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(wt)R (Eq. 11.15) = (P) = %qgum. Equate this to Eq. 11.22:
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For the wires in an ordinary radio, with d =5 x 102 m and (say) A = 10°m, R = 790(5 x 107%)? = 2x 10% 02,
which is negligible compared to the Ohmic resistance.

Problem 11.4

By the superposition principle, we can add the potentials of the two dipoles. Let’s first express V (Eq. 11.14)
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along the z axis. For one along x or y, we just change 2 to z or y. In the present case,

in Cartesian coordinates: V(z,y,z.t) = — ) sinfw(t —r/c)]. That’s for an oscillating dipole

p = polcos(wt) X + cos(wt — x/2) ¥], so the one along y is delayed by a phase angle = /2:
sinfw(t — r/c)] =+ sinfw(t — r/c) — 7/2] = — cos[w(t — r/c)] (just let wt — wt — 7/2). Thus
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We could get the fields by differentiating these potentials, but I prefer to work with Eqs. 11.18 and 11.19,
using superpasition. Since 2 = cos# F — sinf @, and cosf = z/r, Eq. 11.18 can be written
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o uono cos[w{t —r/e)] ( -2t ) In the case of the rotating dipole, therefore,
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where a = & — (z/r)¢ and b = § — (y/r)f. Noting that X . r =z and ¥ -r =y, we have



v 2 2 2
z F>

82:.-1+-—-—2—--=l—=—;b2=1-—' [ 1] o] pegpipet i A
r? r? r? r r

B o= (W’“"’z)i { (1 - ;;) cos?(w(t - /o)) + (1 = ?_';) sin?[uw(t - r/c))

4mr
=z ?f—f sinfw(t = r/c)] cos{w(t — r/c)]}

9y 2
= (%) {1 -~ r—l,— (z? cos®[w(t — r/c)) + 2zysinfw(t — r/fc)] coslw(t — r/fc)] + ¥ sin[w(t — r/c)])}

gy 2
(@%) {I - % (z cosfw(t = r/c)] + ysinfw(t - r/c)])z}
But z = rsinfcos ¢ and y = rsinfsin ¢.
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This is twice the power radiated by either oscillating dipole alone (Eq. 11.22). [n general, S = %(E xB) =

-:;[(El +E2) x (By +By)] = L [(E; x By) + (E; x Bg) + (E} x Bg) + (E; x By)] =S, + Ss+ cross terms.

In this particular case, the fields of 1 and 2 are 90° out of phase, 50 the cross terms go to zero in the time
averaging, and the total power radiated is just the sum of the two individual powers.
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Here the dipole moment is

p=Q(t)d
= Qoexp (—t/RC)d

This leads to
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Integrate to find the energy radiated away.
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Given Ey = Q2%/2C, the fraction of energy radiated away is
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Given C' =1 pF, R =1000€2, and d = 0.1 mm, the fractional energy loss is
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which is safe to neglect.

P(t) = polcos(wt) & + sin(wt) §] = P(t) = —w?pocos(wt) & + sin(wt) ] =
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with the answer to Prob. 11.4. The reason is that in Eq. 11.59 the polar axis is along the direction of p(t);
as the dipole rotates, so do the axes. Thus the angle # here is not the same as in Prob. 11.4.) Meanwhile,
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and the orientation of the polar axis irrelevant.)
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At t = 0 the dipole moment of the ring is

[B()]* = wipdleos® (wt) + sin?(wt)] = piw’. So Eq. 11.59 says

Eq. 11.60 says| P = (This does agree with Prob. 11.4, because we have now integrated over all angles,
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As it rotates (counterclockwise, say) p(f) = polcos(wt) ¥ — sin(wt) %], 50 p = —w?p, and hence (p)? = wip?.
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Therefore (Bq. 11.60) P = £-u!(x4)0)? =




