
Chapter 5

Elementary Processes

We want to extend the previous discussion to the case where fields interact among
themselves, rather than with an external source. The aim is to give an expression
for the S-matrix in terms of “in” fields, as before. We will see that uit is con-
venient to express the matrix elements of S in terms of Green’s functions, that
is, vacuum expectation values of time-ordered products of elementary fields, as in
h0|T�(x

1

) · · ·�(xn)|0i.
As before the S matrix connects |ini states to |outi states, |outi = S�1|ini, and

correspondingly �
in

fields to �
out

fields. But we can no longer say that �(x) !
�
in

(x) as t ! �1 (nor �(x) ! �
out

(x) as t ! +1) with �
in,out

(x) free fields (a
free field is one without interactions, e.g., it satisfies the KG equation).

Before we explain that in more detail let us better understand the role of |ini
states (and �

in

fields). In a collision process we start with particles that are wildly
separated, so interactions between them can be initially neglected. As particles
approach each other the interactions can no longer be neglected, they “turn on.”
So one could think of the situation by replacing H 0 (the interaction part of the
Hamiltonian) by f(t)H 0, where f(t) is a smooth function that turns on slowly
(adiabatically), then stays on for some long period over which the collision takes
place, say, f(t) = 1 for �T < t < T , and then turns o↵ slowly again, f(t) = 0
|t| > T

0

and f(t) smoothly decreasing (increasing) in T < t < T
0

(�T
0

< t < �T ):

t

f(t)

T�T T
0

�T
0

We want both T and T
0

to be arbitrarily large, and we want T
0

� T in the
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process to avoid sudden changes that can introduce extraneous e↵ects, e.g., pair
production.

We will use this model, but it is not quite general enough. The reason is
that if the interaction is turned o↵ we may not be able to describe |ini and |outi
states of interest, namely, bound states that arise because of the interaction. For
example, we may want to study collisions of an electron with an H atom due to
electromagnetic interactions. But it is the electromagnetic interactions that binds
a p and an e into an H atom. More poignant is the case of collisions of protons
by the strong interactions when it is these interactions that keeps quarks bound in
protons. The idea of collision theory is that oen can set up a muck theory of free
particles that happen to have the same mass (and other quantum numbers, e.g.,
spin) as the bound states. These are the |ini and |outi states. For very early (or
late) times these states describe the evolution of the particles that later (earlier)
participate in the collision. And the S-matrix uses information in the interacting
theory to connect the pre- and post-collision states. For theories without bound
states we can use the simpler approximation of turning on and o↵ the interaction
via f(t)H 0. Remarkably the expression for the S-matrix obtained via this simplified
treatment is the same as in a more complete and rigorous analysis that does not
employ it.

If we adiabatically turn on and o↵ the interactions then we can use our previous
approach:

�(x) = �
in

(x) +

Z
d4y G

ret

(x� y)J(y) (5.1)

But now

(@2 +m2)� =
L0

@�

(e.g., if L0 = g�3+��4 then L0

@� = 3g�2+4��4). So for J(x) use f(t) L
0

@� . Note that
in the absence of f(t) this would not work, the “source” would not be localized in
time. Now, we had two ways of obtaining the S-matrix from this. One was

S†�
in

(x)S = �
in

(x) +

Z
d4y [�

in

(x),�
in

(y)]J(y) .

But now J(y) depends on �(x) so it does not commute with �
in

(x). This makes it
harder to solve for S using this method.

The second method used � = U †(t)�
in

(x)U(t) and constructed U(t) in terms
of H0. This will work. The result was, and still is,

S = T


exp

✓
i

Z
d4xL0

in

◆�

which we can use, but now with, say, L0
in

= g�3
in

+ ��4
in

.
However, the above discussion has to be modified, as we will see shortly, because

in general one cannot take �(x)! �
in

(x) as t! �1.
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5.1 Källen-Lehmann Spectral Representation

Here we will see that we cannot take �(x) ! �
in

(x) as t ! �1. We study
[�(x),�(y)] and compare with [�

in

(x),�
in

(y)]. In particular,

h0|[�(x),�(y)]|0i =
XZ

n
(h0|�(x)|nihn|�(y)|0i � x$ y)

Now
h0|�(x)|ni = h0|ei ˆP ·x�(0)e�i ˆP ·x|ni = e�ip

n

·xh0|�(0)|ni

where P̂µ|ni = pµn|ni, P̂µ|0i = 0, and

h0|[�(x),�(y)]|0i =
XZ

n

⇣
e�ip

n

·(x�y)h0|�(0)|nihn|�(0)|0i � x$ y
⌘

=
XZ

n

Z
d4k �(4)(pn � k)

⇣
e�ik·(x�y) � eik·(x�y)

⌘
|h0|�(0)|ni|2

=

Z
d4k

(2⇡)3

⇣
e�ik·(x�y) � eik·(x�y)

⌘
⇢(k)

where in going from the first to the second line we introduce a factor of
1 =

R
d4k �(4)(pn � k) and in the last line we defined

⇢(k) ⌘
XZ

n
(2⇡)3�(4)(pn � k)|h0|�(0)|ni|2 = �(k2)✓(k0) .

The last equality follows from (i) Lorentz invariance and (ii) p0n > 0.
Now compare this with the case of free fields. We have computed this, but it is

easy to derive from above: |ni is only the one particle states ~p ,
PR

n is
R
(dp), and

h0|�
in

(0)|~pi =
Z
(dk)h0|↵~k↵

†
~p

|0i = 1 .

Then

⇢(k) =

Z
(dp)(2⇡)3�(4)(p�k) =

Z
d4p ✓(p0)�(p2�m2)�(4)(p�k) = ✓(k0)�(k2�m2) ,

and

h0|[�
in

(x),�
in

(y)]|0i =
Z

d4k

(2⇡)3
✓(k0)�(k2 �m2)

⇣
e�ik·(x�y) � eik·(x�y)

⌘

=

Z
d4k

(2⇡)3
"(k0)�(k2 �m2)e�ik·(x�y) ⌘ i�(x� y;m)
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Hence

h0|[�(x),�(y)]|0i =
Z

d4k

(2⇡)3
�(k2)"(k0)e�ik·(x�y)

=

Z
d4k

(2⇡)3

Z 1

0

dm̄2 �(k2 � m̄2)�(k2)"(k0)e�ik·(x�y)

=

Z 1

0

dm̄2�(m̄2)

Z
d4k

(2⇡)3
"(k0)�(k2 � m̄2)e�ik·(x�y)

or

h0|[�(x),�(y)]|0i = i

Z 1

0

dm̄2�(m2)�(x� y; m̄) (5.2)

This is the Källen-Lehmann representation.
Now we separate the contributions to � of 1-particle states from � 2-particles

states. We will assume that p0 � M > m for � 2-particle states. For two free
particles p0 � 2m. If interacting we expect p0 � 2m�" where " is some interaction
energy; we are assuming " < m. If we had " > m then the 2-particle energy would
be smaller than m and the 1-particle “state” is not a state because it can decay into
a lower energy state. Then, if in fact we could demand �(x)! �

in

(x) as t! �1
we should have

h0|�(0)|~pi ?

= h0|�
in

(0)|~pi = 1 ,

and therefore
�(m̄2)

?

= �(m2 � m̄2) + �(m̄2)✓(m̄�M) . (5.3)

This is illustrated in the following figure:

m̄2

�

m2 M2

Inserting (5.3) in (5.2) gives

h0|[�(x),�(y)]|0i ?

