γz + ω2

0 = (z − z+)(z − z−) , (2.200)

where z± = − 1
2γ ±

√
1
4γ

2 − ω2
0 . Note that Re (z±) ≤ 0 and that z∓ = −γ − z± .

Performing the inverse Laplace transform, we obtain

x(t) =
x(0)

z+ − z−

(
z+ e

z
−
t − z− e

z+t
)
+

ẋ(0)

z+ − z−

(
ez+t − ez−t

)
+

∞∫

0

ds K(t− s) η(s) , (2.201)

15Actually the result limx→0 x δ(x) = 0 is valid in the distribution sense, i.e. underneath an integral, provided x δ(x) is multiplied by a
nonsingular function of x. Thus, Eqn. 2.194 constitutes a weak solution to the pressure form of the porous medium equation 2.188. Zeldovich
et al. found numerically that cutting off the negative part of A− b ξ2 is appropriate. Mathematically, Vazquez has shown that when the initial
data are taken within a suitable class of integrable functions, the weak solution exists and is unique.
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where

K(t− s) =
Θ(t− s)

(z+ − z−)

(
ez+(t−s) − ez−(t−s)

)
(2.202)

is the response kernel and Θ(t− s) is the step function which is unity for t > s and zero otherwise. The response is
causal, i.e. x(t) depends on η(s) for all previous times s < t, but not for future times s > t. Note that K(τ) decays
exponentially for τ → ∞, if Re(z±) < 0. The marginal case where ω0 = 0 and z+ = 0 corresponds to the diffusion
calculation we performed in the previous section.

It is now easy to compute

〈
x2(t)

〉
c
= Γ

t∫

0

ds K2(s) =
Γ

2ω2
0γ

(t → ∞) (2.203)

〈
ẋ2(t)

〉
c
= Γ

t∫

0

ds K̇2(s) =
Γ

2γ
(t → ∞) , (2.204)

where the connected average is defined by 〈AB〉c = 〈AB〉 − 〈A〉〈B〉. Therefore,

〈
1
2Mẋ2 + 1

2Mω2
0x

2
〉
t→∞

=
MΓ

2γ
. (2.205)

Setting this equal to 2× 1
2kB

T by equipartition again yields Γ = 2γk
B
T/M .

2.9 Appendix : General Linear Autonomous Inhomogeneous ODEs

2.9.1 Solution by Fourier transform

We can also solve general autonomous linear inhomogeneous ODEs of the form

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = ξ(t) . (2.206)

We can write this as
Lt x(t) = ξ(t) , (2.207)

where Lt is the nth order differential operator

Lt =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0 . (2.208)

The general solution to the inhomogeneous equation is given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t, t′) ξ(t′) , (2.209)

where G(t, t′) is the Green’s function. Note that Lt xh(t) = 0. Thus, in order for eqns. 2.207 and 2.209 to be true,
we must have

Lt x(t) =

this vanishes︷ ︸︸ ︷
Lt xh(t) +

∞∫

−∞

dt′ LtG(t, t
′) ξ(t′) = ξ(t) , (2.210)
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which means that

LtG(t, t
′) = δ(t− t′) , (2.211)

where δ(t− t′) is the Dirac δ-function.

If the differential equation Lt x(t) = ξ(t) is defined over some finite or semi-infinite t interval with prescribed
boundary conditions on x(t) at the endpoints, then G(t, t′) will depend on t and t′ separately. For the case we are
now considering, let the interval be the entire real line t ∈ (−∞,∞). Then G(t, t′) = G(t − t′) is a function of the
single variable t− t′.

Note that Lt = L
(

d
dt

)
may be considered a function of the differential operator d

dt . If we now Fourier transform

the equation Lt x(t) = ξ(t), we obtain

∞∫

−∞

dt eiωt ξ(t) =

∞∫

−∞

dt eiωt

{
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

}
x(t)

=

∞∫

−∞

dt eiωt

{
(−iω)n + an−1 (−iω)n−1 + . . .+ a1 (−iω) + a0

}
x(t) .

