Problem 9.8

(a) fu(z,t) = Acos(kz — wt)X; fp(z,t) = Acos(kz — wt +
90°)y = —Asin(kz — wt) §. Since f2 + f} = A2, the vector
sum f = f, + f, lies on a circle of radius 4. At time t =
0, f = Acos(kz)X — Asin(kz)y. At time ¢t = 7/2w, f =
Acos(kz—90°) X~ Asin(kz—90°) y = Asin(kz) X+Acos(kz) y.
Evidently it circles | counterclockwise | To make a wave circling
the other way, use 8, = —90°.

(b) :

(c) Shake it around in a circle, instead of up and down.
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Problem 9.9

Wso. a2 _a .-—...‘.‘_J". vV z2Z) =
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E(z,t) = Epcos (‘—;’-z +wt) z; B(z,t)= %5- cos (%z + wt) y.
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(b) k=E

R % — 2 .
(_—ry_-f-z) S = (Since f is parallel to the z z plane, it must have the form a X+ 3%;

V3 V2

since it - k = 0,8 = —a; and since it is a unit vector, a = 1/v/2.)

X ¥y z
k-:—w—"‘-' ‘zi:i ;ﬁﬁ:—l-lll -X+2y -
r \/gc(x+y+z) (zX+yy+2%) \/jc(1:+y+z) x 7| ! : \/_( +2§ —1).
w X~
E(z,y,z,t) = Eocos[7_3—c(z+y+z)—wt]( \/i)'
X429 -3
Bt = Doos[ ety e -u] (FEEE).

| currently don’t have access to the solutions manual for the 4™ edition of the textbook. For this
solutions set | used the 3™ edition manual. Problems 9.14 and 9.16 in the 3™ edition correspond to
problems 9.15 and 9.17 in the 4™ edition respectively.

Problem 9.14
Equation 9.78 is replaced by Eo, % + Eop,fig = Eo.,ur, and Eq. 9.80 becomes Eo, ¥ - Eo (z x ig) =
BEo, (2 x fir). The y component of the first equation is Eq, sinfgr = Fo, sinfr; the z component of the

second is Eo,, sinfip = —ﬂEoT sinfy. Comparing these two, we conclude that sinfz = sinfr = 0, and hence
Or=0r =0. Qqed

Problem 9.16

E; = Emei(k,-r»-ut))-,,
Bl o 3‘301 ei(kl 'r—wl)(_ cosf X + siné,; i)‘ B :

1 n
Br = Bpyeltrroty, h >
ﬁR = lEO e'(k"r "’”(cosﬂ,x«é-smﬂ; Z) 9, R B,

LT *
Er = By elkrrtly, 9,
= 1's . x ~
Br = ;EOTC'("".__U”(‘ cos b, X + sinf) z); % o

(i) Bt = EF, (i) EY = B, B,

Boundary conditions:
(i) Bf =B,  (v) B! = LBl

in 8 )

Law of refraction: :202 =iery [Note: ky-r—~wt=kg-r—wt =kp r—wt, at z =0, so we can drop all
1 '

exponential factors in applying the boundary conditions.]

Boundary condition (i): 0 = 0 (trivial). Boundary condition (iii): |Eo, + By, = Eo,.

o AUEN 1= . Ly o = - inf,\ -
Boundary condition (ii): —Eg, sinf; + — Eg, sinf} = —Eqg, sinfy = Eg, + Eg, = (M&l) Eor.
vy vy v2 v, siné,
But the term in parentheses is 1, by the law of refraction, so this is the same as (ii).
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Boundary condition (iv): o ['Ul Eg, (- cosb,) + o Eoq coso,] = Eor(—cosf,) =

_B, = (wﬂz) Eo,. Let

Maug COS )

cosby . _ puy
cosfy' T T pawm

Then Eo, - E-,‘o,, = afEo,.

as




1+ af

. = & (.2 1+af\n .z _(l-cB
EOR_EOT—EDI_(1+aﬂ 1+GB)E0:¢EOR_(1+°ﬁ

) o

Solving for Eon and Eo,: 2By, = (1 + aB) By, = Eo, = (—2—) Ey,;

Since a and 3 are positive, it follows that 2/(1 + af3) is positive, and hence the transmitted wave is in phase

with the incident wave, and the (real) amplitudes are related by

=

23
1+a8

)

The reflected wave is



Is there @ Brewster’s angle? Well, Eg,, = 0 would mean that a8 = 1, and hence that

1 —{va v, )0 sin’ 8 2 i
a= vf 2 =l=£3.v.’., orl-—(w) sin"'az(pz—w) cos’ 8, so

cosf 8 muy u vy

2
1= uﬁ) [sin? @ + (u2/p1)? cos® 6]. Since p; = pa, this means 1 = (v2/v1)?, which is only true for optically
1

indistinguishable media, in which case there is of course no reflection—but that would be true at any angle,
not just at a special “Brewster’s angle”. [If u, were substantially different from p,, and the relative velocities
were just right, it would be possible to get a Brewster’s angle for this case, at

(21_)2 G ("’)zcoszg = cos?g = /) =1 _ (mea/ma) =1 _ (eafer) = (11 /p2)

v # (/)2 =1 (ua/m) =1 (mafm1) — (a/1e2)”

But the media would be very peculiar.]
By the same token, dz is either always 0, or always m, for a given interface—it does not switch over as you
change 6, the way it does for polarization in the plane of incidence. In particular, if 8 = 3/2, then a8 > 1, for

V2.25 —sin’ @

affie cos?

In general, for 3 > 1, af > 1, and hence dz = n. For 8 <1, af < 1, and §p = 0.
At normal inc‘idenoe, a = 1, so Fresnel’s equations reduce to Eq, = i—;zj—ﬁ) Ey,; Eop = ':—;—g‘Eﬂn
consistent with Eq. 9.82.

2 2
Reflection and Transmisston coefficients: | R = (&5) = (1—1@-) .} Referring to Bq. 9.116,
Ey, 1+ap

> 1if 2.25-sin?8 > cos? @, or 2.25 > sin’@ + cos’ = 1. v

1-af
1+aB

in phase if af < 1 and 180° out of phase if af < 1; the (real) amplitudes are related by | By, = ‘ Ey,.

These are the Fresnel equations for polarization perpendicular to the plane of incidence.

V1 - sin” /4 - VB2 —sin’ g

cosf cos B

To construct the graphs, note that af = 3 , where @ is the angle of incidence,

V/2.25 —sin’ 6

so, for 3 =1.5,af = ==
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