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Chapter 3

BCS Theory of Superconductivity

3.1 Binding and Dimensionality

Consider a spherically symmetric potential U(r) = −U0Θ(a − r). Are there bound states, i.e. states in the eigen-
spectrum of negative energy? What role does dimension play? It is easy to see that if U0 > 0 is large enough, there
are always bound states. A trial state completely localized within the well has kinetic energy T0 ≃ ~

2/ma2, while
the potential energy is −U0 , so if U0 > ~

2/ma2, we have a variational state with energy E = T0 − U0 < 0, which
is of course an upper bound on the true ground state energy.

What happens, though, if U0 < T0? We again appeal to a variational argument. Consider a Gaussian or exponen-
tially localized wavefunction with characteristic size ξ ≡ λa, with λ > 1. The variational energy is then

E ≃ ~
2

mξ2
− U0

(
a

ξ

)d
= T0 λ

−2 − U0 λ
−d . (3.1)

Extremizing with respect to λ, we obtain −2T0 λ
−3 + dU0 λ

−(d+1) and λ =
(
dU0/2T0

)1/(d−2)
. Inserting this into

our expression for the energy, we find

E =

(
2

d

)2/(d−2)(
1− 2

d

)
T

d/(d−2)
0 U

−2/(d−2)
0 . (3.2)

We see that for d = 1 we have λ = 2T0/U0 andE = −U2
0 /4T0 < 0. In d = 2 dimensions, we haveE = (T0−U0)/λ

2,
which says E ≥ 0 unless U0 > T0. For weak attractive U(r), the minimum energy solution is E → 0+, with
λ → ∞. It turns out that d = 2 is a marginal dimension, and we shall show that we always get localized states
with a ballistic dispersion and an attractive potential well. For d > 2 we have E > 0 which suggests that we
cannot have bound states unless U0 > T0, in which case λ ≤ 1 and we must appeal to the analysis in the previous
paragraph.

We can firm up this analysis a bit by considering the Schrödinger equation,

− ~
2

2m
∇2ψ(x) + V (x)ψ(x) = E ψ(x) . (3.3)

Fourier transforming, we have

ε(k) ψ̂(k) +

∫
ddk′

(2π)d
V̂ (k − k′) ψ̂(k′) = E ψ̂(k) , (3.4)

1



2 CHAPTER 3. BCS THEORY OF SUPERCONDUCTIVITY

where ε(k) = ~
2k2/2m. We may now write V̂ (k − k′) =

∑
n λn αn(k)α

∗
n(k

′) , which is a decomposition of the

Hermitian matrix V̂k,k′ ≡ V̂ (k − k′) into its (real) eigenvalues λn and eigenvectors αn(k). Let’s approximate

Vk,k′ by its leading eigenvalue, which we call λ, and the corresponding eigenvector α(k). That is, we write

V̂k,k′ ≃ λα(k)α∗(k′) . We then have

ψ̂(k) =
λα(k)

E − ε(k)

∫
ddk′

(2π)d
α∗(k′) ψ̂(k′) . (3.5)

Multiply the above equation by α∗(k) and integrate over k, resulting in

1

λ
=

∫
ddk

(2π)d

∣∣α(k)
∣∣2

E − ε(k)
=

1

λ
=

∞∫

0

dε
g(ε)

E − ε

∣∣α(ε)
∣∣2 , (3.6)

where g(ε) is the density of states g(ε) = Tr δ
(
ε − ε(k)

)
. Here, we assume that α(k) = α(k) is isotropic. It is

generally the case that if Vk,k′ is isotropic, i.e. if it is invariant under a simultaneous O(3) rotation k → Rk and

k′ → Rk′, then so will be its lowest eigenvector. Furthermore, since ε = ~
2k2/2m is a function of the scalar k = |k|,

this means α(k) can be considered a function of ε. We then have

1

|λ| =
∞∫

0

dε
g(ε)

|E|+ ε

∣∣α(ε)
∣∣2 , (3.7)

where we have we assumed an attractive potential (λ < 0), and, as we are looking for a bound state, E < 0.

If α(0) and g(0) are finite, then in the limit |E| → 0 we have

1

|λ| = g(0) |α(0)|2 ln
(
1/|E|

)
+ finite . (3.8)

This equation may be solved for arbitrarily small |λ| because the RHS of Eqn. 3.7 diverges as |E| → 0. If, on the
other hand, g(ε) ∼ εp where p > 0, then the RHS is finite even when E = 0. In this case, bound states can only
exist for |λ| > λc, where

λc = 1

/ ∞∫

0

dε
g(ε)

ε

∣∣α(ε)
∣∣2 . (3.9)

Typically the integral has a finite upper limit, given by the bandwidth B. For the ballistic dispersion, one has
g(ε) ∝ ε(d−2)/2, so d = 2 is the marginal dimension. In dimensions d ≤ 2, bound states form for arbitrarily weak
attractive potentials.

3.2 Cooper’s Problem

In 1956, Leon Cooper considered the problem of two electrons interacting in the presence of a quiescent Fermi
sea. The background electrons comprising the Fermi sea enter the problem only through their Pauli blocking. Since
spin and total momentum are conserved, Cooper first considered a zero momentum singlet,

|Ψ 〉 =
∑

k

Ak

(
c†k↑c

†
−k↓ − c†k↓c

†
−k↑

)
|F 〉 , (3.10)
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where |F 〉 is the filled Fermi sea, |F 〉 =∏|p|<k
F

c†p↑c
†
p↓ | 0 〉 . Only states with k > k

F
contribute to the RHS of Eqn.

3.10, due to Pauli blocking. The real space wavefunction is

Ψ(r1, r2) =
∑

k

Ak e
ik·(r

1
−r

2
)
(
|↑1↓2 〉 − |↓1↑2 〉

)
, (3.11)

with Ak = A−k to enforce symmetry of the orbital part. It should be emphasized that this is a two-particle
wavefunction, and not an (N +2)-particle wavefunction, with N the number of electrons in the Fermi sea. Again,
the Fermi sea in this analysis has no dynamics of its own. Its presence is reflected only in the restriction k > k

F
for

the states which participate in the Cooper pair.

The many-body Hamiltonian is written

Ĥ =
∑

kσ

εk c
†
kσ
c
kσ

+ 1
2

∑

k
1
σ
1

∑

k
2
σ
2

∑

k
3
σ
3

∑

k
4
σ
4

〈k1σ1,k2σ2 | v |k3σ3,k4σ4 〉 c†k
1
σ
1

c†
k
2
σ
2

c
k
4
σ
4

c
k
3
σ
3

. (3.12)

We treat |Ψ 〉 as a variational state, which means we set

δ

δA∗
k

〈Ψ | Ĥ |Ψ 〉
〈Ψ |Ψ 〉 = 0 , (3.13)

resulting in

(E − E0)Ak = 2εk Ak +
∑

k′

Vk,k′ Ak′ , (3.14)

where

Vk,k′ = 〈k↑,−k↓ | v |k′ ↑,−k′↓ 〉 = 1

V

∫
d3r v(r) ei(k−k′)·r . (3.15)

Here E0 = 〈F | Ĥ |F 〉 is the energy of the Fermi sea.

We write εk = ε
F
+ ξk, and we define E ≡ E0 + 2ε

F
+W . Then

W Ak = 2ξk Ak +
∑

k′

Vk,k′ Ak′ . (3.16)

If Vk,k′ is rotationally invariant, meaning it is left unchanged by k → Rk and k′ → Rk′ where R ∈ O(3), then we
may write

Vk,k′ =

∞∑

ℓ=0

ℓ∑

m=−ℓ

Vℓ(k, k
′)Y ℓ

m(k̂)Y ℓ
−m(k̂′) . (3.17)

We assume that Vl(k, k
′) is separable, meaning we can write

Vℓ(k, k
′) =

1

V
λℓ αℓ(k)α

∗
ℓ (k

′) . (3.18)

This simplifies matters and affords us an exact solution, for now we take Ak = Ak Y
ℓ
m(k̂) to obtain a solution in

the ℓ angular momentum channel:

WℓAk = 2ξk Ak + λℓ αℓ(k) ·
1

V

∑

k′

α∗
ℓ (k

′)Ak′ , (3.19)

which may be recast as

Ak =
λℓ αℓ(k)

Wℓ − 2ξk
· 1

V

∑

k′

α∗
ℓ (k

′)Ak′ . (3.20)
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Figure 3.1: Graphical solution to the Cooper problem. A bound state exists for arbitrarily weak λ < 0.

Now multiply by α∗
k and sum over k to obtain

1

λℓ
=

1

V

∑

k

∣∣αℓ(k)
∣∣2

Wℓ − 2ξk
≡ Φ(Wℓ) . (3.21)

We solve this for Wℓ.

