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Chapter 1

Fundamentals of Probability
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2 CHAPTER 1. FUNDAMENTALS OF PROBABILITY

1.2 Basic Concepts

Here we recite the basics of probability theory.

1.2.1 Fundamental definitions

The natural mathematical setting is set theory. Sets are generalized collections of objects. The basics: ω ∈ A is a
binary relation which says that the object ω is an element of the set A. Another binary relation is set inclusion. If
all members of A are in B, we write A ⊆ B. The union of sets A and B is denoted A ∪ B and the intersection of A
and B is denoted A ∩B. The Cartesian product of A and B, denoted A ×B, is the set of all ordered elements (a, b)
where a ∈ A and b ∈ B.

Some details: If ω is not in A, we write ω /∈ A. Sets may also be objects, so we may speak of sets of sets, but
typically the sets which will concern us are simple discrete collections of numbers, such as the possible rolls of a
die {1,2,3,4,5,6}, or the real numbers R, or Cartesian products such as RN . If A ⊆ B but A 6= B, we say that A is a
proper subset of B and write A ⊂ B. Another binary operation is the set difference A\B, which contains all ω such
that ω ∈ A and ω /∈ B.

In probability theory, each object ω is identified as an event. We denote by Ω the set of all events, and ∅ denotes the
set of no events. There are three basic axioms of probability:

i) To each set A is associated a non-negative real number P (A), which is called the probability of A.

ii) P (Ω) = 1.

iii) If {Ai} is a collection of disjoint sets, i.e. if Ai ∩ Aj = ∅ for all i 6= j, then

P
(⋃

i

Ai

)
=
∑

i

P (Ai) . (1.1)

From these axioms follow a number of conclusions. Among them, let ¬A = Ω\A be the complement of A, i.e. the set
of all events not in A. Then since A ∪ ¬A = Ω, we have P (¬A) = 1− P (A). Taking A = Ω, we conclude P (∅) = 0.

The meaning of P (A) is that if events ω are chosen from Ω at random, then the relative frequency for ω ∈ A
approaches P (A) as the number of trials tends to infinity. But what do we mean by ’at random’? One meaning we
can impart to the notion of randomness is that a process is random if its outcomes can be accurately modeled using
the axioms of probability. This entails the identification of a probability space Ω as well as a probability measure P .
For example, in the microcanonical ensemble of classical statistical physics, the space Ω is the collection of phase
space points ϕ = {q1, . . . , qn, p1, . . . , pn} and the probability measure is dµ = Σ−1(E)

∏n
i=1 dqi dpi δ

(
E −H(q, p)

)
,

so that for A ∈ Ω the probability of A is P (A) =
∫
dµ χ

A(ϕ), where χ
A(ϕ) = 1 if ϕ ∈ A and χ

A(ϕ) = 0 if ϕ /∈ A is
the characteristic function of A. The quantity Σ(E) is determined by normalization:

∫
dµ = 1.

1.2.2 Bayesian statistics

We now introduce two additional probabilities. The joint probability for sets A and B together is written P (A∩B).
That is, P (A ∩B) = Prob[ω ∈ A and ω ∈ B]. For example, A might denote the set of all politicians, B the set of all
American citizens, and C the set of all living humans with an IQ greater than 60. Then A ∩B would be the set of
all politicians who are also American citizens, etc. Exercise: estimate P (A ∩B ∩ C).
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The conditional probability of B given A is written P (B|A). We can compute the joint probability P (A ∩ B) =
P (B ∩ A) in two ways:

P (A ∩B) = P (A|B) · P (B) = P (B|A) · P (A) . (1.2)

Thus,

P (A|B) =
P (B|A)P (A)

P (B)
, (1.3)

a result known as Bayes’ theorem. Now suppose the ‘event space’ is partitioned as {Ai}. Then

P (B) =
∑

i

P (B|Ai)P (Ai) . (1.4)

We then have

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

, (1.5)

a result sometimes known as the extended form of Bayes’ theorem. When the event space is a ‘binary partition’
{A,¬A}, we have

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|¬A)P (¬A) . (1.6)

Note that P (A|B) + P (¬A|B) = 1 (which follows from ¬¬A = A).

As an example, consider the following problem in epidemiology. Suppose there is a rare but highly contagious
disease A which occurs in 0.01% of the general population. Suppose further that there is a simple test for the
disease which is accurate 99.99% of the time. That is, out of every 10,000 tests, the correct answer is returned 9,999
times, and the incorrect answer is returned only once. Now let us administer the test to a large group of people
from the general population. Those who test positive are quarantined. Question: what is the probability that
someone chosen at random from the quarantine group actually has the disease? We use Bayes’ theorem with the
binary partition {A,¬A}. Let B denote the event that an individual tests positive. Anyone from the quarantine
group has tested positive. Given this datum, we want to know the probability that that person has the disease.
That is, we want P (A|B). Applying eqn. 1.6 with

P (A) = 0.0001 , P (¬A) = 0.9999 , P (B|A) = 0.9999 , P (B|¬A) = 0.0001 ,

we find P (A|B) = 1
2 . That is, there is only a 50% chance that someone who tested positive actually has the disease,

despite the test being 99.99% accurate! The reason is that, given the rarity of the disease in the general population,
the number of false positives is statistically equal to the number of true positives.

In the above example, we had P (B|A) + P (B|¬A) = 1, but this is not generally the case. What is true instead
is P (B|A) + P (¬B|A) = 1. Epidemiologists define the sensitivity of a binary classification test as the fraction
of actual positives which are correctly identified, and the specificity as the fraction of actual negatives that are
correctly identified. Thus, se = P (B|A) is the sensitivity and sp = P (¬B|¬A) is the specificity. We then have
P (B|¬A) = 1− P (¬B|¬A). Therefore,

P (B|A) + P (B|¬A) = 1 + P (B|A)− P (¬B|¬A) = 1 + se− sp . (1.7)

In our previous example, se = sp = 0.9999, in which case the RHS above gives 1. In general, if P (A) ≡ f is the
fraction of the population which is afflicted, then

P (infected | positive) = f · se
f · se+ (1− f) · (1 − sp)

. (1.8)

For continuous distributions, we speak of a probability density. We then have

P (y) =

∫
dx P (y|x)P (x) (1.9)
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and

P (x|y) = P (y|x)P (x)∫
dx′ P (y|x′)P (x′)

. (1.10)

The range of integration may depend on the specific application.

The quantities P (Ai) are called the prior distribution. Clearly in order to compute P (B) or P (Ai|B) we must know
the priors, and this is usually the weakest link in the Bayesian chain of reasoning. If our prior distribution is not
accurate, Bayes’ theorem will generate incorrect results. One approach to approximating prior probabilities P (Ai)
is to derive them from a maximum entropy construction.

1.2.3 Random variables and their averages

Consider an abstract probability space X whose elements (i.e. events) are labeled by x. The average of any function
f(x) is denoted as Ef or 〈f〉, and is defined for discrete sets as

Ef = 〈f〉 =
∑

x∈X

f(x)P (x) , (1.11)

where P (x) is the probability of x. For continuous sets, we have

Ef = 〈f〉 =
∫

X

dx f(x)P (x) . (1.12)

Typically for continuous sets we have X = R or X = R≥0. Gardiner and other authors introduce an extra symbol,
X , to denote a random variable, with X(x) = x being its value. This is formally useful but notationally confusing,
so we’ll avoid it here and speak loosely of x as a random variable.