= i�(x� y;m) + i

Z 1

M2
dm̄2�(m2)�(x� y; m̄) .

Taking @/@x0 of this, and then the limit y0 ! x0 we obtain on the left hand side
the equal time commutator [⇡(x),�(y)] = �i�(3)(~x � ~y ). Then note that on the
right hand we can do this again since i�(x � y;m) = h0|[�

in

(x),�
in

(y)]|0i. This
gives

1
?

= 1 +

Z 1

M2
dm̄2 �(m̄2)
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If this equation holds then �(m̄2) = 0 for m > M . That is �(m̄2) = �(m̄2 �m2),
which means h0|�(0)|ni = 0 for any state |ni which has � 2 particles. This then
gives �(x) = �

in

(x) for all times which makes �(x) a free field. We conclude that
we cannot demand �(x)! �

in

(x) as t! �1. Assume instead

�(x)! Z
1
2�

in

(x) as t! �1

Then, repeating the steps above,

1 = Z +

Z 1

M2
dm̄2 �(m̄2)

so that � > 0 requires 0  Z < 1 (that Z � 0 is from it being (Z
1
2 )2). Similarly,

we assume �(x)! Z
1
2�

out

(x) as t! +1.
We conclude the section with some useful observations. Uniqueness of the

vacuum state gives |0i
out

= |0i
in

= |0i. (In principle one can have a relative
phase, |0i

out

= ei↵|0i
in

but we conventionally set ↵ = 0). Since we are assuming
the 1-particle states are stable, they are eigenstates of the Hamiltonian, so they
evolve simply, by a phase, e�iEt. Hence |~k i

out

= |~k i
in

(up to a constant phase
that we conventionally set to zero). Now h0|�(x)|~k i = h0|�(0)|~k ie�ik·x so that the
prescription to evaluate at t ! �1 in order to compare with the corresponding
expectation value of �

in

(x) is superfluous, and similarly for t!1 and expectation
values of �

out

(x). So we have

h0|�(x)|~k i = Z
1
2 h0|�

in

(x)|~k i = Z
1
2 h0|�

out

(x)|~k i .

We collect some basic results for the S-matrix:

�
in

(x) = S�
out

(x)S�1 , | i
in

= S| i
out

,

out

h�| i
in

=
out

h�|S| i
out

=
in

h�|S| i
in

.

For  , � the vacuum or 1-particle states

h0|S|0i = h0|0i = 1 ,

h~k |S|~k 0i = h~k |~k 0i = (2⇡)32E~k
�(3)(~k 0 � ~k ) .

Finally, if U = U(aµ,⇤) is a Poincare transformation, covariance means

USU�1 = S .

It is often stated in textbooks that �(x)! Z
1
2�

in

(x) cannot hold in the strong
sense. That is, that it can only hold for separate matrix elements. Else we’d
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have, the argument goes, for example, [�(x),�(y)] ! Z[�
in

(x),�
in

(y)] for non-
equal, early times, and since for “in” fields this is a c-number, one would be able
to argue that �(x) is a free field. I think this is overkill. Obviously �(x0 and �

in

are di↵erent, one is an interacting field and one is not. One can produce multiple
particle states out of the vacuum —that’s the statement that � > 0— the other
cannot. The statement that �(x)! Z

1
2�

in

(x) at t! �1 is useful because it gives
us the correct way of relating wildly separated initial state (single)-particles created
by � to those created by �

in

. To make sense of this we need particles that are truly
separated, which means we have to consider wave-packets rather than plane waves.
We will comment on this when we discuss the S-matrix for multi-particle states.

5.2 LSZ reduction formula: stated

LSZ stands for Lehmann, Symanzik and Zimmermann. The LSZ formula gives the
probability amplitude for scattering any number of particles into any number of
particles:

out

h~p
1

, . . . , ~p l|~k 1

, . . . ,~k niin = (iZ� 1
2 )n+l

Z lY

i=1

d4yi

Z nY

j=1

d4xj e
i
P

l

i=1 pi·yi�i
P

n

j=1 kj ·xj

⇥
lY

i=1

(@2y
i

+m2)
nY

j=1

(@2x
j

+m2)h0|T (�(y
1

) · · ·�(yl)�(x1) · · ·�(xn)) |0i . (5.4)

Comments:

(i) Computing S matrix elements reduced to computing Green’s functions,

G(n)(x
1

, . . . , xn) = h0|T (�(x
1

) · · ·�(xn)) |0i .

(ii) One can do a more general treatment in term of 1-particle wave-packets.
Since the LSZ formula is multilinear in the plane waves for the in and out
states, the result amounts to replacing e�ik

i

·x
i

) ! fi(xi) and eipi·yi) ! f⇤
i (yi).

(iii) Integrating by parts (@2x + m2)e±ip·x) = �(p2 �m2)e±ip·x) = 0. The result
has to be interpreted with care. Let

Z nY

i=1

d4xi e
�i

P
n

i=1 ki·xiG(n)(x
1

, . . . , xn) = (2⇡)4�(4)(
X

i

ki) eG(n)(k
1

, . . . , kn) .

(5.5)
That we always have a �(4)(

P
i ki) follows form translation invariance. We

can change variables to the di↵erences xi+1

� xi together with the center
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of mass X =
P

i xi. Then since G(n) does not depend on X we will haveR
d4Xe�iR·P k

i times the rest. Now, eG(n)(k
1

, . . . , kn) is defined for arbitrary
four vectors, k

1

, . . . , kn, not necessarily satisfying the on-shell condition k2i =
m2; we say that ki is o↵-shell if k2i 6= m2, or alternatively, that the “energies,”
k0i , are arbitrary, not given by ±E~k

i

. Incidentally, the on/o↵-shell language
is simply short for the momentum being on/o↵ the mass-shell. It may be
that eG(n)(k

1

, . . . , kn) has simple poles as k0 ! ±E~k
. In fact, by Lorentz

invariance the poles must be paired, appearing as poles in k2 �m2. These
poles cancel the zeroes from

Q
(@2 + m2) and the S-matrix element is just

the residue:

out

h~p
1

, . . . , ~p l|~k 1

, . . . ,~k niin = (iZ� 1
2 )n+l

Z lY

i=1

d4yi

Z nY

j=1

d4xj e
i
P

l

i=1 pi·yi�i
P

n

j=1 kj ·xj

⇥
Z l+nY

k=1

d4qke
i
P

l

i=1 qi·yi+i
P

n

j=1 qj ·xj

l+nY

i=1

(�q2k+m2)(2⇡)4�(4)(
X

i

ki) eG(n)(q
1

, . . . , qn+l)

= (�iZ� 1
2 )n+l(2⇡)4�(4)(

X

j

kj �
X

i

pi)

lim
p2
i

!m2

k2
j

!m2

lY

i=1

(p2i �m2)
nY

j=1

(k2j �m2) eG(n)(k
1

, . . . , kn,�p1, . . . ,�pl) .

and note that each factor of p2 �m2 comes with a 1/(iZ
1
2 ).

(iv) It is therefore useful to summarize this in terms of a scattering amplitude,

iA = iA(k
1

, . . . , kn; p1, . . . , pl)

= lim
p2
i

!m2

k2
j

!m2

lY

i=1

(p2i �m2)

iZ
1
2

nY

j=1

(k2j �m2)

iZ
1
2

eG(n)(k
1

, . . . , kn,�p1, . . . ,�pl)

so that

out

h~p
1

, . . . , ~p l|~k 1

, . . . ,~k niin = (2⇡)4�(4)(
X

j

kj �
X

i

pi) iA .