We may find a graphical solution. Recall that the sum is restricted to k > k
F
, and that ξk ≥ 0. The denominator

on the RHS of Eqn. 3.21 changes sign as a function of Wℓ every time 1
2Wℓ passes through one of the ξk values1. A

sketch of the graphical solution is provided in Fig. 3.1. One sees that if λℓ < 0, i.e. if the potential is attractive, then
a bound state exists. This is true for arbitrarily weak |λℓ|, a situation not usually encountered in three-dimensional
problems, where there is usually a critical strength of the attractive potential in order to form a bound state2.
This is a density of states effect – by restricting our attention to electrons near the Fermi level, where the DOS is
roughly constant at g(ε

F
) = m∗k

F
/π2

~
2, rather than near k = 0, where g(ε) vanishes as

√
ε, the pairing problem is

effectively rendered two-dimensional. We can make further progress by assuming a particular form for αℓ(k):

αℓ(k) =

{
1 if 0 < ξk < Bℓ

0 otherwise ,
(3.22)

where Bℓ is an effective bandwidth for the ℓ channel. Then

1 = 1
2 |λℓ|

Bℓ∫

0

dξ
g(ε

F
+ ξ)∣∣Wℓ

∣∣+ 2ξ
. (3.23)

The factor of 1
2 is because it is the DOS per spin here, and not the total DOS. We assume g(ε) does not vary

significantly in the vicinity of ε = ε
F
, and pull g(ε

F
) out from the integrand. Integrating and solving for

∣∣Wℓ

∣∣,

∣∣Wℓ

∣∣ = 2Bℓ

exp
(

4
|λℓ| g(εF)

)
− 1

. (3.24)

1We imagine quantizing in a finite volume, so the allowed k values are discrete.
2For example, the 2He molecule is unbound, despite the attractive −1/r6 van der Waals attractive tail in the interatomic potential.
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In the weak coupling limit, where |λℓ| g(εF) ≪ 1, we have

∣∣Wℓ

∣∣ ≃ 2Bℓ exp

(
− 4

|λℓ| g(εF)

)
. (3.25)

As we shall see when we study BCS theory, the factor in the exponent is twice too large. The coefficient 2Bℓ will
be shown to be the Debye energy of the phonons; we will see that it is only over a narrow range of energies about
the Fermi surface that the effective electron-electron interaction is attractive. For strong coupling,

|Wℓ| = 1
2 |λℓ| g(εF) . (3.26)

Finite momentum Cooper pair

We can construct a finite momentum Cooper pair as follows:

|Ψq 〉 =
∑

k

Ak

(
c†
k+ 1

2
q ↑c

†
−k+ 1

2
q ↓ − c†

k+ 1

2
q ↓c

†
−k+ 1

2
q ↑
)
|F 〉 . (3.27)

This wavefunction is a momentum eigenstate, with total momentum P = ~q. The eigenvalue equation is then

WAk =
(
ξk+ 1

2
q + ξ−k+ 1

2
q

)
Ak +

∑

k′

Vk,k′ Ak′ . (3.28)

Assuming ξk = ξ−k ,

ξk+ 1

2
q + ξ−k+ 1

2
q = 2 ξk + 1

4 q
αqβ

∂2ξk
∂kα ∂kβ

+ . . . . (3.29)

The binding energy is thus reduced by an amount proportional to q2 ; the q = 0 Cooper pair has the greatest
binding energy3.

Mean square radius of the Cooper pair

We have

〈
r2
〉
=

∫
d3r
∣∣Ψ(r)

∣∣2 r2

∫
d3r
∣∣Ψ(r)

∣∣2 =

∫
d3k
∣∣∇kAk

∣∣2
∫
d3k
∣∣A

k

∣∣2

≃
g(εF) ξ

′(kF)
2

∞∫
0

dξ
∣∣∂A
∂ξ

∣∣2

g(εF)
∞∫
0

dξ |A|2

(3.30)

with A(ξ) = −C/
(
|W |+ 2ξ

)
and thus A′(ξ) = 2C/

(
|W |+ 2ξ

)2
, where C is a constant independent of ξ. Ignoring

the upper cutoff on ξ at Bℓ, we have

〈
r2
〉
= 4 ξ′(k

F
)2 ·

∞∫
|W |
du u−4

∞∫

|W |
du u−2

= 4
3 (~vF

)2 |W |−2 , (3.31)

3We assume the matrix ∂α∂β ξ
k

is positive definite.
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where we have used ξ′(k
F
) = ~v

F
. Thus, R

RMS
= 2~v

F

/√
3 |W | . In the weak coupling limit, where |W | is expo-

nentially small in 1/|λ|, the Cooper pair radius is huge. Indeed it is so large that many other Cooper pairs have
their centers of mass within the radius of any given pair. This feature is what makes the BCS mean field theory
of superconductivity so successful. Recall in our discussion of the Ginzburg criterion in §1.4.5, we found that
mean field theory was qualitatively correct down to the Ginzburg reduced temperature t

G
= (a/R∗)

2d/(4−d), i.e.
t
G
= (a/R∗)

6 for d = 3. In this expression, R∗ should be the mean Cooper pair size, and a a microscopic length
(i.e. lattice constant). Typically R∗/a ∼ 102 − 103, so t

G
is very tiny indeed.

3.3 Effective attraction due to phonons

The solution to Cooper’s problem provided the first glimpses into the pairing nature of the superconducting state.
But why should Vk,k′ be attractive? One possible mechanism is an induced attraction due to phonons.

3.3.1 Electron-phonon Hamiltonian

In §2.8 we derived the electron-phonon Hamiltonian,

Ĥel−ph =
1√
V

∑

k,k′σ

q,λ,G

gλ(k,k
′) (a†qλ + a−qλ) c

†
kσ ck′σ

δk′,k+q+G , (3.32)

where c†
kσ

creates an electron in state |k σ 〉 and a†qλ creates a phonon in state | q λ 〉, where λ is the phonon polar-
ization state. G is a reciprocal lattice vector, and

gλ(k,k
′) = −i

(
~

2Ωωλ(q)

)1/2
4πZe2

(q +G)2 + λ−2
TF

(q +G) · ê∗λ(q) . (3.33)

is the electron-phonon coupling constant, with êλ(q) the phonon polarization vector, Ω the Wigner-Seitz unit cell
volume, and ωλ(q) the phonon frequency dispersion of the λ branch.

Recall that in an isotropic ‘jellium’ solid, the phonon polarization at wavevector q either is parallel to q (longi-
tudinal waves), or perpendicular to q (transverse waves). We then have that only longitudinal waves couple to
the electrons. This is because transverse waves do not result in any local accumulation of charge density, and
the Coulomb interaction couples electrons to density fluctuations. Restricting our attention to the longitudinal

phonon, we found for small q the electron-longitudinal phonon coupling gL(k,k + q) ≡ gq satisfies

|gq|2 = λel−ph ·
~cLq

g(ε
F
)
, (3.34)

where g(ε
F
) is the electronic density of states, c

L
is the longitudinal phonon speed, and where the dimensionless

electron-phonon coupling constant is

λel−ph =
Z2

2Mc2
L
Ω g(ε

F
)
=

2Z

3

m∗

M

(
ε
F

k
B
Θs

)2
, (3.35)

with Θs ≡ ~cLkF
/k

B
.
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Figure 3.2: Feynman diagrams for electron-phonon processes.

3.3.2 Effective interaction between electrons

Consider now the problem of two particle scattering |k σ , −k −σ 〉 → |k′ σ , −k′ −σ 〉. We assume no phonons
are present in the initial state, i.e. we work at T = 0. The initial state energy is Ei = 2ξk and the final state energy

is Ef = 2ξk′ . There are two intermediate states:4

| I1 〉 = |k′ σ , −k −σ 〉 ⊗ | − q λ 〉
| I2 〉 = |k σ , −k′ −σ 〉 ⊗ |+ q λ 〉 ,

(3.36)

with k′ = k + q in each case. The energies of these intermediate states are

E1 = ξ−k + ξk′ + ~ω−q λ , E2 = ξk + ξ−k′ + ~ωq λ . (3.37)

The second order matrix element is then

〈k′ σ , −k′ −σ | Ĥindirect |k σ , −k −σ 〉 =
∑

n

〈k σ , −k −σ | Ĥel−ph |n 〉〈n | Ĥel−ph |k′ σ , −k′ −σ 〉

×
(

1

Ef − En

+
1

Ei − En

)

=
∣∣gk′−k

∣∣2
(

1

ξ
k′ − ξ

k
− ωq

+
1

ξ
k
− ξ

k′ − ωq

)
. (3.38)

Here we have assumed ξk = ξ−k and ωq = ω−q, and we have chosen λ to correspond to the longitudinal acoustic

phonon branch. We add this to the Coulomb interaction v̂
(
|k − k′|

)
to get the net effective interaction between

electrons,

〈k σ , −k −σ | Ĥeff |k′ σ , −k′ −σ 〉 = v̂
(
|k − k′|

)
+
∣∣gq
∣∣2 ×

2ωq
(ξ

k
− ξ

k′)2 − (~ωq)
2

, (3.39)

where k′ = k + q. We see that the effective interaction can be attractive, but only of |ξk − ξk′ | < ~ωq.