When there are two random variables x ∈ X and y ∈ Y , we have Ω = X × Y is the product space, and

Ef(x, y) = 〈f(x, y)〉 =
∑

x∈X

∑

y∈Y

f(x, y)P (x, y) , (1.13)

with the obvious generalization to continuous sets. This generalizes to higher rank products, i.e. xi ∈ Xi with
i ∈ {1, . . . , N}. The covariance of xi and xj is defined as

Cij ≡
〈(
xi − 〈xi〉

)(
xj − 〈xj〉

)〉
= 〈xixj〉 − 〈xi〉〈xj〉 . (1.14)

If f(x) is a convex function then one has
Ef(x) ≥ f(Ex) . (1.15)

For continuous functions, f(x) is convex if f ′′(x) ≥ 0 everywhere1. If f(x) is convex on some interval [a, b] then
for x1,2 ∈ [a, b] we must have

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2) , (1.16)

where λ ∈ [0, 1]. This is easily generalized to

f
(∑

n

pnxn

)
≤
∑

n

pnf(xn) , (1.17)

where pn = P (xn), a result known as Jensen’s theorem.

1A function g(x) is concave if −g(x) is convex.
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1.3 Entropy and Probability

1.3.1 Entropy and information theory

It was shown in the classic 1948 work of Claude Shannon that entropy is in fact a measure of information2. Suppose
we observe that a particular event occurs with probability p. We associate with this observation an amount of
information I(p). The information I(p) should satisfy certain desiderata:

1 Information is non-negative, i.e. I(p) ≥ 0.

2 If two events occur independently so their joint probability is p1 p2, then their information is additive, i.e.
I(p1p2) = I(p1) + I(p2).

3 I(p) is a continuous function of p.

4 There is no information content to an event which is always observed, i.e. I(1) = 0.

From these four properties, it is easy to show that the only possible function I(p) is

I(p) = −A ln p , (1.18)

where A is an arbitrary constant that can be absorbed into the base of the logarithm, since logb x = lnx/ ln b. We
will take A = 1 and use e as the base, so I(p) = − ln p. Another common choice is to take the base of the logarithm
to be 2, so I(p) = − log2 p. In this latter case, the units of information are known as bits. Note that I(0) = ∞. This
means that the observation of an extremely rare event carries a great deal of information3

Now suppose we have a set of events labeled by an integer n which occur with probabilities {pn}. What is
the expected amount of information in N observations? Since event n occurs an average of Npn times, and the
information content in pn is − ln pn, we have that the average information per observation is

S =
〈IN 〉
N

= −
∑

n

pn ln pn , (1.19)

which is known as the entropy of the distribution. Thus, maximizing S is equivalent to maximizing the information
content per observation.

Consider, for example, the information content of course grades. As we shall see, if the only constraint on the
probability distribution is that of overall normalization, then S is maximized when all the probabilities pn are
equal. The binary entropy is then S = log2 Γ , since pn = 1/Γ . Thus, for pass/fail grading, the maximum average
information per grade is − log2(

1
2 ) = log2 2 = 1 bit. If only A, B, C, D, and F grades are assigned, then the

maximum average information per grade is log2 5 = 2.32 bits. If we expand the grade options to include {A+, A,
A-, B+, B, B-, C+, C, C-, D, F}, then the maximum average information per grade is log2 11 = 3.46 bits.

Equivalently, consider, following the discussion in vol. 1 of Kardar, a random sequence {n1, n2, . . . , nN} where
each element nj takes one of K possible values. There are then KN such possible sequences, and to specify one of

them requires log2(K
N ) = N log2 K bits of information. However, if the value n occurs with probability pn, then

on average it will occur Nn = Npn times in a sequence of length N , and the total number of such sequences will
be

g(N) =
N !

∏K
n=1 Nn!

. (1.20)

2See ‘An Introduction to Information Theory and Entropy’ by T. Carter, Santa Fe Complex Systems Summer School, June 2011. Available
online at http://astarte.csustan.edu/∼tom/SFI-CSSS/info-theory/info-lec.pdf.

3My colleague John McGreevy refers to I(p) as the surprise of observing an event which occurs with probability p. I like this very much.
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In general, this is far less that the total possible number KN , and the number of bits necessary to specify one from
among these g(N) possibilities is

log2 g(N) = log2(N !)−
K∑

n=1

log2(Nn!) ≈ −N
K∑

n=1

pn log2 pn , (1.21)

up to terms of order unity. Here we have invoked Stirling’s approximation. If the distribution is uniform, then we
have pn = 1

K for all n ∈ {1, . . . ,K}, and log2 g(N) = N log2 K .

1.3.2 Probability distributions from maximum entropy

We have shown how one can proceed from a probability distribution and compute various averages. We now
seek to go in the other direction, and determine the full probability distribution based on a knowledge of certain
averages.

At first, this seems impossible. Suppose we want to reproduce the full probability distribution for an N -step
random walk from knowledge of the average 〈X〉 = (2p − 1)N , where p is the probability of moving to the right
at each step (see Appendix §1.6). The problem seems ridiculously underdetermined, since there are 2N possible
configurations for an N -step random walk: σj = ±1 for j = 1, . . . , N . Overall normalization requires

∑

{σj}

P (σ1, . . . , σN ) = 1 , (1.22)

but this just imposes one constraint on the 2N probabilities P (σ1, . . . , σN ), leaving 2N−1 overall parameters. What
principle allows us to reconstruct the full probability distribution

P (σ1, . . . , σN ) =

N∏

j=1

(
p δσj ,1

+ q δσj ,−1

)
=

N∏

j=1

p(1+σj)/2 q(1−σj)/2 , (1.23)

corresponding to N independent steps?

The principle of maximum entropy

The entropy of a discrete probability distribution {pn} is defined as

S = −
∑

n

pn ln pn , (1.24)

where here we take e as the base of the logarithm. The entropy may therefore be regarded as a function of the
probability distribution: S = S

(
{pn}

)
. One special property of the entropy is the following. Suppose we have two

independent normalized distributions
{
pAa
}

and
{
pBb
}

. The joint probability for events a and b is then Pa,b = pAa p
B

b .
The entropy of the joint distribution is then

S = −
∑

a

∑

b

Pa,b lnPa,b = −
∑

a

∑

b

pAa p
B

b ln
(
pAa p

B

b

)
= −

∑

a

∑

b

pAa p
B

b

(
ln pAa + ln pBb

)

= −
∑

a

pAa ln p
A

a ·
∑

b

pBb −
∑

b

pBb ln p
B

b ·
∑

a

pAa = −
∑

a

pAa ln p
A

a −
∑

b

pBb ln p
B

b

= SA + SB .
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Thus, the entropy of a joint distribution formed from two independent distributions is additive.

