
PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS

HW SOLUTIONS #2 : STOCHASTIC PROCESSES

(1) Show that for time scales sufficiently greater than γ−1 that the solution x(t) to the
Langevin equation ẍ + γẋ = η(t) describes a Markov process. You will have to construct
the matrix M defined in Eqn. 2.60 of the lecture notes. You should assume that the random
force η(t) is distributed as a Gaussian, with 〈η(s)〉 = 0 and 〈η(s) η(s′)〉 = Γ δ(s − s′).

Solution:

The probability distribution is

P (x1, t1 ; . . . ; xN , tN ) = det
−1/2(2πM) exp

{
− 1

2

N∑

j,j′=1

M−1
jj′ xj xj′

}
,

where

M(t, t′) =

t∫

0

ds

t′∫

0

ds′ G(s − s′)K(t − s)K(t′ − s′) ,

and K(s) = (1 − e−γs)/γ. Thus,

M(t, t′) =
Γ

γ2

t
min∫

0

ds (1 − e−γ(t−s))(1 − e−γ(t′−s))

=
Γ

γ2

{
tmin − 1

γ
+

1

γ

(
e−γt + e−γt′

)
− 1

2γ

(
e−γ|t−t′| + e−γ(t+t′)

)}
.

In the limit where t and t′ are both large compared to γ−1, we have M(t, t′) = 2D min(t, t′),
where the diffusions constant is D = Γ/2γ2. Thus,

M = 2D




t1 t1 t1 t1 t1 · · · t1
t1 t2 t2 t2 t2 · · · t2
t1 t2 t3 t3 t3 · · · t3
t1 t2 t3 t4 t4 · · · t4
t1 t2 t3 t4 t5 · · · t5
...

...
...

...
...

. . .
...

t1 t2 t3 t4 t5 · · · tN




.

To find the determinant of M , subtract row #1 from rows #2 through #N , then subtract row
#2’ from the rows #3’ through #N ′, etc. The result is

M̃ = 2D




t1 t1 t1 t1 t1 · · · t1
0 t2 − t1 t2 − t1 t2 − t1 t2 − t1 · · · t2 − t1
0 0 t3 − t2 t3 − t2 t3 − t2 · · · t3 − t2
0 0 0 t4 − t3 t4 − t3 · · · t4 − t3
0 0 0 0 t5 − t4 · · · t5 − t4
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · tN − tN−1




.
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Since M̃ is obtained from M by consecutive row additions, we have

det M = det M̃ = t1(t2 − t1)(t3 − t2) · · · (tN − tN−1) (2D)N .

The inverse is

M−1 =
1

2D




t2
t
1

1
t
2
−t

1

− 1
t
2
−t

1

0 · · ·

− 1
t
2
−t

1

t3−t1
(t

2
−t

1
)(t

3
−t

2
) − 1

t
3
−t

2

0 · · ·

· · · 0 − 1
tn−t

n−1

t
n+1−t

n−1

(tn−t
n−1

)(t
n+1

−tn) − 1
t
n+1

−tn
0 · · ·

. . .

· · · 0 − 1
t
N
−t

N−1

1
t
N
−t

N−1




.

This yields the general result

N∑

j,j′=1

M−1
j,j′(t1, . . . , tN )xj xj′ =

N∑

j=1

(
1

tj−1,j

+
1

tj,j+1

)
x2

j −
2

tj,j+1

xj xj+1 ,

where tkl ≡ tl − tk and t0 ≡ 0 and tN+1 ≡ ∞. Now consider the conditional probability
density

P (x1, t1 |x2, t2 ; . . . ; xN , tN ) =
P (x1, t1 ; . . . ; xN , tN )

P (x2, t2 ; . . . ; xN , tN )

=
det

1/2 2πM(t2, . . . , tN )

det
1/2 2πM(t1, . . . , tN )

exp
{
− 1

2

∑N
j,j′=1 M−1

jj′ (t1, . . . , tN )xj xj′

}

exp
{
− 1

2

∑N
k,k′=2 M−1

kk′(t2, . . . , tN )xk xk′

}

We have

N∑

j,j′=1

M−1
jj′ (t1, . . . , tN )xj xj′ =

(
1

t0,1

+
1

t1,2

)
x2

1 −
2

t1,2

x1 x2 +

(
1

t1,2

+
1

t2,3

)
x2

2 + . . .

N∑

k,k′=2

M−1
kk′(t2, . . . , tN )xk xk′ =

(
1

t0,2

+
1

t2,3

)
x2

2 + . . .

Subtracting, and evaluating the ratio to get the conditional probability density, we find

P (x1, t1 |x2, t2 ; . . . ; xN , tN ) =

√
t0,1 + t1,2

4πD t0,1 t1,2

exp

{
−1

2

(
x1 x2

) (
t−1
0,1 + t−1

1,2 −t−1
1,2

−t−1
1,2 t−1

1,2 − t−1
0,2

)(
x1

x2

)}
,

which depends only on {x1, t1, x2, t2}, i.e. on the current and most recent data, and not on
any data before the time t2.