Another way to evoke this effective attraction is via the jellium model studied in §2.6.6. There we found the
effective interaction between unit charges was given by

V̂eff(q, ω) =
4πe2

q2 ǫ(q, ω)
(3.40)

where
1

ǫ(q, ω)
≃ q2

q2 + q2
TF

{
1 +

ω2
q

ω2 − ω2
q

}
, (3.41)

4The annihilation operator in the Hamiltonian Ĥ
el−ph

can act on either of the two electrons.
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where the first term in the curly brackets is due to Thomas-Fermi screening (§2.6.2) and the second from ionic

screening (§2.6.6). Recall that the Thomas-Fermi wavevector is given by q
TF

=
√
4πe2g(ε

F
) , where g(ε

F
) is the

electronic density of states at the Fermi level, and that ωq = Ωp,i q
/√

q2 + q2
TF

, where Ωp,i =
√
4πn0

i Zie
2/Mi is the

ionic plasma frequency.

3.4 Reduced BCS Hamiltonian

The operator which creates a Cooper pair with total momentum q is b†
k,q

+ b†−k,q
, where

b†k,q = c†
k+ 1

2
q ↑ c

†
−k+ 1

2
q ↓ (3.42)

is a composite operator which creates the state |k + 1
2q ↑ , −k + 1

2q ↓ 〉. We learned from the solution to the Cooper
problem that the q = 0 pairs have the greatest binding energy. This motivates consideration of the so-called reduced
BCS Hamiltonian,

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′

Vk,k′ b
†
k,0 bk′,0

. (3.43)

The most general form for a momentum-conserving interaction is5

V̂ =
1

2V

∑

k,p,q

∑

σ,σ′

ûσσ′ (k,p, q) c
†
k+q σ

c†p−q σ′ cpσ′ ck σ
. (3.44)

Taking p = −k, σ′ = −σ, and defining k′ ≡ k + q , we have

V̂ → 1

2V

∑

k,k′,σ

v̂(k,k′) c†k′σ
c†−k′ −σ c−k−σ ckσ , (3.45)

where v̂(k,k′) = û↑↓(k,−k,k′ − k), which is equivalent to Ĥred .

If V
k,k′ is attractive, then the ground state will have no pair (k ↑ , −k ↓) occupied by a single electron; the pair

states are either empty or doubly occupied. In that case, the reduced BCS Hamiltonian may be written as6

H0
red =

∑

k

2ε
k
b†
k,0

b
k,0

+
∑

k,k′

V
k,k′ b

†
k,0

b
k′,0

. (3.46)

This has the innocent appearance of a noninteracting bosonic Hamiltonian – an exchange of Cooper pairs restores
the many-body wavefunction without a sign change because the Cooper pair is a composite object consisting of

an even number of fermions7. However, this is not quite correct, because the operators b
k,0

and bk′,0
do not satisfy

canonical bosonic commutation relations. Rather,

[
b
k,0

, b
k′,0

]
=
[
b†
k,0

, b†
k′,0

]
= 0

[
bk,0 , b

†
k′,0

]
=
(
1− c†k↑ck↑ − c†−k↓c−k↓

)
δkk′ .

(3.47)

Because of this, Ĥ0
red cannot naı̈vely be diagonalized. The extra terms inside the round brackets on the RHS arise

due to the Pauli blocking effects. Indeed, one has (b†
k,0

)2 = 0, so b†
k,0

is no ordinary boson operator.

5See the discussion in Appendix I, §3.13.
6Spin rotation invariance and a singlet Cooper pair requires that V

k,k′
= V

k,−k′
= V

−k,k′
.

7Recall that the atom 4He, which consists of six fermions (two protons, two neutrons, and two electrons), is a boson, while 3He, which has
only one neutron and thus five fermions, is itself a fermion.
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Figure 3.3: John Bardeen, Leon Cooper, and J. Robert Schrieffer.

Suppose, though, we try a mean field Hartree-Fock approach. We write

b
k,0

= 〈b
k,0

〉+

δb
k,0︷ ︸︸ ︷(

b
k,0

− 〈b
k,0

〉
)

, (3.48)

and we neglect terms in Ĥred proportional to δb†k,0 δbk′,0
. We have

Ĥred =
∑

k,σ

ε
k
c†
kσ
c
kσ

+
∑

k,k′

V
k,k′

(
energy shift︷ ︸︸ ︷

−〈b†
k,0

〉 〈b
k′,0

〉 +

keep this︷ ︸︸ ︷
〈b

k′,0
〉 b†

k,0
+ 〈b†

k,0
〉 b

k′,0
+

drop this!︷ ︸︸ ︷
δb†

k,0
δb

k′,0

)
. (3.49)

Dropping the last term, which is quadratic in fluctuations, we obtain

ĤMF

red =
∑

k,σ

εk c
†
kσ
c
kσ

+
∑

k

(
∆

k
c†
k↑ c

†
−k↓ +∆∗

k c−k↓ ck↑
)
−
∑

k,k′

Vk,k′ 〈b†k,0〉 〈bk′,0
〉 , (3.50)

where
∆k =

∑

k′

Vk,k′

〈
c−k′↓ ck′↑

〉
, ∆∗

k =
∑

k′

V ∗
k,k′

〈
c†k′↑ c

†
−k′↓

〉
. (3.51)

The first thing to notice about ĤMF

red is that it does not preserve particle number, i.e. it does not commute with

N̂ =
∑

k,σ c
†
kσckσ . Accordingly, we are practically forced to work in the grand canonical ensemble, and we define

the grand canonical Hamiltonian K̂ ≡ Ĥ − µN̂ .

3.5 Solution of the mean field Hamiltonian

We now subtract µN̂ from Eqn. 3.50, and define K̂
BCS

≡ ĤMF

red − µN̂ . Thus,

K̂
BCS

=
∑

k

(
c†
k↑ c−k↓

)
Kk︷ ︸︸ ︷(

ξk ∆k
∆∗

k −ξk

) (
c
k↑

c†−k↓

)
+K0 , (3.52)
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with ξk = εk − µ, and where

K0 =
∑

k

ξk −
∑

k,k′

Vk,k′ 〈c†k↑c
†
−k↓〉 〈c−k′↓ ck′↑〉 (3.53)

is a constant. This problem may be brought to diagonal form via a unitary transformation,

(
ck↑
c†−k↓

)
=

Uk︷ ︸︸ ︷(
cosϑk − sinϑk e

iφk

sinϑk e
−iφk cosϑk

) (
γk↑
γ†−k↓

)
. (3.54)

In order for the γkσ operators to satisfy fermionic anticommutation relations, the matrix Uk must be unitary8. We
then have

c
kσ

= cosϑ
k
γ
kσ

− σ sinϑ
k
eiφk γ†−k−σ

γkσ = cosϑk ckσ + σ sinϑk e
iφk c†−k−σ

.
(3.55)

EXERCISE: Verify that
{
γkσ , γ

†
k′σ′

}
= δkk′ δσσ′ .

We now must compute the transformed Hamiltonian. Dropping the k subscript for notational convenience, we
have

K̃ = U †K U =

(
cosϑ sinϑ eiφ

− sinϑ e−iφ cosϑ

)(
ξ ∆
∆∗ −ξ

)(
cosϑ − sinϑ eiφ

sinϑ e−iφ cosϑ

)
(3.56)

=

(
(cos2ϑ− sin2ϑ) ξ + sinϑ cosϑ (∆ e−iφ +∆∗eiφ) ∆ cos2ϑ−∆∗e2iφ sin2ϑ− 2ξ sinϑ cosϑ eiφ

∆∗ cos2ϑ−∆e−2iφ sin2ϑ− 2ξ sinϑ cosϑ e−iφ (sin2ϑ− cos2ϑ) ξ − sinϑ cosϑ (∆ e−iφ +∆∗eiφ)

)
.

We now use our freedom to choose ϑ and φ to render K̃ diagonal. That is, we demand φ = arg(∆) and

2ξ sinϑ cosϑ = ∆(cos2ϑ− sin2ϑ) . (3.57)

This says tan(2ϑ) = ∆/ξ, which means

cos(2ϑ) =
ξ

E
, sin(2ϑ) =

∆

E
, E =

√
ξ2 +∆2 . (3.58)

The upper left element of K̃ then becomes

(cos2ϑ− sin2ϑ) ξ + sinϑ cosϑ (∆ e−iφ +∆∗eiφ) =
ξ2

E
+

∆2

E
= E , (3.59)

and thus K̃ =

(
E 0
0 −E

)
. This unitary transformation, which mixes particle and hole states, is called a Bogoliubov

transformation, because it was first discovered by Valatin.

Restoring the k subscript, we have φk = arg(∆k), and tan(2ϑk) = |∆k|/ξk, which means

cos(2ϑk) =
ξk
E
k

, sin(2ϑk) =
|∆k|
E
k

, Ek =
√
ξ2
k
+ |∆

k
|2 . (3.60)

8The most general 2× 2 unitary matrix is of the above form, but with each row multiplied by an independent phase. These phases may be
absorbed into the definitions of the fermion operators themselves. After absorbing these harmless phases, we have written the most general
unitary transformation.
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Assuming that ∆k is not strongly momentum-dependent, we see that the dispersion Ek of the excitations has a
nonzero minimum at ξk = 0, i.e. at k = k

F
. This minimum value of Ek is called the superconducting energy gap.