5.3 S-matrix: perturbation theory

Continuing to present results without justification (which will be given later) we
now give the Green’s functions (or correlators or n-point functions in terms of “in”
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fields:

G(n)(x
1

, . . . , xn) = h0|T (�(x1) · · ·�(xn))|0i
= h0|T (�

in

(x
1

) · · ·�
in

(xn)e
�i

R
d4xH0

in)|0i (5.6)

Expanding the exponential, writing ✏H0
in

for H0
in

, with ✏ = 1, just a counting de-
vice, and retaining up to some power in ✏, say ✏N , we are approximating G(n) as
a perturbative expansion. If H0

in

is written explicitly in terms of some parame-
ters, and these can be considered as small, we are then approximating G(n) as an
expansion in powers of these small parameters. For example, with L = L

0

+ L0,
L
0

= 1

2

(@µ�)2 � 1

2

m2�2 and L0 = �H0 = �(�/4!)�4, then we are expanding G(n)

in powers of �, the coupling constant.
Let’s see this explicitly in this example. Compute G(4)(x

1

, . . . , x
4

):

0th order We take the 1 in the expansion fo the exponential:

G(4)

0

(x
1

, . . . , x
4

) = h0|T (�
in

(x
1

) · · ·�
in

(x
4

))|0i

To make the notation more compact we drop the label “in” for now and use �
1

for
�(x

1

, etc . Using Wick’s theorem,

G(4)

0

(x
1

, . . . , x
4

) = h0|T (�
1

· · ·�
4

)|0i

= h0| :�
1

· · ·�
4

: + :�
1

�
2

�
3

�
4

: + :�
1

�
2

�
3

�
4

: + :�
1

�
2

�
3

�
4

:

+ :�
1

�
2

�
3

�
4

: + :�
1

�
2

�
3

�
4

: + :�
1

�
2

�
3

�
4

:

+ :�
1

�
2

�
3

�
4

: + :�
1

�
2

�
3

�
4

: + :�
1

�
2

�
3

�
4

: |0i

Only the last line is non-vanishing, the previous two have normal ordered operators
acting on the vacuum. The last line gives

G(4)

0

(x
1

, . . . , x
4

) = �
1

�
2

�
3

�
4

+ �
1

�
2

�
3

�
4

+ �
1

�
2

�
3

�
4

Now, we compute eG(4) and then iA:

Z
4Y

n=1

d4xn e
�i

P
k
n

·x
nG(4)

0

(x
1

, . . . , x
4

) =

Z
d4x

1

d4x
2

e�ik1·x1�ik2·x2�
1

�
2

⇥
Z

d4x
3

d4x
4

e�ik3·x3�ik4·x4�
3

�
4

+ permutations.
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We need
Z

d4x
1

d4x
2

e�ik1·x1�ik2·x2

Z
d4q

(2⇡)4
e�iq·(x1�x2)

i

q2 �m2 + i✏

=

Z
d4q

(2⇡)4
i

q2 �m2 + i✏

Z
d4x

1

e�ix1·(k1+q)

Z
d4x

2

e�ix2·(k2�q)

=

Z
d4q

(2⇡)4
i

q2 �m2 + i✏
(2⇡)4�(4)(k

1

+ q) (2⇡)4�(4)(k
2

� q)

= (2⇡)4�(4)(k
1

+ k
2

)
i

k2
1

�m2

There is no i✏ in the last step since we have performed the integral over q0. Using
this above we have

eG(4)(k
1

, . . . , k
4

) =
i

k2
1

�m2

i

k2
3

�m2

(2⇡)4�(4)(k
1

+ k
2

)(2⇡)4�(4)(k
3

+ k
4

) + perms

= (2⇡)4�(4)(k
1

+ k
2

+ k
3

+ k
4

)


i

k2
1

�m2

i

k2
3

�m2

(2⇡)4�(4)(k
1

+ k
2

) + perms

�

Moreover, the scattering amplitude is

iA(k
1

, k
2

; p
1

, p
2

) =

lim
p2
i

!m2

k2
j

!m2

✓
p2
1

�m2

i

◆✓
p2
2

�m2

i

◆✓
k2
1

�m2

i

◆✓
k2
2

�m2

i

◆
eG(4)(k

1

, . . . , k
4

) = 0 ,

which makes sense since at this order in the expansion there is no interaction so
there is no scattering.

1st order We now expand the exponential to linear order so that

G(4)

1

(x
1

, . . . , x
4

) = h0|T (�
1

· · ·�
4

(�i)
Z

d4x �
4!

�4(x))|0i

To calculate this we use Wick’s theorem. We know from experience gained above
that we need the terms with all fields contracted. Let’s distinguish terms like

�
1

�
2

�
3

�
4

(�i)
Z

d4x
�

4!
�(x)�(x)�(x)�(x) or �

1

�
2

(�i)
Z

d4x
�

4!
�
3

�
4

�(x)�(x)

where at least two of the �
1

, . . . ,�
4

are contracted among themselves, from terms
like

� i
�

4!

Z
d4x�

1

�
2

�
3

�
4

�(x)�(x)�(x)�(x) (5.7)
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We call the first kind disconnected, the second connected. The reason for the
terminology will become clear when we introduce a graphical representation of
these contractons. We say the fields �

1

, . . . ,�
4

are external while the ones that
appear from inserting powers of the Hamiltonian into the time ordered product are
internal.

For disconnected terms each contraction �i�j of a pair of external fields will
give a single factor of (2⇡)4�(4)(ki + kj)i(k2i �m2)�1, and the rest of the factors in
that term will be independent of ki and kj . Then, when computing the amplitude
iA we’ll have

lim
k2
i,j

!m2
(k2i �m2)(k2j �m2)

i

k2i �m2

(2⇡)4�(4)(ki + kj)⇥ (ki,j-independent) = 0

To get a non-vanishing amplitude we look in connected terms. Note that the
one in (5.7) is but one of 4! contractions of this type, and they all give the same
result. So we have

G(4)

1,conn(x1, . . . , x4) = �i�
Z

d4x�(x
1

)�(x)�(x
2

)�(x)�(x
3

)�(x)�(x
4

)�(x)

= �i�
Z

d4x
4Y

n=1

✓Z
d4qn
(2⇡)4

e�iq
n

·(x
n

�x) i

q2n �m2 + i✏

◆

= �i�
Z

4Y

n=1

d4qn
(2⇡)4

e�iq
n

·(x
n

�x)(2⇡)4�(4)(
4X

n=1

qn)
4Y

n=1

i

q2n �m2 + i✏

from which we read o↵

eG(4)

1,conn(k1, . . . , k4) = �i�
4Y

n=1

i

q2n �m2 + i✏

We now use the LSZ formula to compute the scattering amplitude. This entails
removing the four propagators and multiplying by Z�2. However, Z itself has a
perturbative expansion, with Z = 1+O(�), so to the order we are working we can
set Z = 1. We obtain

iA(k
1

, k
2

; p
1

, p
2

) = �i� , (5.8)

that is

out

h~p
1

~p
2

|~k
1

~k
2

i
in

= �i�(2⇡)4�(4)(k
1

+ k
2

� p
1

� p
2

)

5.3.1 Graphical Representation

A graphical representation gives an e↵ective way of communicating and organizing
these calculations. Consider the Green’s function that we would need to compute
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the scattering amplitude at p-th order in � in the perturbative expansion

(�i�)ph0|T
✓
�(x

1

) · · ·�(x
4

)
�4(y

1

)

4!
· · · �

4(yp)

4!

