
1



10.5

10.7 Consider ρ(~r, t) = q(t)δ3(~r) and ~J(~r, t) = −(1/4π)(q̇/r2)r̂,
where q̇ ≡ dq/dt.

(a) The continuity equation is ∇ · ~J = −dρ/dt.

dρ

dt
= q̇ δ3 (~r)

∇ · ~J = − 1

4π
q̇
(
4πδ3 (~r)

)
(b) The scalar potential in Coulomb gauge is

V (~r, t) =
1

4πε0

∫ ρ
(
~r′, t
)

r
dτ ′

=
1

4πε0

q(t)

r

The differential equation for ~A in Coulomb gauge is

∇2 ~A− 1

c2
∂2 ~A

∂t2
= −µ0 ~J + µ0ε0∇ ·

(
∂V

∂t

)
The right-hand side of the above equation vanishes for the charge and current
distribution under consideration, which implies ~A = 0. (Mathematically this
can be accomplished by requiring ~A to vanish at spatial infinity.)

(c) The physical fields are

~E = −∇V − ∂ ~A

∂t
=

1

4πε0

q(t)

r2

~B = ∇× ~A = 0

10.8 The vector potential for a uniform magnetostatic field is ~A =
−1

2~r × ~B.
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(a)

d ~A

dt
= −1

2

(
d~r

dt
× ~B + ~r × d ~B

dt

)
But d ~B/dt = 0 for a magnetostatics field, so

d ~A

dt
= −1

2

d~r

dt
× ~B = −1

2
~v × ~B

(b) Confirm
d

dt

(
~p+ q ~A

)
= −q∇

(
V − ~v · ~A

)
give the correct equation of motion.

~E = −∇V in statics problems,

d~p

dt
− q

2
~v × ~B = q ~E + q∇

(
~v · ~A

)
= q ~E − q

2
∇
(
~v ·
(
~r × ~B

))
= q ~E +

q

2
∇
(
~r ·
(
~v × ~B

))
Both ~v and ~B are independent of position since it’s a uniform magnetic field,
so the last term in the above equation can be rewritten using Product Rule
(4) from Griffith’s including only the terms where derivatives are acting on
the position vector.

d~p

dt
− q

2
~v × ~B = q ~E +

q

2

[(
~v × ~B

)
× (∇× ~r) +

((
~v × ~B

)
· ∇
)
~r
]

Note that

∇× ~r = 0, and(
~C · ∇

)
~r = ~C for any ~C

Putting all of this together, we find

d~p

dt
= q ~E + q ~v × ~B
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