We may further write

cosϑk =

√
E
k
+ ξ

k

2Ek

, sinϑk =

√
E
k
− ξ

k

2Ek

. (3.61)

The grand canonical BCS Hamiltonian then becomes

K̂
BCS

=
∑

k,σ

Ek γ
†
kσ γkσ +

∑

k

(ξk − Ek)−
∑

k,k′

Vk,k′ 〈c†k↑c
†
−k↓〉 〈c−k′↓ ck′↑〉 . (3.62)

Finally, what of the ground state wavefunction itself? We must have γ
kσ

|G 〉 = 0. This leads to

|G 〉 =
∏

k

(
cosϑk − sinϑk e

iφk c†
k↑ c

†
−k↓
)
| 0 〉 . (3.63)

Note that 〈G |G 〉 = 1. J. R. Schrieffer conceived of this wavefunction during a subway ride in New York City
sometime during the winter of 1957. At the time he was a graduate student at the University of Illinois.

Sanity check

It is good to make contact with something familiar, such as the case ∆k = 0. Note that ξk < 0 for k < k
F

and
ξk > 0 for k > k

F
. We now have

cosϑk = Θ(k − k
F
) , sinϑk = Θ(k

F
− k) . (3.64)

Note that the wavefunction |G 〉 in Eqn. 3.63 correctly describes a filled Fermi sphere out to k = k
F
. Furthermore,

the constant on the RHS of Eqn. 3.62 is 2
∑

k<k
F

ξk, which is the Landau free energy of the filled Fermi sphere.

What of the excitations? We are free to take φk = 0. Then

k < k
F

: γ†
kσ

= σ c−k−σ

k > k
F

: γ†
kσ

= c†
kσ

.
(3.65)

Thus, the elementary excitations are holes below k
F

and electrons above k
F
. All we have done, then, is to effect a

(unitary) particle-hole transformation on those states lying within the Fermi sea.

3.6 Self-consistency

We now demand that the following two conditions hold:

N =
∑

kσ

〈c†kσ ckσ〉

∆k =
∑

k′

Vk,k′ 〈c−k′↓ ck′↑〉 ,
(3.66)

the second of which is from Eqn. 3.51. Thus, we need

〈c†
kσ
c
kσ

〉 =
〈
(cosϑ

k
γ†
kσ

− σ sinϑ
k
e−iφk γ−k−σ

)(cosϑ
k
γ
kσ

− σ sinϑ
k
eiφk γ†−k−σ

)
〉

= cos2ϑk fk + sin2ϑk (1− fk) =
1

2
− ξk

2E
k

tanh
(
1
2βEk

)
,

(3.67)
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where

fk = 〈γ†
kσ
γ
kσ

〉 = 1

eβEk + 1
= 1

2 − 1
2 tanh

(
1
2βEk

)
(3.68)

is the Fermi function, with β = 1/k
B
T . We also have

〈c−k−σ
c
kσ

〉 =
〈
(cosϑ

k
γ−k−σ

+ σ sinϑ
k
eiφk γ†

kσ
)(cosϑ

k
γ
kσ

− σ sinϑ
k
eiφk γ†−k−σ

)
〉

= σ sinϑk cosϑk e
iφk
(
2fk − 1

)
= −σ∆k

2E
k

tanh
(
1
2βEk

)
.

(3.69)

Let’s evaluate at T = 0 :

N =
∑

k

(
1− ξk

E
k

)

∆k = −
∑

k′

Vk,k′

∆k′

2Ek′

.

(3.70)

The second of these is known as the BCS gap equation. Note that ∆k = 0 is always a solution of the gap equation.

To proceed further, we need a model for Vk,k′ . We shall assume

Vk,k′ =

{
−v/V if |ξk| < ~ω

D
and |ξk′ | < ~ω

D

0 otherwise .
(3.71)

Here v > 0, so the interaction is attractive, but only when ξk and ξk′ are within an energy ~ω
D

of zero. For
phonon-mediated superconductivity, ω

D
is the Debye frequency, which is the phonon bandwidth.

3.6.1 Solution at zero temperature

We first solve the second of Eqns. 3.70, by assuming

∆k =

{
∆ eiφ if |ξk| < ~ω

D

0 otherwise ,
(3.72)

with ∆ real. We then have9

∆ = +v

∫
d3k

(2π)3
∆

2Ek

Θ
(
~ω

D
− |ξk|

)

= 1
2v g(εF)

~ω
D∫

0

dξ
∆√

ξ2 +∆2
.

(3.73)

Cancelling out the common factors of ∆ on each side, we obtain

1 = 1
2v g(εF)

~ω
D
/∆∫

0

ds (1 + s2)−1/2 = 1
2v g(εF) sinh

−1
(
~ω

D
/∆
)

. (3.74)

9We assume the density of states g(ε) is slowly varying in the vicinity of the chemical potential and approximate it at g(εF). In fact, we
should more properly call it g(µ), but as a practical matter µ ≃ ε

F
at temperatures low enough to be in the superconducting phase. Note that

g(εF) is the total DOS for both spin species. In the literature, one often encounters the expression N(0), which is the DOS per spin at the Fermi
level, i.e. N(0) = 1

2
g(εF).
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Thus, writing ∆0 ≡ ∆(0) for the zero temperature gap,

∆0 =
~ω

D

sinh
(
2/g(ε

F
) v
) ≃ 2~ω

D
exp

(
− 2

g(ε
F
) v

)
, (3.75)

where g(ε
F
) is the total electronic DOS (for both spin species) at the Fermi level. Notice that, as promised, the

argument of the exponent is one half as large as what we found in our solution of the Cooper problem, in Eqn.
3.25.

3.6.2 Condensation energy

We now evaluate the zero temperature expectation of K̂
BCS

from Eqn. 3.62. To get the correct answer, it is essential
that we retain the term corresponding to the constant energy shift in the mean field Hamiltonian, i.e. the last term

on the RHS of Eqn. 3.62. Invoking the gap equation ∆k =
∑

k′ Vk,k′ 〈c−k′↓ ck′↑〉, we have

〈G | K̂
BCS

|G 〉 =
∑

k

(
ξk − Ek +

|∆k|2
2E

k

)
. (3.76)

From this we subtract the ground state energy of the metallic phase, i.e. when ∆k = 0, which is 2
∑

k ξk Θ(k
F
− k).

The difference is the condensation energy. Adopting the model interaction potential in Eqn. 3.71, we have

Es − En =
∑

k

(
ξk − Ek +

|∆k|2
2Ek

− 2ξk Θ(k
F
− k)

)

= 2
∑

k

(
ξk − Ek)Θ(ξk)Θ(~ω

D
− ξk) +

∑

k

∆2
0

2E
k

Θ
(
~ω

D
− |ξk|

)
,

(3.77)

where we have linearized about k = k
F
. We then have

Es − En = V g(ε
F
)∆2

0

~ω
D
/∆

0∫

0

ds

(
s−

√
s2 + 1 +

1

2
√
s2 + 1

)

= 1
2 V g(εF)∆

2
0

(
x2 − x

√
1 + x2

)
≈ − 1

4 V g(εF)∆
2
0 ,

(3.78)

where x ≡ ~ω
D
/∆0. The condensation energy density is therefore − 1

4 g(εF)∆
2
0, which may be equated with

−H2
c /8π, where Hc is the thermodynamic critical field. Thus, we find

Hc(0) =
√
2πg(ε

F
) ∆0 , (3.79)

which relates the thermodynamic critical field to the superconducting gap, at T = 0.

3.7 Coherence factors and quasiparticle energies

When ∆k = 0, we have Ek = |ξk|. When ~ω
D
≪ ε

F
, there is a very narrow window surrounding k = k

F
where

Ek departs from |ξk|, as shown in the bottom panel of Fig. 3.4. Note the energy gap in the quasiparticle dispersion,

where the minimum excitation energy is given by10

min
k
Ek = Ek

F

= ∆0 . (3.80)

10Here we assume, without loss of generality, that ∆ is real.
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Figure 3.4: Top panel: BCS coherence factors sin2ϑk (blue) and cos2ϑk (red). Bottom panel: the functions ξk (black)
and Ek (magenta). The minimum value of the magenta curve is the superconducting gap ∆0.

In the top panel of Fig. 3.4 we plot the coherence factors sin2ϑk and cos2ϑk. Note that sin2ϑk approaches unity for

k < k
F

and cos2ϑk approaches unity for k > k
F
, aside for the narrow window of width δk ≃ ∆0/~vF . Recall that

γ†kσ = cosϑk c
†
kσ + σ sinϑk e

−iφk c−k−σ
. (3.81)

Thus we see that the quasiparticle creation operator γ†
kσ

creates an electron in the state |k σ 〉 when cos2ϑk ≃ 1,

and a hole in the state | −k −σ 〉 when sin2ϑk ≃ 1. In the aforementioned narrow window |k − k
F
|<∼∆0/~vF , the

quasiparticle creates a linear combination of electron and hole states. Typically ∆0 ∼ 10−4 ε
F
, since metallic Fermi

energies are on the order of tens of thousands of Kelvins, while ∆0 is on the order of Kelvins or tens of Kelvins.
Thus, δk <∼ 10−3k

F
. The difference between the superconducting state and the metallic state all takes place within

an onion skin at the Fermi surface!