◆
|0i (5.9)

In using Wick’s theorem to compute this is expanded into a sum of many terms.
Each term in the sum is represented by a diagram, and the set of all diagrams, is
constructed by drawing:

1. An endpoint of a line for each x
1

, . . . , x
4

. We call these lines external.

2. A point, or vertex, from which four lines originate for each y
1

, . . . , yp.

3. Connections between the loose ends of the lines, so that all points x
1

, . . . , yp
are connected with lines (with one line emerging from the x’s and four from
the y’s).

We associate with each line a factor of �(za)�(zb), where za and zb are the two
points connected by the line. To each vertex we associate a �i⇤. Finally there is
a combinatorial factor arising from equivalent contractions, to compensate for less
than 4! possible equivalent contractions; see example and fuller explanation below.

Let’s recover the results of our 0-th and 1st order calculations. At lowest order,
p = 0, so there are not vertices, only four endpoints of external lines:

x
1

x
3

x
2

x
4

= �
1

�
3

�
2

�
4

+

+

x
1

x
4

x
2

x
3

�
1

�
4

�
2

�
3

+

+

x
1

x
2

x
3

x
4

�
1

�
2

�
3

�
4

These are disconnected terms, and the diagrams are disconnected diagrams. As
such they give A = 0. Now at first order in perturbation theory, the p = 1 term,
we have disconnected diagrams,

x
1

x
2

x
3 y

x
4

+
x
1 y x

3

x
2

x
4

+ · · · = �i�1

2

�
1

�y �3�y �y�y �2�4 + · · ·

and one connected diagram,
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x
1 y x

3

x
2

x
4

= �i��
1

�y �2�y �3�y �4�y

Note that the first disconnected diagram has a combinatorial factor of 1

2

, as indi-
cated. This can be seen as follows. Starting from (5.9) with p = 1, and insisting
that �

1

is contracted with �
2

and both �
3

and �
4

are contracted with �y’s, we
see that there is only one possible contraction of �

1

with �
2

, then we have 4 ways
of contracting �

3

with �4y, which �
3

y un-contracted, and finally we have 3 ways of
contracting �

4

with �3y. The last step leaves �2y which can give a single contraction
of �y with �y. That is, there are 4 ⇥ 3 contractions. This times the pre-factor of
1

4!

gives the symmetry factor of 1

2

.
Here is another example of a combinatorial factor, now for a connected diagram,

from p = 2:

x
1

y
1x

2

x
3

y
2 x

4

= 1

2

(�i�)2 �
1

�y1 �2�y1 �3�y2

✓
�y1�y2

◆
2

The combinatorial factor is obtained as follows. There are 4 ways of contracting
�
1

with �4y1 , which leaves 3 ways of contracting �
2

with �3y1 . Similarly, here are 4
ways of contracting �

3

with �4y2 , which leaves 3 ways of contracting �
4

with �3y2 .
Finally we have to contract �2y1 with �2y2 , and there are 2 ways of doing this. We
have ✓

1

4!

◆
2

⇥ 4 · 3 · 4 · 3 · 2 =
1

2

As an exercise you should verify there are five other connected diagrams for the
p = 2 case and they all have the same combinatorial factor of 1

2

.

5.4 Feynman Graphs

The diagrammatic language above is very useful in computing Green’s functions
in perturbation theory. But often we are interested in scattering amplitudes which
are obtained from the Fourier transform eG(n)(k

1

, . . . , kN ) by the LSZ reduction
formula. So it is convenient to replace the rules for the diagrammatic analysis above
so that one obtains directly the Fourier transforms eG(n) or even the corresponding
scattering amplitude iA.

To this e↵ect, in computing (5.9) we use

�a�b =

Z
d4q

(2⇡)4
eiq·(xa

�x
b

)

i

q2 �m2 + i✏
. (5.10)
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For perturbation theory the interaction term, �i�
R
d4y �4(y), is as in (5.9) but

integrated over space-time. Each interaction term gives a factor of

�i�
Z

d4y e�iy·P
n

q
n = �i�(2⇡)4�(4)(

X

n

qn) ,

where the qn are from the four contractions
Q

4

i=1

�(y)�(xi). To keep track of the
signs ±q · x in the arguments of the exponential, it is convenient to think of q as
an arrow: in (5.10) it is directed from xa to xb.

So we have new rules:

1. Draw diagrams with n external “legs” (all topologically distinct diagrams).

2. For each topology assign momenta qi to each line, including external legs.
The assignment is directional: draw an arrow to indicate the direction of qi,
arbitrarily.

3. Every external line carries a factor
Z

d4qn
(2⇡)4

e±iq
n

·x
n

i

q2n �m2 + i✏
.

with the plus sign if the arrow for qn is drawn pointing into the diagram,
minus if it points out.

4. Every internal line carries a factor
Z

d4qi
(2⇡)4

i

q2i �m2 + i✏
.

5. Each vertex carries a factor

�i�(2⇡)4�(4)(
X

n

(±)qn)

where qn are the momenta of the lines at the vertex, with the sign assignment
+1 if qn is directed into the vertex and �1 if directed out of the vertex.

6. Introduce a correction symmetry factor, as before.

For example, the connected diagram,

x
1

x
3

x
2

x
4

q
1

q
3

q
2

q
4
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gives
4Y

i=1

Z
d4qn
(2⇡)4

eiqn·xn

i

q2n �m2 + i✏
(�i�)(2⇡)4�(4)(

4X

n=1

qn)

If the contraction involves an external leg, when taking the Fourier transform
the corresponding coordinate xi is integrated,

R
d4xie�ik

i

·x
i . This gives

Z
d4xie

�ik
i

·x
i

Z
d4q

(2⇡)4
, eiq·(xi

�y) i

q2 �m2 + i✏
= e�ik

i

·y i

k2i �m2 + i✏

Now recall, Eq. (5.5), that eG(n)(k
1

, . . . , kn) is not really the Fourier transform of
G(n)(x

1

, . . . , xn), but rather

Z nY

i=1

d4xi e
�i

P
n

i=1 ki·xiG(n)(x
1

, . . . , xn) = (2⇡)4�(4)(
X

i

ki) eG(n)(k
1

, . . . , kn) .

The Feynman rules tell us how to compute for (2⇡)4�(4)(
P

i ki)
eG(n)(k

1

, . . . , kn) in
perturbation theory:

1. Draw diagrams with n external “legs” (all topologically distinct diagrams).

2. For each topology find the inequivalent ways of assigning momenta ki to each
external leg. The assignment is directional: ki goes into the diagram, “out”
to “in” if k0i > 0 (draw an arrow to indicate this).

3. Assign a momentum qn, n = 1, . . . , I to each internal line. Draw an arrow to
indicate this momentum direction, arbitrarily.

4. Every external line carries a factor

i

k2i �m2 + i✏
.

5. Every internal line carries a factor

Z
d4qi
(2⇡)4

i

q2i �m2 + i✏
.

6. Each vertex carries a factor

�i�(2⇡)4�(4)(
X

n

(±)pn)

where pn are the momenta of the lines at the vertex, with the sign assignment
+1 if pn is directed into the vertex and �1 if directed out of the vertex.
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7. Introduce a correction symmetry factor, as before.