(2.212)

Thus, if we define

L̂(ω) =
n∑

k=0

ak (−iω)k , (2.213)

then we have L̂(ω) x̂(ω) = ξ̂(ω) , where an ≡ 1. According to the Fundamental Theorem of Algebra, the nth degree

polynomial L̂(ω) may be uniquely factored over the complex ω plane into a product over n roots:

L̂(ω) = (−i)n (ω − ω1)(ω − ω2) · · · (ω − ωn) . (2.214)

If the {ak} are all real, then
[
L̂(ω)

]∗
= L̂(−ω∗), hence if Ω is a root then so is −Ω∗. Thus, the roots appear in pairs

which are symmetric about the imaginary axis. I.e. if Ω = a+ ib is a root, then so is −Ω∗ = −a+ ib.

The general solution to the homogeneous equation is

xh(t) =

n∑

σ=1

Aσ e
−iωσt , (2.215)

which involves n arbitrary complex constants Ai. The susceptibility, or Green’s function in Fourier space, Ĝ(ω) is
then

Ĝ(ω) =
1

L̂(ω)
=

in

(ω − ω1)(ω − ω2) · · · (ω − ωn)
, (2.216)

Note that
[
Ĝ(ω)

]∗
= Ĝ(−ω), which is equivalent to the statement that G(t − t′) is a real function of its argument.

The general solution to the inhomogeneous equation is then

x(t) = xh(t) +

∞∫

−∞

dt′ G(t− t′) ξ(t′) , (2.217)
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where xh(t) is the solution to the homogeneous equation, i.e. with zero forcing, and where

G(t− t′) =

∞∫

−∞

dω

2π
e−iω(t−t′) Ĝ(ω)

= in
∞∫

−∞

dω

2π

e−iω(t−t′)

(ω − ω1)(ω − ω2) · · · (ω − ωn)

=

n∑

σ=1

e−iωσ(t−t′)

i L̂′(ωσ)
Θ(t− t′) ,

(2.218)

where we assume that Imωσ < 0 for all σ. This guarantees causality – the response x(t) to the influence ξ(t′) is
nonzero only for t > t′.

As an example, consider the familiar case

L̂(ω) = −ω2 − iγω + ω2
0

= −(ω − ω+) (ω − ω−) , (2.219)

with ω± = − i
2γ ± β, and β =

√
ω2
0 − 1

4γ
2 . This yields L̂′(ω±) = ∓(ω+ − ω−) = ∓2β , hence according to equation

2.218,

G(s) =

{
e−iω

+
s

iL′(ω+)
+

e−iω
−
s

iL′(ω−)

}
Θ(s)

=

{
e−γs/2 e−iβs

−2iβ
+
e−γs/2 eiβs

2iβ

}
Θ(s) = β−1 e−γs/2 sin(βs)Θ(s) .

(2.220)

Now let us evaluate the two-point correlation function
〈
x(t)x(t′)

〉
, assuming the noise is correlated according to〈

ξ(s) ξ(s′)
〉
= φ(s − s′). We assume t, t′ → ∞ so the transient contribution xh is negligible. We then have

〈
x(t)x(t′)

〉
=

∞∫

−∞

ds

∞∫

−∞

ds′ G(t− s)G(t′ − s′)
〈
ξ(s) ξ(s′)

〉
=

∞∫

−∞

dω

2π
φ̂(ω)

∣∣Ĝ(ω)
∣∣2 eiω(t−t′) . (2.221)

2.9.2 Higher order ODEs

Note that any nth order ODE, of the general form

dnx

dtn
= F

(
x ,

dx

dt
, . . . ,

dn−1x

dtn−1

)
, (2.222)

may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk = dk−1x/dtk−1, with k = 1, . . . , n.

Thus, for k < n we have ϕ̇k = ϕk+1, and ϕ̇n = F . In other words,

ϕ̇︷ ︸︸ ︷

d

dt




ϕ1
...

ϕn−1

ϕn


=

V (ϕ)︷ ︸︸ ︷


ϕ2
...
ϕn

F
(
ϕ1, . . . , ϕp

)


 . (2.223)
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An inhomogeneous linear nth order ODE,

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = ξ(t) (2.224)

may be written in matrix form, as

d

dt




ϕ1

ϕ2
...
ϕn


 =

Q︷ ︸︸ ︷


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−a0 −a1 −a2 · · · −an−1







ϕ1

ϕ2
...
ϕn


+

ξ︷ ︸︸ ︷


0
0
...

ξ(t)


 . (2.225)

Thus,
ϕ̇ = Qϕ+ ξ , (2.226)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous.