Suppose all we knew about {pn} was that it was normalized. Then
∑

n pn = 1. This is a constraint on the values
{pn}. Let us now extremize the entropy S with respect to the distribution {pn}, but subject to the normalization
constraint. We do this using Lagrange’s method of undetermined multipliers. We define

S∗
(
{pn}, λ

)
= −

∑

n

pn ln pn − λ
(∑

n

pn − 1
)

(1.25)

and we freely extremize S∗ over all its arguments. Thus, for all n we have

0 =
∂S∗

∂pn
= −

(
ln pn + 1 + λ

)

0 =
∂S∗

∂λ
=
∑

n

pn − 1 .
(1.26)

From the first of these equations, we obtain pn = e−(1+λ), and from the second we obtain

∑

n

pn = e−(1+λ) ·
∑

n

1 = Γ e−(1+λ) , (1.27)

where Γ ≡ ∑
n 1 is the total number of possible events. Thus, pn = 1/Γ , which says that all events are equally

probable.

Now suppose we know one other piece of information, which is the average value X =
∑

n Xn pn of some
quantity. We now extremize S subject to two constraints, and so we define

S∗
(
{pn}, λ0, λ1

)
= −

∑

n

pn ln pn − λ0

(∑

n

pn − 1
)
− λ1

(∑

n

Xn pn −X
)
. (1.28)

We then have
∂S∗

∂pn
= −

(
ln pn + 1 + λ0 + λ1 Xn

)
= 0 , (1.29)

which yields the two-parameter distribution

pn = e−(1+λ0) e−λ1Xn . (1.30)

To fully determine the distribution {pn} we need to invoke the two equations
∑

n pn = 1 and
∑

n Xn pn = X ,
which come from extremizing S∗ with respect to λ0 and λ1, respectively:

1 = e−(1+λ0)
∑

n

e−λ1Xn

X = e−(1+λ0)
∑

n

Xn e
−λ1Xn .

(1.31)

General formulation

The generalization to K extra pieces of information (plus normalization) is immediately apparent. We have

Xa =
∑

n

Xa
n pn , (1.32)
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and therefore we define

S∗
(
{pn}, {λa}

)
= −

∑

n

pn ln pn −
K∑

a=0

λa

(∑

n

Xa
n pn −Xa

)
, (1.33)

with X
(a=0)
n ≡ X(a=0) = 1. Then the optimal distribution which extremizes S subject to the K + 1 constraints is

pn = exp

{
− 1−

K∑

a=0

λa X
a
n

}

=
1

Z
exp

{
−

K∑

a=1

λa X
a
n

}
,

(1.34)

where Z = e1+λ0 is determined by normalization:
∑

n pn = 1. This is a (K + 1)-parameter distribution, with
{λ0, λ1, . . . , λK} determined by the K + 1 constraints in eqn. 1.32.

Example

As an example, consider the random walk problem. We have two pieces of information:

∑

σ1

· · ·
∑

σN

P (σ1, . . . , σN ) = 1

∑

σ1

· · ·
∑

σN

P (σ1, . . . , σN )

N∑

j=1

σj = X .

(1.35)

Here the discrete label n from §1.3.2 ranges over 2N possible values, and may be written as an N digit binary
number rN · · · r1, where rj =

1
2 (1 + σj) is 0 or 1. Extremizing S subject to these constraints, we obtain

P (σ1, . . . , σN ) = C exp

{
− λ

∑

j

σj

}
= C

N∏

j=1

e−λσj , (1.36)

where C ≡ e−(1+λ0) and λ ≡ λ1. Normalization then requires

Tr P ≡
∑

{σj}

P (σ1, . . . , σN ) = C
(
eλ + e−λ

)N
, (1.37)

hence C = (coshλ)−N . We then have

P (σ1, . . . , σN ) =

N∏

j=1

e−λσj

eλ + e−λ
=

N∏

j=1

(
p δσj ,1

+ q δσj ,−1

)
, (1.38)

where

p =
e−λ

eλ + e−λ
, q = 1− p =

eλ

eλ + e−λ
. (1.39)

We then have X = (2p− 1)N , which determines p = 1
2 (N +X), and we have recovered the Bernoulli distribution.
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Of course there are no miracles4, and there are an infinite family of distributions for which X = (2p− 1)N that are

not Bernoulli. For example, we could have imposed another constraint, such as E =
∑N−1

j=1 σj σj+1. This would
result in the distribution

P (σ1, . . . , σN ) =
1

Z
exp

{
− λ1

N∑

j=1

σj − λ2

N−1∑

j=1

σj σj+1

}
, (1.40)

with Z(λ1, λ2) determined by normalization:
∑

σ P (σ) = 1. This is the one-dimensional Ising chain of classical

equilibrium statistical physics. Defining the transfer matrix Rss′ = e−λ1(s+s′)/2 e−λ2ss
′

with s, s′ = ±1 ,

R =

(
e−λ1−λ2 eλ2

eλ2 eλ1−λ2

)

= e−λ2 coshλ1 I+ eλ2 τx − e−λ2 sinhλ1 τ
z ,

(1.41)

where τx and τz are Pauli matrices, we have that

Zring = Tr
(
RN
)

, Zchain = Tr
(
RN−1S

)
, (1.42)

where Sss′ = e−λ1(s+s′)/2 , i.e.

S =

(
e−λ1 1

1 eλ1

)

= coshλ1 I+ τx − sinhλ1 τ
z .

(1.43)

The appropriate case here is that of the chain, but in the thermodynamic limit N → ∞ both chain and ring yield
identical results, so we will examine here the results for the ring, which are somewhat easier to obtain. Clearly
Zring = ζN+ + ζN− , where ζ± are the eigenvalues of R:

ζ± = e−λ2 coshλ1 ±
√

e−2λ2 sinh2λ1 + e2λ2 . (1.44)

In the thermodynamic limit, the ζ+ eigenvalue dominates, and Zring ≃ ζN+ . We now have

X =
〈 N∑

j=1

σj

〉
= −∂ lnZ

∂λ1

= − N sinhλ1√
sinh2λ1 + e4λ2

. (1.45)

We also have E = −∂ lnZ/∂λ2. These two equations determine the Lagrange multipliers λ1(X,E,N) and
λ2(X,E,N). In the thermodynamic limit, we have λi = λi(X/N,E/N). Thus, if we fix X/N = 2p − 1 alone,
there is a continuous one-parameter family of distributions, parametrized ε = E/N , which satisfy the constraint
on X .

So what is it about the maximum entropy approach that is so compelling? Maximum entropy gives us a calcu-
lable distribution which is consistent with maximum ignorance given our known constraints. In that sense, it is
as unbiased as possible, from an information theoretic point of view. As a starting point, a maximum entropy
distribution may be improved upon, using Bayesian methods for example (see §1.5.2 below).

1.3.3 Continuous probability distributions

Suppose we have a continuous probability density P (ϕ) defined over some set Ω. We have observables

Xa =

∫

Ω

dµ Xa(ϕ)P (ϕ) , (1.46)

4See §10 of An Enquiry Concerning Human Understanding by David Hume (1748).
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where dµ is the appropriate integration measure. We assume dµ =
∏D

j=1 dϕj , where D is the dimension of Ω.
Then we extremize the functional

S∗
[
P (ϕ), {λa}

]
= −

∫

Ω

dµ P (ϕ) lnP (ϕ)−
K∑

a=0

λa

(∫

Ω

dµ P (ϕ)Xa(ϕ)−Xa

)
(1.47)

with respect to P (ϕ) and with respect to {λa}. Again, X0(ϕ) ≡ X0 ≡ 1. This yields the following result:

lnP (ϕ) = −1−
K∑

a=0

λa X
a(ϕ) . (1.48)

The K + 1 Lagrange multipliers {λa} are then determined from the K + 1 constraint equations in eqn. 1.46.