2



(2) Provide the missing steps in the solution of the Ornstein-Uhlenbeck process described
in §2.4.3 of the lecture notes. Show that applying the method of characteristics to Eqn. 2.78
leads to the solution in Eqn. 2.79.

Solution:

We solve
∂P̂

∂t
+ βk

∂P̂

∂k
= −Dk2P̂ (1)

using the method of characteristics, writing t = tζ(s) and k = kζ(s), where s parameterizes

the curve
(
tζ(s), kζ(s)

)
, and ζ parameterizes the initial conditions, which are t(s = 0) = 0

and k(s = 0) = ζ . The above PDE in two variables is then equivalent to the coupled system

dt

ds
= 1 ,

dk

ds
= βk ,

dP̂

ds
= −Dk2P̂ .

Solving, we have

tζ = s , kζ = ζ eβs ,
dP̂

ds
= −D ζ2 e2βsP̂ ,

and therefore

P̂ (s, ζ) = f(ζ) exp

{
− Dζ2

2β

(
e2βs − 1

)}
.

We now identify f(ζ) = P̂ (k e−βt, t = 0), hence

P̂ (k, t) = exp

{
− D

2β

(
1 − e−2βt

)
k2

}
P̂ (k, 0) .

(3) Consider a discrete one-dimensional random walk where the probability to take a step
of length 1 in either direction is 1

2p and the probability to take a step of length 2 in either
direction is 1

2(1 − p). Define the generating function

P̂ (k, t) =

∞∑

n=−∞

Pn(t) e−ikn ,

where Pn(t) is the probability to be at position n at time t. Solve for P̂ (k, t) and provide an
expression for Pn(t). Evaluate

∑
n n2 Pn(t).

Solution:

We have the master equation

dPn

dt
= 1

2 (1 − p)Pn+2 + 1
2p Pn+1 + 1

2p Pn−1 + 1
2(1 − p)Pn−2 − Pn .
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Upon Fourier transforming,

dP̂ (k, t)

dt
=

[
(1 − p) cos(2k) + p cos(k) − 1

]
P̂ (k, t) ,

with the solution
P̂ (k, t) = e−λ(k) t P̂ (k, 0) ,

where
λ(k) = 1 − p cos(k) − (1 − p) cos(2k) .

One then has

Pn(t) =

π∫

−π

dk

2π
eikn P̂ (k, t) .

The average of n2 is given by

〈
n2

〉
t
= −∂2P̂ (k, t)

∂k2

∣∣∣∣
k=0

=
[
λ′′(0) t − λ′(0)2 t2

]
=

(
4 − 3p) t .

Note that P̂ (0, t) = 1 for all t by normalization.

(4) Numerically simulate the one-dimensional Wiener and Cauchy processes discussed in
§2.6.1 of the lecture notes, and produce a figure similar to Fig. 2.3.

Solution:

Most computing languages come with a random number generating function which pro-
duces uniform deviates on the interval x ∈ [0, 1]. Suppose we have a prescribed function
y(x). If x is distributed uniformly on [0, 1], how is y distributed? Clearly

∣∣p(y) dy
∣∣ =

∣∣p(x) dx
∣∣ ⇒ p(y) =

∣∣∣∣
dx

dy

∣∣∣∣ p(x) ,

where for the uniform distribution on the unit interval we have p(x) = Θ(x)Θ(1− x) . For
example, if y = − ln x, then y ∈ [0,∞] and p(y) = e−y which is to say y is exponentially
distributed. Now suppose we want to specify p(y). We have

dx

dy
= p(y) ⇒ x = F (y) =

y∫

y
0

dỹ p(ỹ) ,

where y0 is the minimum value that y takes. Therefore, y = F−1(x), where F−1 is the
inverse function.

To generate normal (Gaussian) deviates with a distribution p(y) = (4πDε)−1/2 exp(−y2/4Dε) ,
we have

F (y) =
1√

4πDε

y∫

−∞

dỹ e−ỹ2/4Dε = 1
2 + 1

2 erf

(
y√
4Dε

)
.
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Figure 1: (a) Wiener process sample path W (t). (b) Cauchy process sample path C(t). From
K. Jacobs and D. A. Steck, New J. Phys. 13, 013016 (2011).

We now have to invert the error function, which is slightly unpleasant.

A slicker approach is to use the Box-Muller method, which used a two-dimensional version
of the above transformation,

p(y1, y2) = p(x1, x2)

∣∣∣∣∣
∂(x1, x2)

∂(y1, y2)

∣∣∣∣∣ .