For the homogeneous case where ξ(t) = 0, the solution is obtained by exponentiating the constant matrix Qt:

ϕ(t) = exp(Qt)ϕ(0) ; (2.227)

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not autonomous,
then Q = Q(t) is time-dependent, and the solution is given by the path-ordered exponential,

ϕ(t) = P exp

{ t∫

0

dt′Q(t′)

}
ϕ(0) , (2.228)

where P is the path ordering operator which places earlier times to the right. As defined, the equation ϕ̇ = V (ϕ)

is autonomous, since the t-advance mapping gt depends only on t and on no other time variable. However, by
extending the phase space M ∋ ϕ from M → M × R, which is of dimension n + 1, one can describe arbitrary
time-dependent ODEs.

In general, path ordered exponentials are difficult to compute analytically. We will henceforth consider the au-
tonomous case where Q is a constant matrix in time. We will assume the matrix Q is real, but other than that it
has no helpful symmetries. We can however decompose it into left and right eigenvectors:

Qij =
n∑

σ=1

νσ Rσ,i Lσ,j . (2.229)

Or, in bra-ket notation, Q =
∑

σ νσ |Rσ〉〈Lσ|. We adopt the normalization convention
〈
Lσ

∣∣Rσ′

〉
= δσσ′ , where{

νσ
}

are the eigenvalues of Q. The eigenvalues may be real or imaginary. Since the characteristic polynomial
P (ν) = det (ν I − Q) has real coefficients, we know that the eigenvalues of Q are either real or come in complex
conjugate pairs.

Consider, for example, the n = 2 system we studied earlier. Then

Q =

(
0 1

−ω2
0 −γ

)
. (2.230)

The eigenvalues are as before: ν± = − 1
2γ ±

√
1
4γ

2 − ω2
0 . The left and right eigenvectors are

L± =
±1

ν+ − ν−

(
−ν∓ 1

)
, R± =

(
1
ν±

)
. (2.231)
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The utility of working in a left-right eigenbasis is apparent once we reflect upon the result

f(Q) =
n∑

σ=1

f(νσ)
∣∣Rσ

〉 〈
Lσ

∣∣ (2.232)

for any function f . Thus, the solution to the general autonomous homogeneous case is

∣∣ϕ(t)
〉
=

n∑

σ=1

eνσt
∣∣Rσ

〉 〈
Lσ

∣∣ϕ(0)
〉

ϕi(t) =

n∑

σ=1

eνσtRσ,i

n∑

j=1

Lσ,j ϕj(0) .

(2.233)

If Re (νσ) ≤ 0 for all σ, then the initial conditions ϕ(0) are forgotten on time scales τσ = ν−1
σ . Physicality demands

that this is the case.

Now let’s consider the inhomogeneous case where ξ(t) 6= 0. We begin by recasting eqn. 2.226 in the form

d

dt

(
e−Qt ϕ

)
= e−Qt ξ(t) . (2.234)

We can integrate this directly:

ϕ(t) = eQt ϕ(0) +

t∫

0

ds eQ(t−s) ξ(s) . (2.235)

In component notation,

ϕi(t) =

n∑

σ=1

eνσtRσ,i

〈
Lσ

∣∣ϕ(0)
〉
+

n∑

σ=1

Rσ,i

t∫

0

ds eνσ(t−s)
〈
Lσ

∣∣ ξ(s)
〉
. (2.236)

Note that the first term on the RHS is the solution to the homogeneous equation, as must be the case when ξ(s) = 0.

The solution in eqn. 2.236 holds for general Q and ξ(s). For the particular form of Q and ξ(s) in eqn. 2.225, we
can proceed further. For starters, 〈Lσ|ξ(s)〉 = Lσ,n ξ(s). We can further exploit a special feature of the Q matrix
to analytically determine all its left and right eigenvectors. Applying Q to the right eigenvector |Rσ〉 , we find
Rσ,j = νσ Rσ,j−1 for j > 1. We are free to choose Rσ,1 = 1 for all σ and defer the issue of normalization to the

derivation of the left eigenvectors. Thus, we obtain the pleasingly simple result, Rσ,k = νk−1
σ . Applying Q to the

left eigenvector 〈Lσ| , we obtain

−a0 Lσ,n = νσ Lσ,1

Lσ,j−1 − aj−1 Lσ,n = νσ Lσ,j (j > 1) .
(2.237)

From these equations we may derive

Lσ,k = −
Lσ,n

νσ

k−1∑

j=0

aj ν
j−k−1
σ =

Lσ,n

νσ

n∑

j=k

aj ν
j−k−1
σ . (2.238)

The equality in the above equation is derived using the result P (νσ) =
∑n

j=0 aj ν
j
σ = 0. Recall also that an ≡ 1.