As an example, consider a distribution P (x) over the real numbers R. We constrain

∞∫

−∞

dx P (x) = 1 ,

∞∫

−∞

dx xP (x) = µ ,

∞∫

−∞

dx x2 P (x) = µ2 + σ2 . (1.49)

Extremizing the entropy, we then obtain

P (x) = C e−λ1x−λ2x
2

, (1.50)

where C = e−(1+λ0). We already know the answer:

P (x) =
1√
2πσ2

e−(x−µ)2/2σ2

. (1.51)

In other words, λ1 = −µ/σ2 and λ2 = 1/2σ2, with C = (2πσ2)−1/2 exp(−µ2/2σ2).

1.4 General Aspects of Probability Distributions

1.4.1 Discrete and continuous distributions

Consider a system whose possible configurations |n 〉 can be labeled by a discrete variable n ∈ C, where C is the
set of possible configurations. The total number of possible configurations, which is to say the order of the set C,
may be finite or infinite. Next, consider an ensemble of such systems, and let Pn denote the probability that a
given random element from that ensemble is in the state (configuration) |n 〉. The collection {Pn} forms a discrete
probability distribution. We assume that the distribution is normalized, meaning

∑

n∈C

Pn = 1 . (1.52)

Now let An be a quantity which takes values depending on n. The average of A is given by

〈A〉 =
∑

n∈C

Pn An . (1.53)

Typically, C is the set of integers (Z) or some subset thereof, but it could be any countable set. As an example,
consider the throw of a single six-sided die. Then Pn = 1

6 for each n ∈ {1, . . . , 6}. Let An = 0 if n is even and 1 if n
is odd. Then find 〈A〉 = 1

2 , i.e. on average half the throws of the die will result in an even number.
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It may be that the system’s configurations are described by several discrete variables {n1, n2, n3, . . .}. We can
combine these into a vector n and then we write Pn for the discrete distribution, with

∑
n Pn = 1.

Another possibility is that the system’s configurations are parameterized by a collection of continuous variables,
ϕ = {ϕ1, . . . , ϕn}. We write ϕ ∈ Ω, where Ω is the phase space (or configuration space) of the system. Let dµ be a
measure on this space. In general, we can write

dµ = W (ϕ1, . . . , ϕn) dϕ1 dϕ2 · · · dϕn . (1.54)

The phase space measure used in classical statistical mechanics gives equal weight W to equal phase space vol-
umes:

dµ = C
r∏

σ=1

dqσ dpσ , (1.55)

where C is a constant we shall discuss later on below5.

Any continuous probability distribution P (ϕ) is normalized according to

∫

Ω

dµP (ϕ) = 1 . (1.56)

The average of a function A(ϕ) on configuration space is then

〈A〉 =
∫

Ω

dµP (ϕ)A(ϕ) . (1.57)

For example, consider the Gaussian distribution

P (x) =
1√
2πσ2

e−(x−µ)2/2σ2

. (1.58)

From the result6
∞∫

−∞

dx e−αx2

e−βx =

√
π

α
eβ

2/4α , (1.59)

we see that P (x) is normalized. One can then compute

〈x〉 = µ

〈x2〉 − 〈x〉2 = σ2 .
(1.60)

We call µ the mean and σ the standard deviation of the distribution, eqn. 1.58.

The quantity P (ϕ) is called the distribution or probability density. One has

P (ϕ) dµ = probability that configuration lies within volume dµ centered at ϕ

For example, consider the probability density P = 1 normalized on the interval x ∈
[
0, 1
]
. The probability that

some x chosen at random will be exactly 1
2 , say, is infinitesimal – one would have to specify each of the infinitely

many digits of x. However, we can say that x ∈
[
0.45 , 0.55

]
with probability 1

10 .

5Such a measure is invariant with respect to canonical transformations, which are the broad class of transformations among coordinates
and momenta which leave Hamilton’s equations of motion invariant, and which preserve phase space volumes under Hamiltonian evolution.
For this reason dµ is called an invariant phase space measure.

6Memorize this!
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If x is distributed according to P1(x), then the probability distribution on the product space (x1 , x2) is simply the
product of the distributions: P2(x1, x2) = P1(x1)P1(x2). Suppose we have a function φ(x1, . . . , xN ). How is it
distributed? Let P (φ) be the distribution for φ. We then have

P (φ) =

∞∫

−∞

dx1 · · ·
∞∫

−∞

dxN PN (x1, . . . , xN ) δ
(
φ(x1, . . . , xN )− φ

)

=

∞∫

−∞

dx1 · · ·
∞∫

−∞

dxN P1(x1) · · ·P1(xN ) δ
(
φ(x1, . . . , xN )− φ

)
,

(1.61)

where the second line is appropriate if the {xj} are themselves distributed independently. Note that

∞∫

−∞

dφ P (φ) = 1 , (1.62)

so P (φ) is itself normalized.

1.4.2 Central limit theorem

In particular, consider the distribution function of the sum X =
∑N

i=1 xi. We will be particularly interested in the
case where N is large. For general N , though, we have

PN (X) =

∞∫

−∞

dx1 · · ·
∞∫

−∞

dxN P1(x1) · · ·P1(xN ) δ
(
x1 + x2 + . . .+ xN −X

)
. (1.63)

It is convenient to compute the Fourier transform7 of P (X):

P̂N (k) =

∞∫

−∞

dX PN (X) e−ikX

=

∞∫

−∞

dX

∞∫

−∞

dx1 · · ·
∞∫

−∞

dxN P1(x1) · · ·P1(xN ) δ
(
x1 + . . .+ xN −X) e−ikX =

[
P̂1(k)

]N
,

(1.64)

where

P̂1(k) =

∞∫

−∞

dxP1(x) e
−ikx (1.65)

7Jean Baptiste Joseph Fourier (1768-1830) had an illustrious career. The son of a tailor, and orphaned at age eight, Fourier’s ignoble status

rendered him ineligible to receive a commission in the scientific corps of the French army. A Benedictine minister at the École Royale Militaire
of Auxerre remarked, ”Fourier, not being noble, could not enter the artillery, although he were a second Newton.” Fourier prepared for the
priesthood but his affinity for mathematics proved overwhelming, and so he left the abbey and soon thereafter accepted a military lectureship
position. Despite his initial support for revolution in France, in 1794 Fourier ran afoul of a rival sect while on a trip to Orleans and was arrested
and very nearly guillotined. Fortunately the Reign of Terror ended soon after the death of Robespierre, and Fourier was released. He went
on Napoleon Bonaparte’s 1798 expedition to Egypt, where he was appointed governor of Lower Egypt. His organizational skills impressed
Napoleon, and upon return to France he was appointed to a position of prefect in Grenoble. It was in Grenoble that Fourier performed his
landmark studies of heat, and his famous work on partial differential equations and Fourier series. It seems that Fourier’s fascination with heat
began in Egypt, where he developed an appreciation of desert climate. His fascination developed into an obsession, and he became convinced
that heat could promote a healthy body. He would cover himself in blankets, like a mummy, in his heated apartment, even during the middle
of summer. On May 4, 1830, Fourier, so arrayed, tripped and fell down a flight of stairs. This aggravated a developing heart condition, which
he refused to treat with anything other than more heat. Two weeks later, he died. Fourier’s is one of the 72 names of scientists, engineers and
other luminaries which are engraved on the Eiffel Tower. Source: http://www.robertnowlan.com/pdfs/Fourier,20Joseph.pdf
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is the Fourier transform of the single variable distribution P1(x). The distribution PN (X) is a convolution of the
individual P1(xi) distributions. We have therefore proven that the Fourier transform of a convolution is the product of
the Fourier transforms.