Note that for the model interaction Vk,k′ of Eqn. 3.71, the solution ∆k in Eqn. 3.72 is actually discontinuous when

ξk = ±~ω
D

, i.e. when k = k∗± ≡ k
F
±ω

D
/vF. Therefore, the energy dispersion Ek is also discontinuous along these

surfaces. However, the magnitude of the discontinuity is

δE =
√
(~ω

D
)2 +∆2

0 − ~ω
D
≈ ∆2

0

2~ω
D

. (3.82)

Therefore δE/Ek∗
±

≈ ∆2
0

/
2(~ω

D
)2 ∝ exp

(
−4/g(ε

F
) v
)

, which is very tiny in weak coupling, where g(ε
F
) v ≪ 1.

Note that the ground state is largely unaffected for electronic states in the vicinity of this (unphysical) energy
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discontinuity. The coherence factors are distinguished from those of a Fermi liquid only in regions where 〈c†
k↑c

†
−k↓〉

is appreciable, which requires ξk to be on the order of ∆k. This only happens when |k−k
F
|<∼∆0/~vF , as discussed

in the previous paragraph. In a more physical model, the interaction Vk,k′ and the solution ∆k would not be

discontinuous functions of k.

3.8 Number and Phase

The BCS ground state wavefunction |G 〉 was given in Eqn. 3.63. Consider the state

|G(α) 〉 =
∏

k

(
cosϑk − eiα eiφk sinϑk c

†
k↑ c

†
−k↓
)
| 0 〉 . (3.83)

This is the ground state when the gap function ∆k is multiplied by the uniform phase factor eiα. We shall here
abbreviate |α 〉 ≡ |G(α) 〉.

Now consider the action of the number operator on |α 〉 :

N̂ |α 〉 =
∑

k

(
c†
k↑ck↑ + c†−k↓c−k↓

)
|α 〉 (3.84)

= −2
∑

k

eiα eiφk sinϑk c
†
k↑ c

†
−k↓

∏

k′ 6=k

(
cosϑk′ − eiα eiφk′ sinϑk′ c

†
k′↑ c

†
−k′↓

)
| 0 〉

=
2

i

∂

∂α
|α 〉 .

If we define the number of Cooper pairs as M̂ ≡ 1
2N̂ , then we may identify M̂ = 1

i
∂
∂α . Furthermore, we may

project |G 〉 onto a state of definite particle number by defining

|M 〉 =
π∫

−π

dα

2π
e−iMα |α 〉 . (3.85)

The state |M 〉 has N = 2M particles, i.e. M Cooper pairs. One can easily compute the number fluctuations in the
state |G(α) 〉 :

〈α | N̂2 |α 〉 − 〈α | N̂ |α 〉2

〈α | N̂ |α 〉
=

2
∫
d3k sin2ϑk cos2ϑk∫
d3k sin2ϑk

. (3.86)

Thus, (∆N)
RMS

∝
√
〈N〉. Note that (∆N)

RMS
vanishes in the Fermi liquid state, where sinϑk cosϑk = 0.

3.9 Finite temperature

The gap equation at finite temperature takes the form

∆k = −
∑

k′

Vk,k′

∆k′

2Ek′

tanh

(
Ek′

2k
B
T

)
. (3.87)

It is easy to see that we have no solutions other than the trivial one ∆k = 0 in the T → ∞ limit, for the gap equation
then becomes

∑
k′ Vk,k′ ∆k′ = −4k

B
T ∆k, and if the eigenspectrum of Vk,k′ is bounded, there is no solution for

k
B
T greater than the largest eigenvalue of −Vk,k′ .
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To find the critical temperature where the gap collapses, again we assume the forms in Eqns. 3.71 and 3.72, in
which case we have

1 = 1
2 g(εF) v

~ω
D∫

0

dξ√
ξ2 +∆2

tanh

(√
ξ2 +∆2

2k
B
T

)
. (3.88)

It is clear that ∆(T ) is a decreasing function of temperature, which vanishes at T = Tc, where Tc is determined by
the equation

Λ/2∫

0

ds s−1 tanh(s) =
2

g(ε
F
) v

, (3.89)

where Λ = ~ω
D
/k

B
Tc . One finds, for large Λ ,

I(Λ) =

Λ/2∫

0

ds s−1 tanh(s) = ln
(
1
2Λ
)
tanh

(
1
2Λ
)
−

Λ/2∫

0

ds
ln s

cosh2s

= lnΛ + ln
(
2 eC/π

)
+O

(
e−Λ/2

)
,

(3.90)

where C = 0.57721566 . . . is the Euler-Mascheroni constant. One has 2 eC/π = 1.134, so

k
B
Tc = 1.134 ~ω

D
e−2/g(ε

F
) v . (3.91)

Comparing with Eqn. 3.75, we obtain the famous result

2∆(0) = 2πe−C k
B
Tc ≃ 3.52 k

B
Tc . (3.92)

As we shall derive presently, just below the critical temperature, one has

∆(T ) = 1.734∆(0)

(
1− T

Tc

)1/2
≃ 3.06 k

B
Tc

(
1− T

Tc

)1/2
. (3.93)

3.9.1 Isotope effect

The prefactor in Eqn. 3.91 is proportional to the Debye energy ~ω
D

. Thus,

ln Tc = lnω
D
− 2

g(ε
F
) v

+ const. . (3.94)

If we imagine varying only the mass of the ions, via isotopic substitution, then g(ε
F
) and v do not change, and we

have
δ lnTc = δ lnω

D
= − 1

2 δ lnM , (3.95)

whereM is the ion mass. Thus, isotopically increasing the ion mass leads to a concomitant reduction in Tc accord-
ing to BCS theory. This is fairly well confirmed in experiments on low Tc materials.

3.9.2 Landau free energy of a superconductor

Quantum statistical mechanics of noninteracting fermions applied to K̂
BCS

in Eqn. 3.62 yields the Landau free
energy

Ωs = −2k
B
T
∑

k

ln
(
1 + e−Ek/kB

T
)
+
∑

k

{
ξk − Ek +

|∆k|2
2Ek

tanh

(
Ek

2k
B
T

)}
. (3.96)
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Figure 3.5: Temperature dependence of the energy gap in Pb as determined by tunneling versus prediction of BCS
theory. From R. F. Gasparovic, B. N. Taylor, and R. E. Eck, Sol. State Comm. 4, 59 (1966). Deviations from the BCS
theory are accounted for by numerical calculations at strong coupling by Swihart, Scalapino, and Wada (1965).

The corresponding result for the normal state (∆k = 0) is

Ωn = −2k
B
T
∑

k

ln
(
1 + e−|ξk|/kB

T
)
+
∑

k

(
ξk − |ξk|

)
. (3.97)

Thus, the difference is

Ωs −Ωn = −2k
B
T
∑

k

ln

(
1 + e−Ek/kB

T

1 + e−|ξ
k
|/k

B
T

)
+
∑

k

{
|ξk| − Ek +

|∆k|2
2E

k

tanh

(
Ek

2k
B
T

)}
. (3.98)

We now invoke the model interaction in Eqn. 3.71. Recall that the solution to the gap equation is of the form
∆k(T ) = ∆(T )Θ

(
~ω

D
− |ξk|

)
. We then have

Ωs −Ωn

V
=

∆2

v
− 1

2 g(εF)∆
2

{
~ω

D

∆

√

1 +

(
~ω

D

∆

)2
−
(
~ω

D

∆

)2
+ sinh−1

(
~ω

D

∆

)}

− 2 g(ε
F
) k

B
T ∆

∞∫

0

ds ln
(
1 + e−

√
1+s2 ∆/k

B
T
)
+ 1

6 π
2 g(ε

F
) (k

B
T )2 .

(3.99)

We will now expand this result in the vicinity of T = 0 and T = Tc. In the weak coupling limit, throughout this
entire region we have ∆ ≪ ~ω

D
, so we proceed to expand in the small ratio, writing

Ωs −Ωn

V
= − 1

4 g(εF)∆
2

{
1 + 2 ln

(
∆0

∆

)
−
(

∆

2~ω
D

)2

+O
(
∆4
)
}

(3.100)

− 2 g(ε
F
) k

B
T∆

∞∫

0

ds ln
(
1 + e−

√
1+s2 ∆/k

B
T
)
+ 1

6 π
2 g(ε

F
) (k

B
T )2 .
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where ∆0 = ∆(0) = πe−C k
B
Tc. The asymptotic analysis of this expression in the limits T → 0+ and T → T−

c is
discussed in the appendix §3.14.

T → 0
+

In the limit T → 0, we find

Ωs −Ωn

V
= − 1

4 g(εF)∆
2

{
1 + 2 ln

(
∆0

∆

)
+O

(
∆2
)
}

(3.101)

− g(ε
F
)
√
2π(k

B
T )3∆ e−∆/k

B
T + 1

6 π
2 g(ε

F
) (k

B
T )2 .

Differentiating the above expression with respect to ∆, we obtain a self-consistent equation for the gap ∆(T ) at
low temperatures:

ln

(
∆

∆0

)
= −

√
2πk

B
T

∆
e−∆/k

B
T

(
1− k

B
T

2∆
+ . . .