We now impose the normalization condition,

n∑

k=1

Lσ,kRσ,k = 1 . (2.239)
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This condition determines our last remaining unknown quantity (for a given σ), Lσ,p :

〈
Lσ

∣∣Rσ

〉
= Lσ,n

n∑

k=1

k ak ν
k−1
σ = P ′(νσ)Lσ,n , (2.240)

where P ′(ν) is the first derivative of the characteristic polynomial. Thus, we find Lσ,n = 1/P ′(νσ) .

Now let us evaluate the general two-point correlation function,

Cjj′ (t, t
′) ≡

〈
ϕj(t)ϕj′ (t

′)
〉
−
〈
ϕj(t)

〉 〈
ϕj′ (t

′)
〉
. (2.241)

We write

〈
ξ(s) ξ(s′)

〉
= φ(s− s′) =

∞∫

−∞

dω

2π
φ̂(ω) e−iω(s−s′) . (2.242)

When φ̂(ω) is constant, we have
〈
ξ(s) ξ(s′)

〉
= φ̂(t) δ(s − s′). This is the case of so-called white noise, when all

frequencies contribute equally. The more general case when φ̂(ω) is frequency-dependent is known as colored
noise. Appealing to eqn. 2.236, we have

Cjj′ (t, t
′) =

∑

σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1

σ′

P ′(νσ′ )

t∫

0

ds eνσ(t−s)

t′∫

0

ds′ eνσ′ (t′−s′) φ(s− s′) (2.243)

=
∑

σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1

σ′

P ′(νσ′ )

∞∫

−∞

dω

2π

φ̂(ω) (e−iωt − eνσt)(eiωt′ − eνσ′ t′)

(ω − iνσ)(ω + iνσ′)
. (2.244)

In the limit t, t′ → ∞, assuming Re (νσ) < 0 for all σ (i.e. no diffusion), the exponentials eνσt and eνσ′ t′ may be
neglected, and we then have

Cjj′ (t, t
′) =

∑

σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1

σ′

P ′(νσ′)

∞∫

−∞

dω

2π

φ̂(ω) e−iω(t−t′)

(ω − iνσ)(ω + iνσ′)
. (2.245)

2.9.3 Kramers-Krönig relations

Suppose χ̂(ω) ≡ Ĝ(ω) is analytic in the UHP16. Then for all ν, we must have

∞∫

−∞

dν

2π

χ̂(ν)

ν − ω + iǫ
= 0 , (2.246)

where ǫ is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming χ̂(ω) vanishes
sufficiently rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak restriction on χ̂(ω),
given the fact that the denominator already causes the integrand to vanish as |ω|−1.

Let us examine the function
1

ν − ω + iǫ
=

ν − ω

(ν − ω)2 + ǫ2
− iǫ

(ν − ω)2 + ǫ2
. (2.247)

16In this section, we use the notation χ̂(ω) for the susceptibility, rather than Ĝ(ω)



2.9. APPENDIX : GENERAL LINEAR AUTONOMOUS INHOMOGENEOUS ODES 39

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the limit ǫ → 0,
is equivalent to taking a principal part of the integral. That is, for any function F (ν) which is regular at ν = ω,

lim
ǫ→0

∞∫

−∞

dν

2π

ν − ω

(ν − ω)2 + ǫ2
F (ν) ≡ ℘

∞∫

−∞

dν

2π

F (ν)

ν − ω
. (2.248)

The principal part symbol ℘ means that the singularity at ν = ω is elided, either by smoothing out the function
1/(ν − ǫ) as above, or by simply cutting out a region of integration of width ǫ on either side of ν = ω.