This has an obvious generalization to higher dimensions. The transformation factor is the
Jacobian determinant. Now let x1 and x2 each be uniformly distributed on [0, 1] , and let

x1 = exp

(
− y2

1 + y2
2

4Dε

)
y1 =

√
−4Dε ln x1 cos(2πx2)

x2 =
1

2π
tan−1(y2/y1) y2 =

√
−4Dε ln x1 sin(2πx2)

Then

∂x1

∂y1

= −y1 x1

2Dε

∂x2

∂y1

= − 1

2π

y2

y2
1 + y2

2

∂x1

∂y2

= −y2 x1

2Dε

∂x2

∂y2

=
1

2π

y1

y2
1 + y2

2

and therefore the Jacobian determinant is

J =

∣∣∣∣∣
∂(x1, x2)

∂(y1, y2)

∣∣∣∣∣ =
1

4πDε
e−(y2

1
+y2

2
)/4Dε =

e−y2
1
/4Dε

√
4πDε

· e−y2
2
/4Dε

√
4πDε

,

which says that y1 and y2 are each independently distributed according to the normal
distribution p(y) = (4πDε)−1/2 exp(−y2/4Dε). Nifty!
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For the Cauchy distribution, with

p(y) =
1

π

ε

y2 + ε2
,

we have

F (y) =
1

π

y∫

−∞

dỹ
ε

ỹ2 + ε2
= 1

2 + 1
π tan−1(y/ε) ,

and therefore
y = F−1(x) = ε tan

(
πx − π

2

)
.

(5) Due to quantum coherence effects in the backscattering from impurities, one-dimensional
wires don’t obey Ohm’s law in the limit where the ‘inelastic mean free path’ is greater than
the sample dimensions, which you may assume here. Rather, let R(L) = e2R(L)/h be the
dimensionless resistance of a quantum wire of length L, in units of h/e2 = 25.813 kΩ. The
dimensionless resistance of a quantum wire of length L + δL is then given by

R(L + δL) = R(L) + R(δL) + 2R(L)R(δL)

+ 2 cos α
√

R(L)
[
1 + R(L)

]
R(δL)

[
1 + R(δL)

]
,

where α is a random phase uniformly distributed over the interval [0, 2π). Here,

R(δL) =
δL

2ℓ
,

is the dimensionless resistance of a small segment of wire, of length δL<∼ ℓ, where ℓ is the
‘elastic mean free path’.

(a) Show that the distribution function P (R, L) for resistances of a quantum wire obeys
the equation

∂P

∂L
=

1

2ℓ

∂

∂R

{
R (1 + R)

∂P

∂R

}
.

(b) Show that this equation may be solved in the limits R ≪ 1 and R ≫ 1, with

P (R, z) =
1

z
e−R/z

for R ≪ 1, and

P (R, z) = (4πz)−1/2 1

R e−(lnR−z)2/4z

for R ≫ 1, where z = L/2ℓ is the dimensionless length of the wire. Compute 〈R〉 in
the former case, and 〈lnR〉 in the latter case.
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Solution:

(a) From the composition rule for series quantum resistances, we derive the phase averages

〈
δR

〉
=

(
1 + 2R(L)

)δL

2ℓ
〈
(δR)2

〉
=

(
1 + 2R(L)

)2
(

δL

2ℓ

)2

+ 2R(L)
(
1 + R(L)

) δL

2ℓ

(
1 +

δL

2ℓ

)

= 2R(L)
(
1 + R(L)

) δL

2ℓ
+ O

(
(δL)2

)
,

whence we obtain the drift and diffusion terms

F1(R) =
2R + 1

2ℓ
, F2(R) =

2R(1 + R)

2ℓ
.

Note that 2F1(R) = dF2/dR, which allows us to write the Fokker-Planck equation as

∂P

∂L
=

∂

∂R

{R (1 + R)

2ℓ

∂P

∂R

}
.

(b) Defining the dimensionless length z = L/2ℓ, we have

∂P

∂z
=

∂

∂R

{
R (1 + R)

∂P

∂R

}
.

In the limit R ≪ 1, this reduces to

∂P

∂z
= R ∂2P

∂R2
+

∂P

∂R ,

which is satisfied by P (R, z) = z−1 exp(−R/z). For this distribution one has 〈R〉 = z.

In the opposite limit, R ≫ 1, we have

∂P

∂z
= R2 ∂2P

∂R2
+ 2R ∂P

∂R

=
∂2P

∂ν2
+

∂P

∂ν
,

where ν ≡ lnR. This is solved by the log-normal distribution,

P (R, z) = (4πz)−1/2 e−(ν+z)2/4z .

Note that

P (R, z) dR = (4πz)−1/2 exp

{
− (lnR− z)2

4z

}
d lnR .

One then obtains 〈lnR〉 = z.
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