)
(3.102)

Thus,
∆(T ) = ∆0 −

√
2π∆ 0kB

T e−∆
0
/k

B
T + . . . . (3.103)

Substituting this expression into Eqn. 3.101, we find

Ωs −Ωn

V
= − 1

4 g(εF)∆
2
0 − g(ε

F
)
√

2π∆0 (kB
T )3 e−∆

0
/k

B
T + 1

6 π
2 g(ε

F
) (k

B
T )2 . (3.104)

Equating this with the condensation energy density, −H2
c (T )/8π , and invoking our previous result, ∆0 = πe−C k

B
Tc ,

we find

Hc(T ) = Hc(0)

{
1−

≈1.057︷ ︸︸ ︷
1
3 e

2C

(
T

Tc

)2
+ . . .

}
, (3.105)

where Hc(0) =
√
2π g(ε

F
) ∆0.

T → T−

c

In this limit, one finds

Ωs −Ωn

V
= 1

2 g(εF) ln

(
T

Tc

)
∆2 +

7 ζ(3)

32π2

g(ε
F
)

(k
B
T )2

∆4 +O
(
∆6
)

. (3.106)

This is of the standard Landau form,

Ωs −Ωn

V
= ã(T )∆2 + 1

2 b̃(T )∆
4 , (3.107)

with coefficients

ã(T ) = 1
2 g(εF)

(
T

Tc
− 1

)
, b̃ =

7 ζ(3)

16π2

g(ε
F
)

(k
B
Tc)

2
, (3.108)

working here to lowest nontrivial order in T − Tc. The head capacity jump, according to Eqn. 1.44, is

cs(T
−
c )− cn(T

+
c ) =

Tc
[
ã′(Tc)

]2

b̃(Tc)
=

4π2

7 ζ(3)
g(ε

F
) k2

B
Tc . (3.109)
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Figure 3.6: Heat capacity in aluminum at low temperatures, from N. K. Phillips, Phys. Rev. 114, 3 (1959). The
zero field superconducting transition occurs at Tc = 1.163K. Comparison with normal state C below Tc is made
possible by imposing a magnetic field H > Hc. This destroys the superconducting state, but has little effect on the
metal. A jump ∆C is observed at Tc, quantitatively in agreement BCS theory.

The normal state heat capacity at T = Tc is cn = 1
3π

2g(ε
F
) k2

B
Tc , hence

cs(T
−
c )− cn(T

+
c )

cn(T
+
c )

=
12

7 ζ(3)
= 1.43 . (3.110)

This universal ratio is closely reproduced in many experiments; see, for example, Fig. 3.6.

The order parameter is given by

∆2(T ) = − ã(T )
b̃(T )

=
8π2(k

B
Tc)

2

7 ζ(3)

(
1− T

Tc

)
=

8 e2C

7 ζ(3)

(
1− T

Tc

)
∆2(0) , (3.111)

where we have used ∆(0) = π e−C k
B
Tc. Thus,

∆(T )

∆(0)
=

≈ 1.734︷ ︸︸ ︷(
8 e2C

7 ζ(3)

)1/2 (
1− T

Tc

)1/2
. (3.112)

The thermodynamic critical field just below Tc is obtained by equating the energies −ã2/2b̃ and −H2
c /8π. There-

fore

Hc(T )

Hc(0)
=

(
8 e2C

7 ζ(3)

)1/2(
1− T

Tc

)
≃ 1.734

(
1− T

Tc

)
. (3.113)
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3.10 Paramagnetic Susceptibility

Suppose we add a weak magnetic field, the effect of which is described by the perturbation Hamiltonian

Ĥ1 = −µ
B
H
∑

k,σ

σ c†
kσ
c
kσ

= −µ
B
H
∑

k,σ

σ γ†
kσ
γ
kσ

. (3.114)

The shift in the Landau free energy due to the field is then ∆Ωs(T, V, µ,H) = Ωs(T, V, µ,H) − Ωs(T, V, µ, 0). We
have

∆Ωs(T, V, µ,H) = −k
B
T
∑

k,σ

ln

(
1 + e−β(Ek+σµ

B
H)

1 + e−βE
k

)

= −β (µ
B
H)2

∑

k

eβEk

(
eβEk + 1

)2 +O(H4) .

(3.115)

The magnetic susceptibility is then

χs = − 1

V

∂2∆Ωs

∂H2
= g(ε

F
)µ2

B
Y(T ) , (3.116)

where

Y(T ) = 2

∞∫

0

dξ

(
− ∂f

∂E

)
= 1

2β

∞∫

0

dξ sech2
(

1
2β
√
ξ2 +∆2

)
(3.117)

is the Yoshida function. Note that Y(Tc) =
∞∫
0

du sech2u = 1 , and Y(T → 0) ≃ (2πβ∆)1/2 exp(−β∆) , which is

exponentially suppressed. Since χn = g(ε
F
)µ2

B
is the normal state Pauli susceptibility, we have that the ratio of

superconducting to normal state susceptibilities is χs(T )/χn(T ) = Y(T ). This vanishes exponentially as T → 0
because it takes a finite energy ∆ to create a Bogoliubov quasiparticle out of the spin singlet BCS ground state.

In metals, the nuclear spins experience a shift in their resonance energy in the presence of an external magnetic
field, due to their coupling to conduction electrons via the hyperfine interaction. This is called the Knight shift, after
Walter Knight, who first discovered this phenomenon at Berkeley in 1949. The magnetic field polarizes the metallic
conduction electrons, which in turn impose an extra effective field, through the hyperfine coupling, on the nuclei.
In superconductors, the electrons remain unpolarized in a weak magnetic field owing to the superconducting gap.
Thus there is no Knight shift.

As we have seen from the Ginzburg-Landau theory, when the field is sufficiently strong, superconductivity is
destroyed (type I), or there is a mixed phase at intermediate fields where magnetic flux penetrates the supercon-
ductor in the form of vortex lines. Our analysis here is valid only for weak fields.

3.11 Finite Momentum Condensate

The BCS reduced Hamiltonian of Eqn. 3.43 involved interactions between q = 0 Cooper pairs only. In fact, we
could just as well have taken

Ĥred =
∑

k,σ

ε
k
c†
kσ
c
kσ

+
∑

k,k′,p

V
k,k′ b

†
k,p

b
k′,p

. (3.118)

where b†
k,p

= c†
k+ 1

2
p ↑ c

†
−k+ 1

2
p ↓, provided the mean field was 〈b

k,p
〉 = ∆k δp,0 . What happens, though, if we take

〈 b
k,p

〉 =
〈
c−k+ 1

2
q ↓ ck+ 1

2
q ↑
〉
δp,q , (3.119)
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corresponding to a finite momentum condensate? We then obtain

K̂
BCS

=
∑

k

(
c†
k+ 1

2
q ↑ c−k+ 1

2
q ↓

)(ωk,q + νk,q ∆k,q

∆∗
k,q −ωk,q + νk,q

)(
c
k+ 1

2
q ↑

c†−k+ 1

2
q ↓

)

+
∑

k

(
ξk −∆k,q 〈b

†
k,q

〉
)

,

(3.120)

where

ωk,q = 1
2

(
ξk+ 1

2
q + ξ−k+ 1

2
q

)
ξk+ 1

2
q = ωk,q + νk,q (3.121)

νk,q = 1
2

(
ξk+ 1

2
q − ξ−k+ 1

2
q

)
ξ−k+ 1

2
q = ωk,q − νk,q . (3.122)

Note that ωk,q is even under reversal of either k or q, while νk,q is odd under reversal of either k or q. That is,

ωk,q = ω−k,q = ωk,−q = ω−k,−q , νk,q = −ν−k,q = −νk,−q = ν−k,−q . (3.123)

We now make a Bogoliubov transformation,

c
k+ 1

2
q ↑ = cosϑk,q γk,q,↑ − sinϑk,q e

iφk,q γ†−k,q,↓

c†−k+ 1

2
q ↓ = cosϑk,q γ

†
−k,q,↓ + sinϑk,q e

iφk,q γ
k,q,↑

(3.124)

with

cosϑk,q =

√√√√E
k,q

+ ω
k,q

2E
k,q

φk,q = arg(∆k,q) (3.125)

sinϑk,q =

√√√√E
k,q

− ω
k,q

2E
k,q

Ek,q =
√
ω2
k,q

+ |∆
k,q

|2 . (3.126)

We then obtain

K̂
BCS

=
∑

k,σ

(Ek,q + νk,q) γ
†
k,q,σ

γ
k,q,σ

+
∑

k

(
ξk − Ek,q +∆k,q 〈b

†
k,q

〉
)
. (3.127)

Next, we compute the quantum statistical averages

〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉
= cos2ϑk,q f(Ek,q + νk,q) + sin2ϑk,q

[
1− f(Ek,q − νk,q)

]
(3.128)

=
1

2

(
1 +

ωk,q
Ek,q

)
f(Ek,q + νk,q) +

1

2

(
1−

ωk,q
Ek,q

)[
1− f(Ek,q − νk,q)

]

and

〈
c†
k+ 1

2
q ↑ c

†
−k+ 1

2
q ↓
〉
= − sinϑk,q cosϑk,q e

−iφk,q

[
1− f(Ek,q + νk,q)− f(Ek,q − νk,q)

]

= −
∆∗

k,q

2E
k,q

[
1− f(Ek,q + νk,q)− f(Ek,q − νk,q)

]
. (3.129)
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3.11.1 Gap equation for finite momentum condensate

We may now solve the T = 0 gap equation,

1 = −
∑

k′

Vk,k′

1

2E
k′,q

= 1
2 g(εF) v

~ω
D∫

0

dξ√
(ξ + bq)

2 + |∆0,q|2
. (3.130)

Here we have assumed the interaction Vk,k′ of Eqn. 3.71, and we take

∆k,q = ∆0,q Θ
(
~ω

D
− |ξk|

)
. (3.131)

We have also written ωk,q = ξk + bq. This form is valid for quadratic ξk = ~
2k2

2m∗ −µ , in which case bq = ~
2q2/8m∗.