So, for example, to order � in the perturbative expansion, the connected diagram
for the 4-point function is

k
1

k
3

k
2

k
4

corresponding to

eG(4)

1

(k
1

, . . . , k
4

) =
4Y

n=1

i

k2n �m2 + i✏
(�i�)(2⇡)4�(4)(

4X

n=1

kn)

Here is another example, a contribution to order �2 to eG(6):

k
1

k
4

k
3

k
6

k
2

k
5

q

corresponding to

6Y

n=1

✓
i

k2n �m2 + i✏

◆Z
d4q

(2⇡)4
i

q2 �m2 + i✏

⇥
"
(�i�)(2⇡)4�(4)

� 3X

n=1

kn � q
�
# "

(�i�)(2⇡)4�(4)
� 6X

n=3

kn + q
�
#

= (2⇡)4�(4)
� 6X

n=1

kn
�
"
��2

6Y

n=1

✓
i

k2n �m2

◆
i

(k
1

+ k
2

+ k
3

)2 �m2

#

leading to

eG(6)

conn

(k
1

, . . . , k
6

) = ��2
6Y

n=1

✓
i

k2n �m2

◆
i

(k
1

+ k
2

+ k
3

)2 �m2

+ · · ·

where the ellipses stand for other connected graphs at order �2 (can you display
them?) plus terms of higher order in �. We have removed the i✏ from the propa-
gators in the last line since all integrals have been performed.

One more example:
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q
1

q
2

k
1

k
2

k
3

k
4

gives

1

2

4Y

n=1

✓
i

k2n �m2

◆
2Y

i=1

✓Z
d4qi
(2⇡)4

i

q2i �m2 + i✏

◆

⇥
h
(�i�)(2⇡)4�(4)(k

1

+ k
2

� q
1

� q
2

)
i h

(�i�)(2⇡)4�(4)(k
3

+ k
4

+ q
1

+ q
1

)
i

= (2⇡)4�(4)
� 4X

n=1

kn
�1
2
(�i�)2

4Y

n=1

✓
i

k2n �m2

◆Z
d4q

1

(2⇡)4
i

q2
1

�m2 + i✏

i

(k
1

+ k
2

� q
1

)2 �m2 + i✏

Notice that this result involves a non-trivial integration. This occurs in any dia-
gram for which there is a closed circuit of internal lines: momentum conservation
at each vertex, enforced by �-functions, does not completely fix the momentum of
the internal lines. In this example the momentum q

1

appears in two propagators,
tracing a closed trajectory, a loop. The situation is depicted in a new type of dia-
gram in which the delta functions of momentum conservation have been explicitly
accounted for (except an single factor that gives momentum conservation of the
external momentum):

q
1

q
1

� k
1

� k
2

k
1

k
2

k
3

k
4

There is no longer an integration for each internal line. Instead there as in integral
only over the undetermined momentum q

1

. We call q
1

a loop momentum and
R
d4q

a loop integral.
This generalizes. It is always the case that that the �-functions at each vertex

impose momentum conservation and therefore one can always recast the product
of delta-functions as one �(4)(

P
n kn) of external momentum times the remaining

delta functions. The number L of loop integrals we are left to do in any given
diagram is the number of internal lines I minus the number of delta-functions,
taking away the one for overall momentum conservation. If there are V vertices,
we then have V � 1 �-functions and therefore

L = I � V + 1



92 CHAPTER 5. ELEMENTARY PROCESSES

In our example above, I = 2, V = 2 and we had L = 2� 2+ 1 = 1 loops. Here are
few more examples:

L = 3� 2 + 1 = 2 L = 7� 4 + 1 = 4

We can also have a theory with 3-point and 4-point vertices, as in 1

3!

g�3 + 1

4!

��4;
here is an example:

L = 5� 4 + 2 = 2

This suggest a more compact set of Feynman rules to compute eG(n)(k
1

, . . . , kn):

1. Draw diagrams with n external “legs” (all topologically distinct diagrams).

2. For each topology find the inequivalent ways of assigning momenta ki to each
external leg. The assignment is directional: ki goes into the diagram. Draw
an arrow to indicate this.

3. Assign qi, i = 1, . . . , L momenta to internal lines; draw arrow indicating
direction. Assign momenta to remaining I � L = V � 1 internal lines by
enforcing momentum conservation: at each vertex

P
p
in

=
P

p
out

.

4. For each line

p
=

i

p2 �m2 + i✏

5. For each vertex,

= �i�

6. Integrate:
LY

n=1

Z
d4qn
(2⇡)4

.

7. Symmetry factor 1/S as needed.
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5.5 Cross Section

In a common experimental setup two beams of elementary particles are accelerated
in opposite directions and brought into face to face encounter. Some fraction of
the particles in the beams collide. The collision results in a spray of elementary
particles emanating form the collision point and an array of detectors surrounding
the area register these outgoing particles. Here as a computer generated image
of the tracks made by charged particles that are sprayed out of the head-to-head
collision of two protons, projected onto a plane transverse to the direction of the
protons:

In another common setup a beam of particle impinges on a collection of stationary
targets. This second set-up is, of course, just the first one as seen by an observer
at rest with the second “beam.” We say this observer is in the “lab frame.”

We are after a measure of how likely are these collisions to occur. The cross
section, �, for scattering is defined through

number of collisions

unit time
= (flux)⇥ � .

To calculate, rather than computing the number of collisions per unit time from
the actual flux, we use unit flux (that of one-on-one particles) and therefore

collision probability

unit time
= (unit flux)⇥ � .

We have an initial state |ii that consists of two particles, a final state |fi that
consists of n-particles (n/ge2). The probability that |ii evolves into |fi is

Pi!f = |hf out|i ini|2 = |hf in|S|i ini|2 = |hf |S � 1|ii|2

where in the last step we ignore the f = i case (no collision, hence subtract 1 from
S) and suppressed the “in” label (we will get tired of carrying it around).
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We have to be careful to ask the right question: since we have continuum
normalization of states, if we are overly selective in what we want for |fi, the
probability of finding it in |ii will vanish. Recall if you drop a pin on a piece of
paper the probability of hitting a given point on the paper, say, (x

0

, y
0

), is zero,
since a point is a set of measure zero in the set of points that comprise the area of
the paper. Likewise, if we set |fi = |~k

1

, . . . ,~k ni we’ll find Pi!f = 0. Instead we
project out a subspace of F , rather than a single state. Instead of

|hf |S � 1|ii|2 = hi|(S � 1)†|fihf |S � 1|ii

we take
hi|(S � 1)†

⇣X

f
some states

|fihf |
⌘
(S � 1)|ii

In particular, for n particles in the final state we have

X

f

|fihf |!
Z
(dk

1

) · · · (dkn)|~k 1

, . . . ,~k nih~k 1

, . . . ,~k n|

where

• we may not want to sum over all possible momenta, so the integrals can be
restricted

• must avoid double counting from indistinguishable particles

Suppose particles 1 and 2 are indistinguishable (but the rest are not). Then to
avoid double counting one should write

X

f

|fihf |! 1

2

Z
(dk

1

) · · · (dkn)|~k 1

, . . . ,~k nih~k 1

, . . . ,~k n|

If 1,2,3 are indistinguishable then the pre-factor becomes 1/3! since the order of
~k
1

, ~k
2

and ~k
3

in the label of the state is immaterial. More generally,

X

f

|fihf |! 1

S

nY

i=1

(dki) |~k 1

, . . . ,~k nih~k 1

, . . . ,~k n|

where S = m
1

!m
2

! · · · where mi is the number of identical particles of type i
(
P

imi = n).
We are ready to give a probability:

Pi!f =
hi|(S � 1)†

P
|fihf |S � 1|ii
hi|ii
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We have divided by hi|ii because states must be normalized for proper interpre-
tation. Did not divide by normalization of |fi because it is included properly in
relativistic measure in the sum over states. We next recast this in terms of the
scattering amplitude,

hf |S � 1|ii = (2⇡)4�(4)(Pf � Pi) iA(i! f).