OK, now we can write for P̂1(k)

P̂1(k) =

∞∫

−∞

dxP1(x)
(
1− ikx− 1

2 k
2x2 + 1

6 i k
3 x3 + . . .

)

= 1− ik〈x〉 − 1
2 k

2〈x2〉+ 1
6 i k

3〈x3〉+ . . . .

(1.66)

Thus,

ln P̂1(k) = −iµk − 1
2σ

2k2 + 1
6 i γ

3 k3 + . . . , (1.67)

where

µ = 〈x〉
σ2 = 〈x2〉 − 〈x〉2

γ3 = 〈x3〉 − 3 〈x2〉 〈x〉+ 2 〈x〉3
(1.68)

We can now write [
P̂1(k)

]N
= e−iNµk e−Nσ2k2/2 eiNγ3k3/6 · · · (1.69)

Now for the inverse transform. In computing PN (X), we will expand the term eiNγ3k3/6 and all subsequent terms
in the above product as a power series in k. We then have

PN (X) =

∞∫

−∞

dk

2π
eik(X−Nµ) e−Nσ2k2/2

{
1 + 1

6 i Nγ3k3 + . . .
}

=

(
1− γ3

6
N

∂3

∂X3
+ . . .

)
1√

2πNσ2
e−(X−Nµ)2/2Nσ2

=

(
1− γ3

6
N−1/2 ∂3

∂ξ3
+ . . .

)
1√

2πNσ2
e−ξ2/2σ2

.

(1.70)

In going from the second line to the third, we have written X = Nµ +
√
N ξ, in which case ∂X = N−1/2 ∂ξ, and

the non-Gaussian terms give a subleading contribution which vanishes in the N → ∞ limit. We have just proven
the central limit theorem: in the limit N → ∞, the distribution of a sum of N independent random variables xi is a

Gaussian with mean Nµ and standard deviation
√
N σ. Our only assumptions are that the mean µ and standard

deviation σ exist for the distribution P1(x). Note that P1(x) itself need not be a Gaussian – it could be a very
peculiar distribution indeed, but so long as its first and second moment exist, where the kth moment is simply

〈xk〉, the distribution of the sum X =
∑N

i=1 xi is a Gaussian.

1.4.3 Moments and cumulants

Consider a general multivariate distribution P (x1, . . . , xN ) and define the multivariate Fourier transform

P̂ (k1, . . . , kN ) =

∞∫

−∞

dx1 · · ·
∞∫

−∞

dxN P (x1, . . . , xN ) exp

(
− i

N∑

j=1

kjxj

)
. (1.71)
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The inverse relation is

P (x1, . . . , xN ) =

∞∫

−∞

dk1
2π

· · ·
∞∫

−∞

dkN
2π

P̂ (k1, . . . , kN ) exp

(
+ i

N∑

j=1

kjxj

)
. (1.72)

Acting on P̂ (k), the differential operator i ∂
∂ki

brings down from the exponential a factor of xi inside the integral.

Thus, [(
i

∂

∂k1

)m1

· · ·
(
i

∂

∂kN

)mN

P̂ (k)

]

k=0

=
〈
x
m1
1 · · ·xmN

N

〉
. (1.73)

Similarly, we can reconstruct the distribution from its moments, viz.

P̂ (k) =

∞∑

m1=0

· · ·
∞∑

mN=0

(−ik1)
m1

m1!
· · · (−ikN )mN

mN !

〈
x
m1
1 · · ·xmN

N

〉
. (1.74)

The cumulants 〈〈xm1
1 · · ·xmN

N 〉〉 are defined by the Taylor expansion of ln P̂ (k):

ln P̂ (k) =

∞∑

m1=0

· · ·
∞∑

mN=0

(−ik1)
m1

m1!
· · · (−ikN )mN

mN !

〈〈
x
m1
1 · · ·xmN

N

〉〉
. (1.75)

There is no general form for the cumulants. It is straightforward to derive the following low order results:

〈〈xi〉〉 = 〈xi〉
〈〈xixj〉〉 = 〈xixj〉 − 〈xi〉〈xj〉

〈〈xixjxk〉〉 = 〈xixjxk〉 − 〈xixj〉〈xk〉 − 〈xjxk〉〈xi〉 − 〈xkxi〉〈xj〉+ 2〈xi〉〈xj〉〈xk〉 .
(1.76)

1.4.4 Multidimensional Gaussian integral

Consider the multivariable Gaussian distribution,

P (x) ≡
(
detA

(2π)n

)1/2
exp

(
− 1

2 xi Aij xj

)
, (1.77)

where A is a positive definite matrix of rank n. A mathematical result which is extremely important throughout
physics is the following:

Z(b) =

(
detA

(2π)n

)1/2 ∞∫

−∞

dx1 · · ·
∞∫

−∞

dxn exp
(
− 1

2 xi Aij xj + bi xi

)
= exp

(
1
2 biA

−1
ij bj

)
. (1.78)

Here, the vector b = (b1 , . . . , bn) is identified as a source. Since Z(0) = 1, we have that the distribution P (x) is
normalized. Now consider averages of the form

〈xj1
· · · xj2k

〉 =
∫
dnx P (x) xj1

· · · xj2k
=

∂nZ(b)

∂bj1
· · · ∂bj2k

∣∣∣∣
b=0

=
∑

contractions

A−1
j
σ(1)

j
σ(2)

· · ·A−1
j
σ(2k−1)

j
σ(2k)

.

(1.79)
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The sum in the last term is over all contractions of the indices {j1 , . . . , j2k}. A contraction is an arrangement of
the 2k indices into k pairs. There are C2k = (2k)!/2kk! possible such contractions. To obtain this result for Ck,
we start with the first index and then find a mate among the remaining 2k − 1 indices. Then we choose the next
unpaired index and find a mate among the remaining 2k − 3 indices. Proceeding in this manner, we have

C2k = (2k − 1) · (2k − 3) · · · 3 · 1 =
(2k)!

