PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS
HW SOLUTIONS #2 : STOCHASTIC PROCESSES

(1) Show that for time scales sufficiently greater than v~! that the solution z(¢) to the
Langevin equation & + vy = 7(t) describes a Markov process. You will have to construct
the matrix M defined in Eqn. 2.60 of the lecture notes. You should assume that the random
force n(t) is distributed as a Gaussian, with (n(s)) = 0 and (n(s) n(s’)) = I'd(s — ).

Solution:

The probability distribution is

Pz, ty; ... ; zy,ty) = det™ 2 (271 M) exp{ ZM T a:,},
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In the limit where ¢ and ¢ are both large compared to y~!, we have M (¢,#') = 2D min(t,#'),
where the diffusions constant is D = I'/2v2. Thus,
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To find the determinant of M, subtract row #1 from rows #2 through #N, then subtract row
#2' from the rows #3’ through #NN’, efc. The result is
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Since M is obtained from M by consecutive row additions, we have
detM = detM = tl(t2 — tl)(tg — t2) e (tN — tN—l) (2D)N

The inverse is
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This yields the general result
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where t,, =, —t, and t; = 0 and 5, = oo. Now consider the conditional probability
density
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Subtracting, and evaluating the ratio to get the conditional probability density, we find
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which depends only on {z,t,,z,,1,}, i.e. on the current and most recent data, and not on
any data before the time ¢,.




(2) Provide the missing steps in the solution of the Ornstein-Uhlenbeck process described
in §2.4.3 of the lecture notes. Show that applying the method of characteristics to Eqn. 2.78
leads to the solution in Eqn. 2.79.

Solution:

We solve .
opP n
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using the method of characteristics, writing t = ¢(s) and k = k.(s), where s parameterizes

Gk g—]l: = —DkK*P ()

the curve (tc(s), k:c(s)), and ¢ parameterizes the initial conditions, which are ¢(s = 0) = 0
and k(s = 0) = (. The above PDE in two variables is then equivalent to the coupled system

dt dk dp R
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Solving, we have
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and therefore

(3) Consider a discrete one-dimensional random walk where the probability to take a step
of length 1 in either direction is p and the probability to take a step of length 2 in either
direction is 1(1 — p). Define the generating function

P(k,t) =Y PB,(t)e """,

where P, (t) is the probability to be at position n at time t. Solve for P(k, t) and provide an
expression for P, (t). Evaluate Y, n% P, (t).

Solution:

We have the master equation
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Upon Fourier transforming,

dP(k,t)

= [(1 — p) cos(2k) 4+ pcos(k) — 1] P(k,t),
with the solution X R
P(k,t) = e B Pk, 0) ,

where
Ak) =1—pcos(k) — (1 — p)cos(2k) .

One then has

The average of n? is given by
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Note that P(0,%) = 1 for all ¢ by normalization.

(4) Numerically simulate the one-dimensional Wiener and Cauchy processes discussed in
§2.6.1 of the lecture notes, and produce a figure similar to Fig. 2.3.

Solution:

Most computing languages come with a random number generating function which pro-
duces uniform deviates on the interval = € [0, 1]. Suppose we have a prescribed function
y(x). If z is distributed uniformly on [0, 1], how is y distributed? Clearly

dx

p(y)dy| = |p(x)dz| = ply) = @ p(x)

where for the uniform distribution on the unit interval we have p(z) = ©(z) ©(1 — z) . For
example, if y = —Inz, then y € [0,00] and p(y) = e™¥ which is to say y is exponentially
distributed. Now suppose we want to specify p(y). We have
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where y, is the minimum value that y takes. Therefore, y = F~!(x), where F~! is the
inverse function.

To generate normal (Gaussian) deviates with a distribution p(y) = (47 De)~'/2 exp(—y?/4De),
we have

Yy
1 2 Yy
F = d e Yy /4D€:l+lerf<—>
) VA4t De / Y 202 V4De



wit)

J—L]____ b
mﬂw

0 1
t

C(t)

Figure 1: (a) Wiener process sample path W (t). (b) Cauchy process sample path C(t). From
K. Jacobs and D. A. Steck, New J. Phys. 13, 013016 (2011).

We now have to invert the error function, which is slightly unpleasant.

A slicker approach is to use the Box-Muller method, which used a two-dimensional version
of the above transformation,

8(‘%'17 x2)

P\Y1,Y2) = P\, X
(1 2) (1 2) 0(y1,y2)

This has an obvious generalization to higher dimensions. The transformation factor is the
Jacobian determinant. Now let z; and x, each be uniformly distributed on [0, 1], and let
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and therefore the Jacobian determinant is
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which says that y; and y, are each independently distributed according to the normal
distribution p(y) = (4w De)~ /2 exp(—y?/4De). Nifty!



For the Cauchy distribution, with
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and therefore
Y= F_l(ac) = ctan (mc - %)

(5) Due to quantum coherence effects in the backscattering from impurities, one-dimensional
wires don’t obey Ohm’s law in the limit where the “inelastic mean free path’is greater than
the sample dimensions, which you may assume here. Rather, let R(L) = e?R(L)/h be the
dimensionless resistance of a quantum wire of length L, in units of h/e* = 25.813k(). The
dimensionless resistance of a quantum wire of length L + L is then given by

R(L +0L) = R(L) + R(SL) + 2 R(L) R(6L)
+2cosay/R(L) [1+R(L)] R(SL) [1 + REGL)] ,

where « is a random phase uniformly distributed over the interval [0, 27). Here,

oL

is the dimensionless resistance of a small segment of wire, of length 0L < ¢, where / is the
‘elastic mean free path’.

(a) Show that the distribution function P(R, L) for resistances of a quantum wire obeys
the equation

orP _ 1 9 opr
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(b) Show that this equation may be solved in the limits R < 1 and R > 1, with
1 —R/z
P(Rv Z) = —€
z
for R <« 1, and 1
P(R,z) = (4#2)_1/2 = o~ (InR—2)?/4z

for R > 1, where z = L /2( is the dimensionless length of the wire. Compute (R) in
the former case, and (In R) in the latter case.



Solution:

(a) From the composition rule for series quantum resistances, we derive the phase averages

(0R) = (1+2R(L)) (;—i’

((6R)?) = (1 n 2R(L))2 <‘;—€j>2 +2R(L) (1 + R(L)) ‘;—i <1 + Z—i)

=2R(L) (1 + R(L)) (;—i’ +0((6L)%) ,

whence we obtain the drift and diffusion terms
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Note that 2F} (R) = dF5/dR, which allows us to write the Fokker-Planck equation as
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(b) Defining the dimensionless length z = L/2¢, we have

oprP 0 oprP

In the limit R < 1, this reduces to

a_P_’Ra2_P+a_P
dz OR?  OR’

which is satisfied by P(R,z) = z~! exp(—R/z). For this distribution one has (R) = z.

In the opposite limit, R > 1, we have
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where v = InR. This is solved by the log-normal distribution,
P(R,z) = (4mz) /2 e~ (t2)*/4z

Note that
(InR — 2)?

P(R,2)dR = (4mz) "'/ eXp{ T
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One then obtains (InR) = z.