At this point we choose an initial state of plane waves with definite momentum,
|ii = |~p

1

, ~p
2

i. We have

hi|ii = h~p
1

, ~p
2

|~p
1

, ~p
2

i = h~p
1

|~p
1

ih~p
2

|~p
2

i
but since in general h~p |~k i = 2E~k

(2⇡)3�(3)(~p�~k ), we have, h~p
1

|~p
1

i = 2E~k
(2⇡)3�(3)(0).

This is embarrassing, but not disastrous. There are two ways of dealing with this
problem. It is not very hard to use wave-packets, which can be properly normalized,
instead of plane waves, but won’t do here; check it out in some of the textbooks
in our bibliography. We have an alternative means of dealing with this problem,
which is by putting the system in a finite box of volume V . We have already
done so in computing phase space. We discovered there that the correct interpre-
tation of this infinity is (2⇡)3�(3)(0)! V . In fact, we will also use, more generally,
(2⇡)4�(4)(0) ! V T , where T = t

final � t
initial. So we can write hi|ii = 4E

1

E
2

V 2.
Similarly

|hf |S � 1|ii|2 =
⇣
(2⇡)4�(4)(Pf � Pi)

⌘
2

|A(i! f)|2

=
⇣
(2⇡)4�(4)(0)

⌘
(2⇡)4�(4)(Pf � Pi)|A(i! f)|2

= V T (2⇡)4�(4)(Pf � Pi)|A(i! f)|2

Putting it all together:

probability

time
=

1

T

V T 1

S

R Q
i(dki) (2⇡)

4�(4)(Pf � Pi)|A(i! f)|2
4E

1

E
2

V 2

=
1

V

1

4E
1

E
2

Z
|A(i! f)|2d�n

where

d�n =
1

S
(2⇡)4�(4)(Pf � Pi) (dk1) · · · (dkn)

is the Lorentz-invariant n-particle phase space.
Finally, in order to determine the cross section � we need to divide the above

by the unit flux. Assume particle 1 is uniformly distributed in a box of volume
V . The probability of finding it is a sub-volume v is v/V . We want v to be the
interaction volume, so project a volume forward of particle 2, in the direction of the
relative motion ~v

2

�~v
1

, with cross sectional area � perpendicular to that direction,
when particle 2 moves over a time �t, as in the following figure:
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�
~v
2

� ~v
1

particle 2

|~v
2

� ~v
1

|�t

This has

volume

V
=

(|~v
2

� ~v
1

|�t)�

V
) probability

unit time
=

|~v
2

� ~v
1

|�
V

Comparing with the above probability per unit time we have

d� =
1

4E
1

E
2

|~v
2

� ~v
1

| |A|2d�

where we have written d� rather than � to remind us that d� will be integrated
over: � =

R
d� = 1

4E1E2|~v 2�~v 1|
R
|A|2d�.

The factor E
1

E
2

|~v
2

�~v
1

| is invariant under boosts along the direction of ~v
2

�~v
1

.
This is most easily seen in a frame where ~v

1

and ~v
2

are along the z-axis. Then

E
1

E
2

|~v
2

� ~v
1

| = E
1

E
2

| p2
E

2

� p
1

E
1

= |p
2

E
1

� p
1

E
2

| = |✏
12µ⌫p

µ
1

p⌫
2

|

is invariant to boosts in the 3-direction. It is useful to compute this factor in the
two most common frames, once and for all. In the Lab frame: ~p

2

= 0, E
2

= m
2

so E
1

E
2

|~v
2

� ~v
1

| = |p
2

E
1

� p
1

E
2

| = m
2

p
1

. In the center of mass, or CM frame,
~p
2

+ ~p
1

= 0, so that ~p
1

= �~p
2

⌘ ~p and E
1

E
2

|~v
2

� ~v
1

| = |p
2

E
1

� p
1

E
2

| =
|~p |

p
(p

1

+ p
2

)2 where p
1,2 are 4-vectors. Let

s ⌘ (p
1

+ p
2

)2

so that s = m2

1

+m2

2

+2E
1

E
2

+2|~p|2. Since Ei =
q

|~p |2 +m2

i we have an equation

relating |~p |2 to s, which we solve:

|~p |2 = (s�m2

1

�m2

2

)2 � 4m2

2

m2

2

4s

This gives

4E
1

E
2

|~v
2

� ~v
1

| = |~p |
p
s = 2

q
(s�m2

1

�m2

2

)2 � 4m2

1

m2

2

.

The last expression is valid in any frame boosted along ~v
2

� ~v
1

, and we can write

d� =
1

2
p

(s�m2

1

�m2

2

)2 � 4m2

1

m2

2

|A|2d�
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Example: 2! 2 scattering, identical particles

~p
1

~p
2

~k
1

~k
2

✓

We have for identical particles m
1

= m
2

= m

d�
2

=
d3k

1

(2⇡)32E
1

d3k
2

(2⇡)32E
2

(2⇡)4�(4)(P � k
1

k
2

)

=
d4k

1

d4k
2

(2⇡)2
✓(k0

1

)✓(k0
2

)�(k2
1

�m2)�(k2
2

�m2)�(4)(P � k
1

k
2

)

Change variables:

p = k
1

+ k
2

q = 1

2

(k
1

� k
2

)
,

k
1

= 1

2

p+ q

k
2

= 1

2

p� q

Note that the Jacobian of the transformation,
���@(k1,k2)@(p,q)

��� = 1. Then,

d�
2

=
1

(2⇡)2
d4p�(4)(P � p)d4q✓(1

2

p0 + q0)✓(1
2

p0 � q0)�((1
2

p+ q)2 �m2)�((1
2

p� q)2 �m2)

=
1

(2⇡)2
d4q ✓(1

2

P 0 � |q0|)�(1
4

P 2 + P · q + q2 �m2)�(2P · q)

In the CM frame, ~P = 0, this is simple:

d�
2

=
1

(2⇡)2
dq0|~q |2d|~q |d cos ✓d� ✓(1

2

P 0 � |q0|)�(1
4

P 2 + (q0)2 � |~q |2 �m2) 1

2P 0 �(q
0)

=
1

(2⇡)2
d cos ✓d�

1

2P 0

1

2

q
1

4

(P 0)2 �m2

=
1

8(2⇡)2
d cos ✓d�

p
1� 4m2/s

where s = P 2 = (p
1

+ p
2

)2 as before. Therefore

d�

d cos ✓d�
=

1

2

1

8(2⇡)2
p
1� 4m2/s

1

2
p

(s� 2m2)2 � 4m2

|A|2

=
1

32

1

(2⇡)2
1

s
|A|2
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Often A is independent of �, so

d�

d cos ✓
=

1

64⇡

1

s
|A|2

5.6 LSZ reduction, again

We want to establish the LSZ reduction formula. We don;t pretend to give a com-
plete proof. The objective is to express the S-matrix in terms of Green’ s functions,
vacuum expectation values of time ordered products, of in fields. Consider

out

h |~k
1

,~k
2

, . . . ,~k niin =
out

h |~k
1

�i
in

=
out

h |↵†
~k 1in

�i
in

Recall

�
in

(x) =

Z
(dq)

⇣
↵~q ine

�iq·x + ↵†
~q ine

iq·x
⌘

@t�in(x) =

Z
(dq)

⇣
�iE~q↵~q ine

�iq·x + iE~q↵
†
~q ine

iq·x
⌘

Inverting these,

↵†
~q in = �i

Z
d3x e�iq·x !@t �in(x)

So we have

out

h |~k
1

�i
in

= �i
Z

d3x e�ik1·x !@t out

h |�
in

(x)|�i
in

= �iZ� 1
2

Z
d3x e�ik1·x !@t out

h |�(x)|�i
in

as t! �1.