We take ∆0,q ∈ R . We may now compute the critical wavevector qc at which the T = 0 gap collapses:

1 = 1
2 g(εF) g ln

(
~ω

D
+ bq

c

bq
c

)
⇒ bq

c

≃ ~ω
D
e−2/g(ε

F
) v = 1

2 ∆0 , (3.132)

whence qc = 2
√
m∗∆0 /~ . Here we have assumed weak coupling, i.e. g(ε

F
) v ≪ 1

Next, we compute the gap ∆0,q . We have

sinh−1

(
~ω

D
+ bq

∆0,q

)
=

2

g(ε
F
) v

+ sinh−1

(
bq

∆0,q

)
. (3.133)

Assuming bq ≪ ∆0,q , we obtain

∆0,q = ∆0 − bq = ∆0 −
~
2q2

8m∗ . (3.134)

3.11.2 Supercurrent

We assume a quadratic dispersion εk = ~
2k2/2m∗ , so vk = ~k/m∗. The current density is then given by

j =
2e~

m∗V

∑

k

(
k + 1

2q
)〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉

=
ne~

2m∗ q +
2e~

m∗V

∑

k

k
〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉

,

(3.135)

where n = N/V is the total electron number density. Appealing to Eqn. 3.128, we have

j =
e~

m∗V

∑

k

k

{[
1 + f(Ek,q + νk,q)− f(Ek,q − νk,q)

]
(3.136)

+
ωk,q
E
k,q

[
f(Ek,q + νk,q) + f(Ek,q − νk,q)− 1

]}
+
ne~

2m∗ q

We now write f(Ek,q ± νk,q) = f(Ek,q)± f ′(Ek,q) νk,q + . . ., obtaining

j =
e~

m∗V

∑

k

k
[
1 + 2 νk,q f

′(Ek,q)
]
+
ne~

2m∗ q . (3.137)
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For the ballistic dispersion, νk,q = ~
2k · q/2m∗, so

j − ne~

2m∗ q =
e~

m∗V

~
2

m∗

∑

k

(q · k)k f ′(Ek,q)

=
e~3

3m∗2V
q
∑

k

k2 f ′(Ek,q) ≃
ne~

m∗ q

∞∫

0

dξ
∂f

∂E
,

(3.138)

where we have set k2 = k2
F

inside the sum, since it is only appreciable in the vicinity of k = k
F
, and we have

invoked g(ε
F
) = m∗k

F
/π2

~
2 and n = k3

F
/3π2. Thus,

j =
ne~

2m∗

(
1 + 2

∞∫

0

dξ
∂f

∂E

)
q ≡ ns(T ) e~q

2m∗ . (3.139)

This defines the superfluid density,

ns(T ) = n

(
1 + 2

∞∫

0

dξ
∂f

∂E

)
. (3.140)

Note that the second term in round brackets on the RHS is always negative. Thus, at T = 0, we have ns = n, but at
T = Tc, where the gap vanishes, we find ns(Tc) = 0, since E = |ξ| and f(0) = 1

2 . We may write ns(T ) = n−nn(T ),
where nn(T ) = nY(T ) is the normal fluid density.

Ginzburg-Landau theory

We may now expand the free energy near T = Tc at finite condensate q. We will only quote the result. One finds

Ωs −Ωn

V
= ã(T ) |∆|2 + 1

2 b̃(T ) |∆|4 + n b̃(T )

g(ε
F
)

~
2q2

2m∗ |∆|2 , (3.141)

where the Landau coefficients ã(T ) and b̃(T ) are given in Eqn. 3.108. Identifying the last term as K̃ |∇∆|2, where

K̃ is the stiffness, we have

K̃ =
~
2

2m∗
n b̃(T )

g(ε
F
)

. (3.142)

3.12 Effect of repulsive interactions

Let’s modify our model in Eqns. 3.71 and 3.72 and write

Vk,k′ =

{
(v

C
− vp)/V if |ξk| < ~ω

D
and |ξk′ | < ~ω

D

v
C
/V otherwise

(3.143)

and

∆k =

{
∆0 if |ξk| < ~ω

D

∆1 otherwise .
(3.144)

Here −vp < 0 is the attractive interaction mediated by phonons, while v
C
> 0 is the Coulomb repulsion. We

presume vp > v
C

so that there is a net attraction at low energies, although below we will show this assumption is
overly pessimistic. We take ∆0,1 both to be real.
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At T = 0, the gap equation then gives

∆0 = 1
2 g(εF) (vp − v

C
)

~ω
D∫

0

dξ
∆0√
ξ2 +∆2

0

− 1
2 g(εF) vC

B∫

~ω
D

dξ
∆1√
ξ2 +∆2

1

∆1 = − 1
2 g(εF) vC

~ω
D∫

0

dξ
∆0√
ξ2 +∆2

0

− 1
2 g(εF) vC

B∫

~ω
D

dξ
∆1√
ξ2 +∆2

1

,

(3.145)

where ~ω
D

is once again the Debye energy, and B is the full electronic bandwidth. Performing the integrals, and
assuming ∆0,1 ≪ ~ω

D
≪ B, we obtain

∆0 = 1
2 g(εF) (vp − v

C
)∆0 ln

(
2~ω

D

∆0

)
− 1

2 g(εF) vC
∆1 ln

(
B

~ω
D

)

∆1 = − 1
2 g(εF) vC

∆0 ln

(
2~ω

D

∆0

)
− 1

2 g(εF) vC
∆1 ln

(
B

~ω
D

)
.

(3.146)

The second of these equations gives

∆1 = −
1
2g(εF) vC

ln(2~ω
D
/∆0)

1 + 1
2g(εF) vC

ln(B/~ω
D
)
∆0 . (3.147)

Inserting this into the first equation then results in

2

g(ε
F
) vp

= ln

(
2~ω

D

∆0

)
·
{
1− v

C

vp
· 1

1 + 1
2 g(εF) ln(B/~ωD

)

}
. (3.148)

This has a solution only if the attractive potential vp is greater than the repulsive factor v
C

/[
1+ 1

2 g(εF) vC
ln(B/~ω

D
)
]
.

Note that it is a renormalized and reduced value of the bare repulsion v
C

which enters here. Thus, it is possible to
have

v
C
> vp >

v
C

1 + 1
2 g(εF) vC

ln(B/~ω
D
)

, (3.149)

so that v
C
> vp and the potential is always repulsive, yet still the system is superconducting!

Working at finite temperature, we must include factors of tanh
(

1
2β
√
ξ2 +∆2

0,1

)
inside the appropriate integrands

in Eqn. 3.145, with β = 1/k
B
T . The equation for Tc is then obtained by examining the limit ∆0,1 → 0 , with the

ratio r ≡ ∆1/∆0 finite. We then have

2

g(ε
F
)
= (vp − v

C
)

Ω̃∫

0

ds s−1 tanh(s)− r v
C

B̃∫

Ω̃

ds s−1 tanh(s)

2

g(ε
F
)
= −r−1 v

C

Ω̃∫

0

ds s−1 tanh(s)− v
C

B̃∫

Ω̃

ds s−1 tanh(s) ,

(3.150)

where Ω̃ ≡ ~ω
D
/2k

B
Tc and B̃ ≡ B/2k

B
Tc. We now use

Λ∫

0

ds s−1 tanh(s) = lnΛ + ln
(

≈ 2.268︷ ︸︸ ︷
4eC/π

)
+O

(
e−Λ

)
(3.151)
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to obtain
2

g(ε
F
) vp

= ln

(
1.134 ~ω

D

k
B
Tc

)
·
{
1− v

C

vp
· 1

1 + 1
2 g(εF) ln(B/~ωD

)

}
. (3.152)

Comparing with Eqn. 3.148, we see that once again we have 2∆0(T = 0) = 3.52 k
B
Tc. Note, however, that

k
B
Tc = 1.134 ~ω

D
exp

(
− 2

g(ε
F
) v

eff

)
, (3.153)

where

v
eff

= vp −
v
C

1 + 1
2 g(εF) ln(B/~ωD

)
. (3.154)

It is customary to define

λ ≡ 1
2 g(εF) vp , µ ≡ 1

2 g(εF) vC
, µ∗ ≡ µ

1 + µ ln(B/~ω
D
)