2kk!
. (1.80)

Equivalently, we can take all possible permutations of the 2k indices, and then divide by 2kk! since permuta-
tion within a given pair results in the same contraction and permutation among the k pairs results in the same
contraction. For example, for k = 2, we have C4 = 3, and

〈xj1
xj2

xj3
xj4

〉 = A−1
j1j2

A−1
j3j4

+A−1
j1j3

A−1
j2j4

+A−1
j1j4

A−1
j2j3

. (1.81)

If we define bi = iki, we have

P̂ (k) = exp
(
− 1

2 ki A
−1
ij kj

)
, (1.82)

from which we read off the cumulants 〈〈xixj〉〉 = A−1
ij , with all higher order cumulants vanishing.

1.5 Bayesian Statistical Inference

1.5.1 Frequentists and Bayesians

There field of statistical inference is roughly divided into two schools of practice: frequentism and Bayesianism.
You can find several articles on the web discussing the differences in these two approaches. In both cases we
would like to model observable data x by a distribution. The distribution in general depends on one or more
parameters θ. The basic worldviews of the two approaches is as follows:

Frequentism: Data x are a random sample drawn from an infinite pool at some frequency. The underly-
ing parameters θ, which are to be estimated, remain fixed during this process. There is no information
prior to the model specification. The experimental conditions under which the data are collected are
presumed to be controlled and repeatable. Results are generally expressed in terms of confidence inter-
vals and confidence levels, obtained via statistical hypothesis testing. Probabilities have meaning only for
data yet to be collected. Computations generally are computationally straightforward.

Bayesianism: The only data x which matter are those which have been observed. The parameters
θ are unknown and described probabilistically using a prior distribution, which is generally based on
some available information but which also may be at least partially subjective. The priors are then
to be updated based on observed data x. Results are expressed in terms of posterior distributions and
credible intervals. Calculations can be computationally intensive.

In essence, frequentists say the data are random and the parameters are fixed. while Bayesians say the data are fixed and
the parameters are random8. Overall, frequentism has dominated over the past several hundred years, but Bayesian-
ism has been coming on strong of late, and many physicists seem naturally drawn to the Bayesian perspective.

8”A frequentist is a person whose long-run ambition is to be wrong 5% of the time. A Bayesian is one who, vaguely expecting a horse, and
catching glimpse of a donkey, strongly believes he has seen a mule.” – Charles Annis.
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1.5.2 Updating Bayesian priors

Given data D and a hypothesis H , Bayes’ theorem tells us

P (H |D) =
P (D|H)P (H)

P (D)
. (1.83)

Typically the data is in the form of a set of values x = {x1, . . . , xN}, and the hypothesis in the form of a set
of parameters θ = {θ1, . . . , θK}. It is notationally helpful to express distributions of x and distributions of x

conditioned on θ using the symbol f , and distributions of θ and distributions of θ conditioned on x using the
symbol π, rather than using the symbol P everywhere. We then have

π(θ|x) = f(x|θ)π(θ)∫
Θ

dθ′ f(x|θ′)π(θ′)
, (1.84)

where Θ ∋ θ is the space of parameters. Note that
∫
Θdθ π(θ|x) = 1. The denominator of the RHS is simply f(x),

which is independent of θ, hence π(θ|x) ∝ f(x|θ)π(θ). We call π(θ) the prior for θ, f(x|θ) the likelihood of x given
θ, and π(θ|x) the posterior for θ given x. The idea here is that while our initial guess at the θ distribution is given
by the prior π(θ), after taking data, we should update this distribution to the posterior π(θ|x). The likelihood
f(x|θ) is entailed by our model for the phenomenon which produces the data. We can use the posterior to find
the distribution of new data points y, called the posterior predictive distribution,

f(y|x) =
∫

Θ

dθ f(y|θ)π(θ|x) . (1.85)

This is the update of the prior predictive distribution,

f(x) =

∫

Θ

dθ f(x|θ)π(θ) . (1.86)

Example: coin flipping

Consider a model of coin flipping based on a standard Bernoulli distribution, where θ ∈ [0, 1] is the probability
for heads (x = 1) and 1− θ the probability for tails (x = 0). That is,

f(x1, . . . , xN |θ) =
N∏

j=1

[
(1− θ) δxj ,0 + θ δxj ,1

]

= θX(1− θ)N−X ,

(1.87)

where X =
∑N

j=1 xj is the observed total number of heads, and N − X the corresponding number of tails. We
now need a prior π(θ). We choose the Beta distribution,

π(θ) =
θα−1(1− θ)β−1

B(α, β)
, (1.88)

where B(α, β) = Γ(α) Γ(β)/Γ(α + β) is the Beta function. One can check that π(θ) is normalized on the unit

interval:
∫ 1

0 dθ π(θ) = 1 for all positive α, β. Even if we limit ourselves to this form of the prior, different Bayesians
might bring different assumptions about the values of α and β. Note that if we choose α = β = 1, the prior
distribution for θ is flat, with π(θ) = 1.
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We now compute the posterior distribution for θ:

π(θ|x1, . . . , xN ) =
f(x1, . . . , xN |θ)π(θ)

∫ 1

0 dθ
′ f(x1, . . . , xN |θ′)π(θ′)

=
θX+α−1(1− θ)N−X+β−1

B(X + α,N −X + β)
. (1.89)

Thus, we retain the form of the Beta distribution, but with updated parameters,

α′ = X + α

β′ = N −X + β .
(1.90)

The fact that the functional form of the prior is retained by the posterior is generally not the case in Bayesian
updating. We can also compute the prior predictive,

f(x1, . . . , xN ) =

1∫

0

dθ f(x1, . . . , xN |θ)π(θ)

=
1

B(α, β)

1∫

0

dθ θX+α−1(1− θ)N−X+β−1 =
B(X + α,N −X + β)

B(α, β)
.

(1.91)

The posterior predictive is then

f(y1, . . . , yM |x1, . . . , xN ) =

1∫

0

dθ f(y1, . . . , yM |θ)π(θ|x1, . . . , xN )

=
1

B(X + α,N −X + β)

1∫

0

dθ θX+Y+α−1(1− θ)N−X+M−Y +β−1

=
B(X + Y + α,N −X +M − Y + β)

B(X + α,N −X + β)
.

(1.92)

1.5.3 Hyperparameters and conjugate priors

In the above example, θ is a parameter of the Bernoulli distribution, i.e. the likelihood, while quantities α and β are
hyperparameters which enter the prior π(θ). Accordingly, we could have written π(θ|α, β) for the prior. We then
have for the posterior

π(θ|x,α) =
f(x|θ)π(θ|α)∫

Θ

dθ′ f(x|θ′)π(θ′|α)
, (1.93)

replacing Eqn. 1.84, etc., where α ∈ A is the vector of hyperparameters. The hyperparameters can also be dis-
tributed, according to a hyperprior ρ(α), and the hyperpriors can further be parameterized by hyperhyperparameters,
which can have their own distributions, ad nauseum.

What use is all this? We’ve already seen a compelling example: when the posterior is of the same form as the
prior, the Bayesian update can be viewed as an automorphism of the hyperparameter space A, i.e. one set of
hyperparameters α is mapped to a new set of hyperparameters α̃.