Now we use the fundamental theorem of calculus, g(t
2

) = g(t
1

) +
R t2
t1

dtdgdt , with
t
2

!1 and t
1

! �1 so that

lim
t!�1

Z
d3x e�ik1·x !@t out

h |�(x)|�i
in

= lim
t!1

Z
d3x e�ik1·x !@t out

h |�(x)|�i
in

�
Z

d4x @t
⇣
e�ik1·x !@t out

h |�(x)|�i
in

⌘

The first term on the right hand side times �iZ� 1
2 is

out

h |↵†
~k 1out

|�i
in

, as can

be seen by reversing the steps. If | i
out

= |~p
1

, ~p
2

, . . . , ~pn0i
out

then ↵†
~k 1out

| i
out

=

(2⇡)32E~k 1
�(3)(~k

1

�~p
1

)|~p
2

, . . . , ~pn0i
out

+· · ·+(2⇡)32E~k 1
�(3)(~k

1

�~pn0)|~p
1

, . . . , ~pn0�1

i
out

corresponds to a particle not participating in the scattering. We have no use
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for this. For the second term on the right hand side we use @t(f(t)
 !
@t g(t)) =

f@2t g � (@2t f)g so it is

�
Z

d4x e�iq·x(@2t + E2

~q ) outh |�(x)|�iin

Using E2

~q e
�iq·x = (|~q |2 +m2)e�iq·x = (�~r2 +m2)e�iq·x and integrating by parts

we have finally

out

h |~k
1

�i
in

=
out

h |↵†
~k 1out

|�i
in

+ iZ� 1
2

Z
d4x e�ik1·x(@2 +m2)

out

h |�(x)|�i
in

Similarly

out

h ~p |�i
in

=
out

h |↵†
~p in|�iin + iZ� 1

2

Z
d4x eip·x(@2 +m2)

out

h |�(x)|�i
in

(5.11)

We woud like to repeat the process until we remove all particles from | i
out

and |�i
in

. To see how this goes move a particle o↵ from |�i
in

from what we already
had:

out

h |�(0)|~k�0i
in

=
out

h |�(0)↵†
~k in

|�0i
in

= �iZ� 1
2 lim
x0!�1

Z
d3x e�ik·x !@x0

out

h |�(0)�(x)|�0i
in

= iZ� 1
2

Z
d4x @x0

⇣
e�ik·x !@x0

out

h |�(0)�(x)|�0i
in

⌘

� iZ� 1
2 lim
x0!1

Z
d3x e�ik·x !@x0

out

h |�(0)�(x)|�0i
in

(5.12)

In the last expression we would like to move �(x) to the left of �(0) so that we

may turn �(x) as x0 ! 1 into ↵†
~kout

acting on hout|. To this end we rewrite the

first term in the last expression in (5.12) using

�(0)�(x) = (✓(�x0) + ✓(x0))�(0)�(x) + ✓(x0)(�(x)�(0)� �(x)�(0))
= T (�(x)�(0)) + ✓(x0)[�(0),�(x)]

Then in Z
d4x @x0

⇣
e�ik·x !@x0

out

h |✓(x0)[�(0),�(x)]|�0i
in

⌘
(5.13)

when
 !
@x0 hits ✓(x0) we get the equal time commutator [�(0),�(x)] = 0. So we

have (5.13) is

=

Z
d4x @x0

h
✓(x0)

⇣
e�ik·x !@x0

out

h |[�(0),�(x)]|�0i
in

⌘i

= lim
x0!1

Z
d3x e�ik·x !@x0

out

h |[�(0),�(x)]|�0i
in
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Combining this with the last term in (5.12) gives precisely what we want: it reverses
the order of �(0)�(x) so that

out

h |�(0)|~k�0i
in

= iZ� 1
2

Z
d4x

⇣
e�ik·x(@2 +m2)

out

h |T (�(0)�(x))|�0i
in

⌘
+

out

h |↵†
~kout

�(0)|�0i
in

We thus arrive at

out

h |~k
1

~k
2

�0i
in

= (iZ� 1
2 )2

Z
d4x

1

d4x
2

e�ik1·x1�ik2·x2

⇥ (@2x1
+m2)(@2x2

+m2)
out

h |T (�(0)�(x))|�0i
in

+ disconnected

One can repeat the process until all particles in |ini are removed and we are left
with |0i

in

= |0i. The argument above can be streamlined by replacing T (�(0)�(x))
for �(0)�(x) in the line above (5.12)), and this indeed becomes very convenient in
completing the argument for arbitrary number of particles.

Similarly we can remove 1-particle states from
out

h~k | using (5.11) repeatedly.

5.7 Perturbation theory, again

We now give a proof of (5.6) that gives us the basis for perturbation theory. Con-
sider

G(n)(x
1

, . . . , xn) = h0|T (�(x1) · · ·�(xn))|0i .
Take for definiteness x0

1

� x0
2

� · · · � x0n. Recall �(x) = U(t)�1�
in

U(t), ans use
this in each � in the Green’s function:

G(n)(x
1

, . . . , xn) = h0|U�1(t
1

)�(x
1

)U(t
1

)U�1(t
2

)�(x
2

)U(t
2

) · · ·U�1(tn)�(xn)U(tn)|0i .

Let U(t, t0) = U(t)U�1(t0). This satisfies

U(1,�1) = S (5.14)

U(t,�1) = U(t) (5.15)

U(t, t0)U(t0, t00) = U(t, t00) (5.16)

Moreover,

i
@U(t, t0)

@t
= H 0

in

U(t, t0), with U(t0, t0) = 1 .