, (3.155)

so that

k
B
Tc = 1.134 ~ω

D
e−1/(λ−µ∗) , ∆0 = 2~ω

D
e−1/(λ−µ∗) , ∆1 = − µ∗∆0

λ− µ∗ . (3.156)

Since µ∗ depends on ω
D

, the isotope effect is modified:

δ lnTc = δ lnω
D
·
{
1− µ2

1 + µ ln(B/~ω
D
)

}
. (3.157)

3.13 Appendix I : General Variational Formulation

We consider a more general grand canonical Hamiltonian of the form

K̂ =
∑

kσ

(ε
k
− µ) c†

kσ
c
kσ

+
1

2V

∑

k,p,q

∑

σ,σ′

ûσσ′(k,p, q) c
†
k+q σ

c†p−q σ′ cpσ′ ck σ
. (3.158)

In order that the Hamiltonian be Hermitian, we may require, without loss of generality,

û∗σσ′(k,p, q) = ûσσ′(k + q , p− q , −q) . (3.159)

In addition, spin rotation invariance says that û↑↑(k,p, q) = û↓↓(k,p, q) and û↑↓(k,p, q) = û↓↑(k,p, q). We now

take the thermal expectation of K̂ using a density matrix derived from the BCS Hamiltonian,

K̂
BCS

=
∑

k

(
c†
k↑ c−k↓

)(
ξk ∆k
∆∗

k −ξk

)(
c
k↑

c†−k↓

)
+K0 . (3.160)

The energy shift K0 will not be important in our subsequent analysis. From the BCS Hamiltonian,

〈c†kσ ck′σ′〉 = nk δk,k′ δσσ′

〈c†kσ c
†
k′σ′〉 = Ψ∗

k δk′,−k εσσ′ ,
(3.161)

where εσσ′ =

(
0 1
−1 0

)
. We don’t yet need the detailed forms of nk and Ψk either. Using Wick’s theorem, we find

〈K̂〉 =
∑

k

2(εk − µ)nk +
∑

k,k′

Wk,k′ nk nk′ −
∑

k,k′

Vk,k′ Ψ
∗
k Ψk′ , (3.162)
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where

Wk,k′ =
1

V

{
û↑↑(k,k

′, 0) + û↑↓(k,k
′, 0)− û↑↑(k,k

′,k′ − k)
}

Vk,k′ = − 1

V
û↑↓(k

′,−k′,k − k′) .

(3.163)

We may assume Wk,k′ is real and symmetric, and Vk,k′ is Hermitian.

Now let’s vary 〈K̂〉 by changing the distribution. We have

δ〈K̂〉 = 2
∑

k

(
εk − µ+

∑

k′

Wk,k′ nk′

)
δnk +

∑

k,k′

Vk,k′

(
Ψ∗
k δΨk′ + δΨ∗

k Ψk′

)
. (3.164)

On the other hand,

δ〈K̂
BCS

〉 = 2
∑

k

(
ξk δnk +∆k δΨ

∗
k +∆∗

k δΨk

)
. (3.165)

Setting these variations to be equal, we obtain

ξk = εk − µ+
∑

k′

Wk,k′ nk′

= εk − µ+
∑

k′

Wk,k′

[
1

2
− ξk′

2E
k′

tanh
(
1
2βEk′

)
] (3.166)

and

∆k =
∑

k′

Vk,k′ Ψk′

= −
∑

k′

Vk,k′

∆k′

2E
k′

tanh
(
1
2βEk′

)
.

(3.167)

These are to be regarded as self-consistent equations for ξk and ∆k.

3.14 Appendix II : Superconducting Free Energy

We start with the Landau free energy difference from Eqn. 3.100,

Ωs −Ωn

V
= − 1

4 g(εF)∆
2

{
1 + 2 ln

(
∆0

∆

)
−
(

∆

2~ω
D

)2
+O

(
∆4
)
}

(3.168)

− 2 g(ε
F
)∆2 I(δ) + 1

6 π
2 g(ε

F
) (k

B
T )2 ,

where

I(δ) =
1

δ

∞∫

0

ds ln
(
1 + e−δ

√
1+s2

)
. (3.169)

We now proceed to examine the integral I(δ) in the limits δ → ∞ (i.e. T → 0+) and δ → 0+ (i.e. T → T−
c , where

∆ → 0).
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Figure 3.7: Contours for complex integration for calculating I(δ) as described in the text.

When δ → ∞, we may safely expand the logarithm in a Taylor series, and

I(δ) =

∞∑

n=1

(−1)n−1

nδ
K1(nδ) , (3.170)

where K1(δ) is the modified Bessel function, also called the MacDonald function. Asymptotically, we have11

K1(z) =

(
π

2z

)1/2
e−z ·

{
1 +O

(
z−1
)}

. (3.171)

We may then retain only the n = 1 term to leading nontrivial order. This immediately yields the expression in
Eqn. 3.101.

The limit δ → 0 is much more subtle. We begin by integrating once by parts, to obtain

I(δ) =

∞∫

1

dt

√
t2 − 1

eδt + 1
. (3.172)

We now appeal to the tender mercies of Mathematica. Alas, this avenue is to no avail, for the program gags when
asked to expand I(δ) for small δ. We need something better than Mathematica. We need Professor Michael Fogler.

Fogler says12: start by writing Eqn. 3.170 in the form

I(δ) =

∞∑

n=1

(−1)n−1

nδ
K1(nδ) = +

∫

C
1

dz

2πi

π

sinπz

K1(δz)

δz
. (3.173)

The initial contour C1 consists of a disjoint set of small loops circling the points z = πn, where n ∈ Z+. Note that
the sense of integration is clockwise rather than counterclockwise. This accords with an overall minus sign in the
RHS above, because the residues contain a factor of cos(πn) = (−1)n rather than the desired (−1)n−1. Following
Fig. 3.7, the contour may now be deformed into C2, and then into C3. Contour C3 lies along the imaginary z axis,
aside from a small semicircle of radius ǫ → 0 avoiding the origin, and terminates at z = ±iA. We will later take
A → ∞, but for the moment we consider 1 ≪ A ≪ δ−1. So long as A ≫ 1, the denominator sinπz = i sinhπu,
with z = iu, will be exponentially large at u = ±A, so we are safe in making this initial truncation. We demand
A ≪ δ−1, however, which means |δz| ≪ 1 everywhere along C3. This allows us to expand K1(δz) for small values of

11See, e.g., the NIST Handbook of Mathematical Functions, §10.25.
12M. Fogler, private communications.
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the argument. One has

K1(w)

w
=

1

w2
+ 1

2 lnw
(
1 + 1

8w
2 + 1

192w
4 + . . .

)
+
(
C− ln 2− 1

2

)
(3.174)

+ 1
16

(
C − ln 2− 5

4

)
w2 + 1

384

(
C − ln 2− 5

3

)
w4 + . . . ,

where C ≃ 0.577216 is the Euler-Mascheroni constant. The integral is then given by

I(δ) =

A∫

ǫ

du

2πi

π

sinhπu

[
K1(iδu)

iδu
− K1(−iδu)

−iδu

]
+

π/2∫

−π/2

dθ

2π

πǫ eiθ

sin
(
πǫ eiθ

) K1

(
δǫ eiθ

)

δǫ eiθ
. (3.175)

Using the above expression for K1(w)/w, we have

K1(iδu)

iδu
− K1(−iδu)

−iδu =
iπ

2

(
1− 1

8δ
2u2 + 1

192δ
4u4 + . . .

)
. (3.176)

At this point, we may take A→ ∞. The integral along the two straight parts of the C3 contour is then

I1(δ) =
1
4π

∞∫

ǫ

du

sinhπu

(
1− 1

8δ
2u2 + 1

192δ
4u4 + . . .

)

= − 1
4 ln tanh

(
1
2πǫ
)
− 7 ζ(3)

64 π2
δ2 +

31 ζ(5)

512 π4
δ4 +O

(
δ6
)

.

(3.177)

The integral around the semicircle is

I2(δ) =

π/2∫

−π/2

dθ

2π

1

1− 1
6π

2ǫ2 e2iθ

{
1

δ2ǫ2 e2iθ
+ 1

2 ln
(
δǫ eiθ

)
+ 1

2 (C− ln 2− 1
2 ) + . . .

}

=

π/2∫

−π/2

dθ

2π

(
1 + 1

6π
2ǫ2 e2iθ + . . .

) {e−2iθ

δ2ǫ2
+ 1

2 ln(δǫ) +
i
2θ +

1
2 (C− ln 2− 1

2 ) + . . .

}

=
π2

12 δ2
+ 1

4 ln δ +
1
4 ln ǫ+

1
4 (C− ln 2− 1

2 ) +O
(
ǫ2
)

. (3.178)

We now add the results to obtain I(δ) = I1(δ) + I2(δ). Note that there are divergent pieces, each proportional to
ln ǫ , which cancel as a result of this addition. The final result is

I(δ) =
π2

12 δ2
+ 1

4 ln

(
2δ

π

)
+ 1

4 (C− ln 2− 1
2 )−

7 ζ(3)

64 π2
δ2 +

31 ζ(5)

512 π4
δ4 +O

(
δ6
)

. (3.179)

Inserting this result in Eqn. 3.168 above, we thereby recover Eqn. 3.106.