The imaginary part is more interesting. Let us write

h(u) ≡ ǫ

u2 + ǫ2
. (2.249)

For |u| ≫ ǫ, h(u) ≃ ǫ/u2, which vanishes as ǫ → 0. For u = 0, h(0) = 1/ǫ which diverges as ǫ → 0. Thus, h(u) has
a huge peak at u = 0 and rapidly decays to 0 as one moves off the peak in either direction a distance greater that
ǫ. Finally, note that

∞∫

−∞

du h(u) = π , (2.250)

a result which itself is easy to show using contour integration. Putting it all together, this tells us that

lim
ǫ→0

ǫ

u2 + ǫ2
= πδ(u) . (2.251)

Thus, for positive infinitesimal ǫ,

1

u± iǫ
=
℘

u
∓ iπδ(u) , (2.252)

a most useful result.

We now return to our initial result 2.246, and we separate χ̂(ω) into real and imaginary parts:

χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) . (2.253)

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore have, for
every real value of ω,

0 =

∞∫

−∞

dν

2π

[
χ′(ν) + iχ′′(ν)

] [ ℘

ν − ω
− iπδ(ν − ω)

]
. (2.254)

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig relations:

χ′(ω) = +℘

∞∫

−∞

dν

π

χ̂′′(ν)

ν − ω
(2.255)

χ′′(ω) = −℘
∞∫

−∞

dν

π

χ̂′(ν)

ν − ω
. (2.256)



40 CHAPTER 2. STOCHASTIC PROCESSES

2.10 Appendix : Method of Characteristics

2.10.1 Quasilinear partial differential equations

Consider the quasilinear PDE

a1(x, φ)
∂φ

∂x1
+ a2(x, φ)

∂φ

∂x2
+ . . .+ aN (x, φ)

∂φ

∂xN
= b(x, φ) . (2.257)

This PDE is called ‘quasilinear’ because it is linear in the derivatives ∂φ/∂xj . The N independent variables are
the elements of the vector x = (x1, . . . , xN ). A solution is a function φ(x) which satisfies the PDE.

Now consider a curve x(s) parameterized by a single real variable s satisfying

dxj
ds

= aj
(
x, φ(x)

)
, (2.258)

where φ(x) is a solution of eqn. 2.257. Along such a curve, which is called a characteristic, the variation of φ is

dφ

ds
=

N∑

j=1

∂φ

∂xj

dxj
ds

= b
(
x(s), φ

)
. (2.259)

Thus, we have converted our PDE into a set of N + 1 ODEs. To integrate, we must supply some initial conditions
of the form

g
(
x, φ)

∣∣∣
s=0

= 0 . (2.260)

This defines an (N − 1)-dimensional hypersurface, parameterized by {ζ1, . . . , ζN−1}:

xj(s = 0) = hj(ζ1, . . . , ζN−1) , j ∈ {1, . . . , N}
φ(s = 0) = f(ζ1, . . . , ζN−1) .

(2.261)

If we can solve for all the characteristic curves, then the solution of the PDE follows. For every x, we identify the
characteristic curve upon which x lies. The characteristics are identified by their parameters (ζ1, . . . , ζN−1). The
solution is then φ(x) = φ(s; ζ1, . . . , ζN−1). If two or more characteristics cross, the solution is multi-valued, or a
shock has occurred.

2.10.2 Example

Consider the PDE

φt + t2 φx = −xφ . (2.262)

We identify a1(t, x, φ) = 1 and a2(t, x, φ) = t2, as well as b(t, x, φ) = −xφ. The characteristics are curves
(
t(s), x(s)

)

satisfing
dt

ds
= 1 ,

dx

ds
= t2 . (2.263)

The variation of φ along each of the characteristics is given by

dφ

ds
= −xφ . (2.264)
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The initial data are expressed parametrically as

t(s = 0) = 0 , x(s = 0) = ζ , φ(s = 0) = f(ζ) . (2.265)

We now solve for the characteristics. We have

dt

ds
= 1 ⇒ t(s, ζ) = s . (2.266)

It then follows that
dx

ds
= t2 = s2 ⇒ x(s, ζ) = ζ + 1

3s
3 . (2.267)

Finally, we have
dφ

ds
= −xφ = −

(
ζ + 1

3s
3
)
φ ⇒ φ(s, ζ) = f(ζ) exp

(
− 1

12s
4 − sζ

)
. (2.268)

We may now eliminate (ζ, s) in favor of (x, t), writing s = t and ζ = x− 1
3 t

3, yielding the solution

φ(x, t) = φ
(
x− 1

3 t
3, t = 0

)
exp

(
1
4 t

4 − xt
)
. (2.269)