This is the same equation satisfied by U(t), but with a di↵erent boundary condition.
So the solution is the same only with di↵erent limits of integration,

U(tf , ti) = T exp

✓
�i

Z t
f

t
i

dtH 0
in

(t)

◆
.
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We now have

G(n) = h0|U�1(1)U(1, t
1

)�
in

(x
1

)U(t
1

, t
2

)�
in

(x
2

)U(t
2

, t
3

) · · ·U(tn�1

, tn)�in(xn)U(tn,�1)U(�1)|0i
= h0|U�1(1)T (U(1, t

1

)�
in

(x
1

)U(t
1

, t
2

)�
in

(x
2

)U(t
2

, t
3

) · · ·U(tn�1

, tn)�in(xn)U(tn,�1)) |0i
= h0|U�1(1)T (U(1, t

1

)U(t
1

, t
2

)U(t
2

, t
3

) · · ·U(tn�1

, tn)U(tn,�1)�
in

(x
1

)�
in

(x
2

) · · ·�
in

(xn)) |0i
= h0|U�1(1)T (U(1,�1)�

in

(x
1

)�
in

(x
2

) · · ·�
in

(xn)) |0i

Uniqueness of the vacuum means that |0i, |0i
in

, |0i
out

, are equal up to a phase.
Moreover, U(1)|0i = S|0i must be |0i up to a phase. To see this note that S
commutes with Poincare transformations, U(aµ,⇤)SU †(aµ,⇤) = S and |0i is the
unique state (up to a phase) that is left invariant by a Poincare transformation.
Then U(aµ,⇤)(S|0i) = U(aµ,⇤)SU †(aµ,⇤)U(aµ,⇤)|0i = S|0i so S|0i is invariant
and hence equal to |0i up to a phase. So we have h0|U�1(1) = h0|U�1(1)|0i h0|.
Using this and

U(1) = U(1,�1) = T exp

✓
�i

Z 1

�1
dtH 0

in

(t)

◆

we finally have

G(n)(x
1

, . . . , xn) =
in

h0|T
⇣
�
in

(x
1

) · · ·�
in

(xn)ei
R
d4xL0

in

⌘
|0i

in

in

h0|T
⇣
ei

R
d4xL0

in

⌘
|0i

in

Note that we replaced |0i
in

for |0i since the phases in numerator and denominator
cancel.

This is not what we set out to prove. It is better. The denominator corresponds
to a set of graphs without external legs. These vacuum graphs can also appear in
the numerator, just multiplying any graph with external legs. It is a simple exercise
to check that the vacuum graphs in the numerator are cancelled by the graphs in
the denominator.

5.7.1 Generating Function for Green’s Functions

Let
Z[J ] = h0|Tei

R
d4x J(x)�(x)|0i .

Then

G(n)(x
1

, . . . , xn) =
1

i

�

�J(x
1

)
· · · 1

i

�

�J(xn)
Z[J ]

����
J=0

and

Z[J ] = in

h0|Tei
R
d4x(L0

in+J(x)�in(x))|0i
in

in

h0|T
⇣
ei

R
d4xL0

in

⌘
|0i

in
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This is a convenient way of summarizing the results above for G(n), all n. Note
also that

Z[J ] =
X

n

in

n!

Z
d4x

1

· · · d4xn J(x1) · · · J(xn)G(n)(x
1

, . . . , xn) .

5.7.2 Generating Function for Connected Green’s Functions

Similarly we define

W [J ] =
X

n

in

n!

Z
d4x

1

· · · d4xn J(x1) · · · J(xn)G(n)
conn

(x
1

, . . . , xn) .

We will now show that Z[J ] = eiW [J ].
We use a diagrammatic notation to see how this works:

+W [J ] = + · · ·

where the heavy dots ✏ stand for J(x), the hatch circles with n lines stand for G(n)

and an integral 1

n!

Q
i

R
d4xi in each term is understood. Let streamline notation for

the purposes of this proof: remove the heavy dots (the ends of lines are understood
as having them) and reduce the hatch circle to a point, so that the above figure is
the same as

+W [J ] = + · · ·

With this notation we consider the exponential of W [J ]:

exp(W [J ]) = exp
� �

exp
� �

exp
� �

· · ·

Now expand its exponential, as in

exp
� �

= 1 + + +1

2!

+ · · ·1

3!

and reorganize by powers of J , that is, number fo external legs:
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expW [J ] = 1 + + + +
⇣

1

2!

⌘
+ · · ·

where the ellipses stand for terms with five or more legs. Let’s analyze in more
detail the term in parenthesis: we want to show that it gives G(4) (times sources,
1/4! and integrated). The “cross” stands for

1

4!

Z
d4y

1

· · · d4y
4

J(y
1

) · · · J(y
4

)G(4)

conn

(y
1

, . . . , y
4

)

Now, �4

�J(x1)···�J(x4)
of this gives G(4)

conn

(x
1

, . . . , x
4

). Note that the 4! is absent since

there are 4! terms from the integral (same as in d4

dx4x4 = 4!). Turning to the other
term, the disconnected graph, we have

�4

�J(x
1

) · · · �J(x
4

)

1

2!

✓
1

2!

Z
d4yd4z J(y)J(z)G(2)(y, z)

◆
2

= G(2)(x
1

, x
2

)G(2)(x
3

, x
4

) +G(2)(x
1

, x
3

)G(2)(x
2

, x
4

) +G(2)(x
1

, x
4

)G(2)(x
2

, x
3

)

If we take the for J-functional derivatives and set J = 0 these are the only terms
we pick up in the expansion, so we have

�4

�J(x
1

) · · · �J(x
4

)
eW [J ]

���
J=0

= G(4)

conn

(x
1

, . . . , x
4

)

+G(2)(x
1

, x
2

)G(2)(x
3

, x
4

) +G(2)(x
1

, x
3

)G(2)(x
2

, x
4

) +G(2)(x
1

, x
4

)G(2)(x
2

, x
3

)

= G(4)(x
1

, . . . , x
4

) =
�4

�J(x
1

) · · · �J(x
4

)
Z[J ]

���
J=0

In the general case, the term with Jn in eW [J ] is a sum of all possible contri-
butions of the form

1

n
2

!

✓
1

2!

Z
J
1

J
2

G(2)

c

◆n2 1

n
3

!

✓
1

3!

Z
J
1

J
2

J
3

G(3)

c

◆n3

· · ·

such that 2n
2

+ 3n
3

+ · · · = n, in a hopefully obvious condensed notation. For
example, n = 4 has (n

2

= 2, n6=2

= 0) + (n
4

= 1, n6=4

= 0), and n = 6 has (n
6

=
1, n6=6

= 0) + (n
4

= 1, n
2

= 1, n6=4,2 = 0) + (n
3

= 2, n6=3

= 0) + (n
2

= 3, n6=2

= 0).

Consider the term with G(k)
c : take

�knk

�J(x
1

) · · · �J(xkn
k

)

1

nk!

✓
1

k!

Z
J
1

· · · JkG(k)
c

◆n
k
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This is completely symmetric under permutations of x
1

, . . . , xkn
k

. To make this
explicit we rewrite it as

1

nk!

✓
1

k!

Z
J
1

· · · JkG(k)
c

◆n
k

=
1

nk!

1

(k!)nk

⇥
Z kn

kY

i=1

d4yi J(y1) · · · J(ykn
k

)G(k)
c (y

1

, . . . , yk) · · ·G(k)
c (y

(n
k

�1)k+1

, . . . , yn
k

k)

Taking knk J-derivatives we obtain

1

nk!

1

(k!)nk

G(k)
c (x

1

, . . . , xk) · · ·G(k)
c (x

(n
k

�1)k+1

, . . . , xn
k

k)+permutations of x
1

, . . . , xn
k

k

This contains many repeated terms. We need to count the number of inequivalent

permutations. For each G(k)
c there are k! equivalent permutations of the arguments;

this gives (k!)nk . Then we can permute the G(k)
c among themselves; there are nk!

such permutations. So we obtain

�knk

�J(x
1

) · · · �J(xkn
k

)

1

nk!

✓
1

k!

Z
J
1

· · · JkG(k)
c

◆n
k

= G(k)
c (x

1

, . . . , xk) · · ·G(k)
c (x

(n
k

�1)k+1

, . . . , xn
k

k) + inequiv-perms

Finally combine all terms and symmetrize over x
1

, . . . , xn. We obtain all possible
combinations of Gc’s that can make G(n). But that is precisely what we intended
to show.