Definition: A parametric family of distributions P =
{
π(θ|α) | θ ∈ Θ, α ∈ A

}
is called a conjugate

family for a family of distributions
{
f(x|θ) |x ∈ X , θ ∈ Θ

}
if, for all x ∈ X and α ∈ A,

π(θ|x,α) ≡ f(x|θ)π(θ|α)∫
Θ

dθ′ f(x|θ′)π(θ′|α)
∈ P . (1.94)
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That is, π(θ|x,α) = π(θ|α̃) for some α̃ ∈ A, with α̃ = α̃(α,x).

As an example, consider the conjugate Bayesian analysis of the Gaussian distribution. We assume a likelihood

f(x|u, s) = (2πs2)−N/2 exp

{
− 1

2s2

N∑

j=1

(xj − u)2

}
. (1.95)

The parameters here are θ = {u, s}. Now consider the prior distribution

π(u, s|µ0, σ0) = (2πσ2
0)

−1/2 exp

{
− (u− µ0)

2

2σ2
0

}
. (1.96)

Note that the prior distribution is independent of the parameter s and only depends on u and the hyperparameters
α = (µ0, σ0). We now compute the posterior:

π(u, s|x, µ0, σ0) ∝ f(x|u, s)π(u, s|µ0, σ0)

= exp

{
−
(

1

2σ2
0

+
N

2s2

)
u2 +

(
µ0

σ2
0

+
N〈x〉
s2

)
u−

(
µ2
0

2σ2
0

+
N〈x2〉
2s2

)}
,

(1.97)

with 〈x〉 = 1
N

∑N
j=1 xj and 〈x2〉 = 1

N

∑N
j=1 x

2
j . This is also a Gaussian distribution for u, and after supplying the

appropriate normalization one finds

π(u, s|x, µ0, σ0) = (2πσ2
1)

−1/2 exp

{
− (u − µ1)

2

2σ2
1

}
, (1.98)

with

µ1 = µ0 +
N
(
〈x〉 − µ0

)
σ2
0

s2 +Nσ2
0

σ2
1 =

s2σ2
0

s2 +Nσ2
0

.

(1.99)

Thus, the posterior is among the same family as the prior, and we have derived the update rule for the hyperpa-
rameters (µ0, σ0) → (µ1, σ1). Note that σ1 < σ0 , so the updated Gaussian prior is sharper than the original. The
updated mean µ1 shifts in the direction of 〈x〉 obtained from the data set.

1.5.4 The problem with priors

We might think that the for the coin flipping problem, the flat prior π(θ) = 1 is an appropriate initial one, since it
does not privilege any value of θ. This prior therefore seems ’objective’ or ’unbiased’, also called ’uninformative’.
But suppose we make a change of variables, mapping the interval θ ∈ [0, 1] to the entire real line according to
ζ = ln

[
θ/(1 − θ)

]
. In terms of the new parameter ζ, we write the prior as π̃(ζ). Clearly π(θ) dθ = π̃(ζ) dζ, so

π̃(ζ) = π(θ) dθ/dζ. For our example, find π̃(ζ) = 1
4 sech

2(ζ/2), which is not flat. Thus what was uninformative
in terms of θ has become very informative in terms of the new parameter ζ. Is there any truly unbiased way of
selecting a Bayesian prior?

One approach, advocated by E. T. Jaynes, is to choose the prior distribution π(θ) according to the principle of
maximum entropy. For continuous parameter spaces, we must first define a parameter space metric so as to be



1.6. APPENDIX: RANDOM WALK DISTRIBUTION 19

able to ’count’ the number of different parameter states. The entropy of a distribution π(θ) is then dependent on
this metric: S = −

∫
dµ(θ)π(θ) lnπ(θ).

Another approach, due to Jeffreys, is to derive a parameterization-independent prior from the likelihood f(x|θ)
using the so-called Fisher information matrix,

Iij(θ) = −Eθ

(
∂2 lnf(x|θ)
∂θi ∂θj

)

= −
∫
dx f(x|θ) ∂

2 lnf(x|θ)
∂θi ∂θj

.

(1.100)

The Jeffreys prior π
J
(θ) is defined as

π
J
(θ) ∝

√
det I(θ) . (1.101)

One can check that the Jeffries prior is invariant under reparameterization. As an example, consider the Bernoulli

process, for which ln f(x|θ) = X ln θ + (N −X) ln(1− θ), where X =
∑N

j=1 xj . Then

−d2 ln p(x|θ)
dθ2

=
X

θ2
+

N −X

(1− θ)2
, (1.102)

and since Eθ X = Nθ, we have

I(θ) =
N

θ(1 − θ)
⇒ πJ(θ) =

1

π

1√
θ(1 − θ)

, (1.103)

which felicitously corresponds to a Beta distribution with α = β = 1
2 . In this example the Jeffries prior turned out

to be a conjugate prior, but in general this is not the case.

We can try to implement the Jeffreys procedure for a two-parameter family where each xj is normally distributed
with mean µ and standard deviation σ. Let the parameters be (θ1, θ2) = (µ, σ). Then

− ln f(x|θ) = N ln
√
2π +N lnσ +

1

2σ2

N∑

j=1

(xj − µ)2 , (1.104)

and the Fisher information matrix is

I(θ) = −∂2 lnf(x|θ)
∂θi ∂θj

=




Nσ−2 σ−3

∑
j(xj − µ)

σ−3
∑

j(xj − µ) −Nσ−2 + 3σ−4
∑

j(xj − µ)2



 . (1.105)

Taking the expectation value, we have E (xj − µ) = 0 and E (xj − µ)2 = σ2, hence

E I(θ) =

(
Nσ−2 0

0 2Nσ−2

)
(1.106)

and the Jeffries prior is π
J
(µ, σ) ∝ σ−2. This is problematic because if we choose a flat metric on the (µ, σ) upper

half plane, the Jeffries prior is not normalizable. Note also that the Jeffreys prior no longer resembles a Gaussian,
and hence is not a conjugate prior.

1.6 Appendix: Random walk distribution

Consider the mechanical system depicted in Fig. 1.1, a version of which is often sold in novelty shops. A ball
is released from the top, which cascades consecutively through N levels. The details of each ball’s motion are
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governed by Newton’s laws of motion. However, to predict where any given ball will end up in the bottom row is
difficult, because the ball’s trajectory depends sensitively on its initial conditions, and may even be influenced by
random vibrations of the entire apparatus. We therefore abandon all hope of integrating the equations of motion
and treat the system statistically. That is, we assume, at each level, that the ball moves to the right with probability
p and to the left with probability q = 1− p. If there is no bias in the system, then p = q = 1

2 . The position XN after
N steps may be written

X =

N∑

j=1

σj , (1.107)

where σj = +1 if the ball moves to the right at level j, and σj = −1 if the ball moves to the left at level j. At each
level, the probability for these two outcomes is given by

Pσ = p δσ,+1 + q δσ,−1 =

{
p if σ = +1

q if σ = −1 .
(1.108)

This is a normalized discrete probability distribution of the type discussed in section 1.4 below. The multivariate
distribution for all the steps is then

P (σ1 , . . . , σN ) =

N∏

j=1

P (σj) . (1.109)

Our system is equivalent to a one-dimensional random walk. Imagine an inebriated pedestrian on a sidewalk
taking steps to the right and left at random. After N steps, the pedestrian’s location is X .

Now let’s compute the average of X :

〈X〉 =
〈 N∑

j=1

σj

〉
= N〈σ〉 = N

∑

σ=±1

σ P (σ) = N(p− q) = N(2p− 1) . (1.110)

This could be identified as an equation of state for our system, as it relates a measurable quantity X to the number
of steps N and the local bias p. Next, let’s compute the average of X2:

〈X2〉 =
N∑

j=1

N∑

j′=1

〈σjσj′ 〉 = N2(p− q)2 + 4Npq . (1.111)

Here we have used

〈σjσj′ 〉 = δjj′ +
(
1− δjj′

)
(p− q)2 =

{
1 if j = j′

(p− q)2 if j 6= j′ .
(1.112)

Note that 〈X2〉 ≥ 〈X〉2, which must be so because

Var(X) = 〈(∆X)2〉 ≡
〈(
X − 〈X〉

)2〉
= 〈X2〉 − 〈X〉2 . (1.113)

This is called the variance of X . We have Var(X) = 4Np q. The root mean square deviation, ∆Xrms, is the square root

of the variance: ∆Xrms =
√
Var(X). Note that the mean value of X is linearly proportional to N 9, but the RMS

fluctuations ∆Xrms are proportional to N1/2. In the limit N → ∞ then, the ratio ∆Xrms/〈X〉 vanishes as N−1/2.
This is a consequence of the central limit theorem (see §1.4.2 below), and we shall meet up with it again on several
occasions.

We can do even better. We can find the complete probability distribution for X . It is given by

PN,X =

(
N

NR

)
pNR qNL , (1.114)

9The exception is the unbiased case p = q = 1

2
, where 〈X〉 = 0.
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Figure 1.1: The falling ball system, which mimics a one-dimensional random walk.

where NR/L are the numbers of steps taken to the right/left, with N = NR + NL, and X = NR − NL. There are
many independent ways to take N

R
steps to the right. For example, our first N

R
steps could all be to the right, and

the remaining N
L
= N −N

R
steps would then all be to the left. Or our final N

R
steps could all be to the right. For

each of these independent possibilities, the probability is pNR qNL . How many possibilities are there? Elementary
combinatorics tells us this number is (

N

NR

)
=

N !

NR!NL!
. (1.115)

Note that N ±X = 2N
R/L

, so we can replace N
R/L

= 1
2 (N ±X). Thus,

PN,X =
N !(

N+X
2

)
!
(
N−X

2

)
!
p(N+X)/2 q(N−X)/2 . (1.116)

1.6.1 Thermodynamic limit

Consider the limit N → ∞ but with x ≡ X/N finite. This is analogous to what is called the thermodynamic limit
in statistical mechanics. Since N is large, x may be considered a continuous variable. We evaluate lnPN,X using
Stirling’s asymptotic expansion

lnN ! ≃ N lnN −N +O(lnN) . (1.117)

We then have

lnPN,X ≃ N lnN −N − 1
2N(1 + x) ln

[
1
2N(1 + x)

]
+ 1

2N(1 + x)

− 1
2N(1− x) ln

[
1
2N(1− x)

]
+ 1

2N(1− x) + 1
2N(1 + x) ln p+ 1

2N(1− x) ln q

= −N
[(

1+x
2

)
ln
(
1+x
2

)
+
(
1−x
2

)
ln
(
1−x
2

)]
+N

[(
1+x
2

)
ln p+

(
1−x
2

)
ln q
]
. (1.118)
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Notice that the terms proportional to N lnN have all cancelled, leaving us with a quantity which is linear in N .
We may therefore write lnPN,X = −Nf(x) +O(lnN), where

f(x) =
[(

1+x
2

)
ln
(
1+x
2

)
+
(
1−x
2

)
ln
(
1−x
2

)]
−
[(

1+x
2

)
ln p+

(
1−x
2

)
ln q
]
. (1.119)

We have just shown that in the large N limit we may write

PN,X = C e−Nf(X/N) , (1.120)

where C is a normalization constant10. Since N is by assumption large, the function PN,X is dominated by the
minimum (or minima) of f(x), where the probability is maximized. To find the minimum of f(x), we set f ′(x) = 0,
where

f ′(x) = 1
2 ln

(
q

p
· 1 + x

1− x

)
. (1.121)

Setting f ′(x) = 0, we obtain
1 + x

1− x
=

p

q
⇒ x̄ = p− q . (1.122)

We also have

f ′′(x) =
1

1− x2
, (1.123)

so invoking Taylor’s theorem,
f(x) = f(x̄) + 1

2f
′′(x̄) (x− x̄)2 + . . . . (1.124)

Putting it all together, we have

PN,X ≈ C exp

[
− N(x− x̄)2

8pq

]
= C exp

[
− (X − X̄)2

8Npq

]
, (1.125)

where X̄ = 〈X〉 = N(p− q) = Nx̄. The constant C is determined by the normalization condition,

∞∑

X=−∞

PN,X ≈ 1
2

∞∫

−∞

dX C exp

[
− (X − X̄)2

8Npq

]
=
√
2πNpq C , (1.126)

and thus C = 1/
√
2πNpq. Why don’t we go beyond second order in the Taylor expansion of f(x)? We will find

out in §1.4.2 below.

1.6.2 Entropy and energy

The function f(x) can be written as a sum of two contributions, f(x) = e(x)− s(x), where

s(x) = −
(
1+x
2

)
ln
(
1+x
2

)
−
(
1−x
2

)
ln
(
1−x
2

)

e(x) = − 1
2 ln(pq)− 1

2x ln(p/q) .
(1.127)

The function S(N, x) ≡ Ns(x) is analogous to the statistical entropy of our system11. We have

S(N, x) = Ns(x) = ln

(
N

N
R

)
= ln

(
N

1
2N(1 + x)

)
. (1.128)

10The origin of C lies in the O(lnN) and O(N0) terms in the asymptotic expansion of lnN !. We have ignored these terms here. Accounting
for them carefully reproduces the correct value of C in eqn. 1.126.

11The function s(x) is the specific entropy.
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Figure 1.2: Comparison of exact distribution of eqn. 1.116 (red squares) with the Gaussian distribution of eqn.
1.125 (blue line).

Thus, the statistical entropy is the logarithm of the number of ways the system can be configured so as to yield the same value
of X (at fixed N ). The second contribution to f(x) is the energy term. We write

E(N, x) = Ne(x) = − 1
2N ln(pq)− 1

2Nx ln(p/q) . (1.129)

The energy term biases the probability PN,X = exp(S − E) so that low energy configurations are more probable than

high energy configurations. For our system, we see that when p < q (i.e. p < 1
2 ), the energy is minimized by taking x

as small as possible (meaning as negative as possible). The smallest possible allowed value of x = X/N is x = −1.
Conversely, when p > q (i.e. p > 1

2 ), the energy is minimized by taking x as large as possible, which means x = 1.
The average value of x, as we have computed explicitly, is x̄ = p− q = 2p− 1, which falls somewhere in between
these two extremes.

In actual thermodynamic systems, entropy and energy are not dimensionless. What we have called S here is really
S/kB, which is the entropy in units of Boltzmann’s constant. And what we have called E here is really E/kBT ,
which is energy in units of Boltzmann’s constant times temperature.


