
Chapter 3

Symmetries

A famous theorem of Wigner shows that symmetries in a quantum theory must
correspond to either unitary or anti-unitary operators. It seems fit to start with
a review of what is meant by this. We will then proceed to study continuous
symmetries, all represented by unitary operators. We will then turn our attention
to discrete symmetries. It is then, in presenting time-reversal symmetry, that we
will encounter anti-unitary operators.

3.1 Review of unitary and anti-unitary operators

The bra/ket notation is not quite suitable for anti-linear operators. So for this
section we use the following notation:

• States are denoted by wave-functions:  ,�, . . .

• c-numbers are lowercase latin letters: a, b, . . .

• Operators are uppercase: A,B, . . . , U, V, . . . ,⌦, . . .

• Inner product and norm: ( ,�) and k k2 = ( , )

An operator A is linear if A(a + b�) = aA + bA�. The hermitian conjugate A†

of an operator A, is such that for all �, 

(�, A† ) = (A�, ) .

This is consistent only if A is linear:

(A(a + b�), ⇢) = (a + b�, A†⇢)

= a⇤( , A†⇢) + b⇤(�, A†⇢)

= a⇤(A , ⇢) + b⇤(A�, ⇢)

= (aA + bA�, ⇢)

34
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for any ⇢.
An invertible operator U is unitary if

(U , U�) = ( ,�) (and therefore kU k = k k).

Unitary operators are linear. Proof:

kU(a + b�)� aU � bU�k2 = kU(a + b�)k2�2Re [a(U(a + b�), U )]

� 2Re [b(U(a + b�), U�)] + |a|2 kU k2+|b|2 kU�k2

= ka + b�k2�2Re [a(a + b�, )]

� 2Re [b(a + b�,�)] + |a|2 k k2+|b|2 k�k2

= 0

where we have used unitarity in going form the first to the second line and we have
expanded all terms in going from the second to the third line. Since only zero has
zero norm we have U(a + b�)�aU � bU = 0, completing the proof. The inverse
of a unitary operator is its hermitian conjugate:

( , U�1�) = (U , U(U�1�)) = (U ,�) = ( , U †�)

for any  ,�.
An invertible operator ⌦ is anti-unitary if for all  ,�

(⌦ ,⌦�) = (�, ) (notice inverted order).

An operator Bis anti-linear if for all  ,�

B(a + b�) = a⇤ B + b⇤ B�

Anti-unitary operators are anti-linear. The proof is the same as in linearity of
unitary operators, k⌦(a + b�) � a⇤⌦ + b⇤⌦�k2 = 0. Example: the complex
conjugation operator, ⌦c. Clearly

⌦c(a + b�) = a⇤⌦c + b⇤⌦c� and (⌦c ,⌦c�) = (�, ) .

You can show that the products U
1

U
2

and ⌦
1

⌦
2

of two unitary or two anti-
unitary operators are unitary operators, while the products U⌦ and ⌦U of a unitary
and an anti-unitary operators are anti-unitary.

Symmetries What properties are required of operator symmetries in QM? If A
is an operator on the Hilbert space, F = { }, then it is a symmetry transformation
if it preserves probabilities, |(A , A�)|2 = |( ,�)|2. Wigner showed that the only
two possibilities are A is unitary or anti-unitary.
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Symmetry transformations as action on operators: for unitary operators, the
symmetry transformation  ! U , for all states, gives

( , A�)! (U , AU�) = ( , U †AU�)

So we can transform instead operators, via A! U †AU . For anti-unitary operators
the hermitian conjugate is not defined, so we do not have “⌦† = ⌦�1”. But

( , A�)! (⌦ , A⌦�) = (⌦�1A⌦�,⌦�1⌦ ) = ( , (⌦�1A⌦)†�) ,

which is not very useful. For expectation values of observables, A† = A,

( , A )! (⌦ , A⌦ ) = (A⌦ ,⌦ ) = ( ,⌦�1A⌦ )

and in this limited sense, A! ⌦�1A⌦.

3.2 Continuous symmetries, Generators

Consider a family of unitary transformations, U(s), where s is a real number in-
dexing the unitary operators. We assume U(0) = 1, the identity operator. Fur-
thermore, assume U(s) is continuous, di↵erentiable. Then expanding about zero,

U(✏) = 1 + i✏T +O(✏2) (3.1)

U(✏)†U(✏) = 1 = (1� i✏T †)(1 + i✏T ) +O(✏2) ) T † = T (3.2)

iT ⌘ dU(s)

ds

����
s=0

(3.3)

The operator T is called a symmetry generator.
Now, the product of N transformations is a transformation, so consider

⇣
1 + i

s

N
T
⌘N

In the limit N !1,
�
1 + i s

N T
�
is unitary , and therefore so is

�
1 + i s

N T
�N

. This
is a vulgarized version of the exponential map,

U(s) = lim
N!1

⇣
1 + i

s

N
T
⌘N

= eisT .

Note that
U(s)†U(s) = e�isT eisT = 1 ,

as it should. Also, A! U(s)†AU(s) becomes, for s = ✏ infinitesimal,

A! A+ i✏[A, T ] or �A = i✏[A, T ] .
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A symmetry of the Hamiltonian has

U(s)†HU(s) = H ) [H,T ] = 0 .

Since for any operator (in the Heisenberg picture)

i
dA

dt
= [H,A] + i

@A

@t

we have that a symmetry generator T is a constant, dT/dt = 0 (T (t) has no
explicit time dependence). Conversely a constant hermitian operator T defines a
symmetry:

dT/dt = 0 ) [H,T ] = 0 ) e�isTHeisT = H .

Let’s connect this to symmetries of a Lagrangian density (or, more precisely, of
the action integral).

3.3 Noether’s Theorem

Consider a Lagrangian L(t) =
R
d3xL(�a, @µ�a), where the Lagrangian density is

a function of N real fields �a, a = 1, . . . , N . We investigate the e↵ect of a putative
symmetry transformation

�a ! �0a = �a + ��a, where ��a = ✏Dab�b,

with ✏ an infinitesimal parameter and (D�)a = Dab�b is a linear operator on the
collection of fields (and may contain derivatives). Consider then L(�0a, @µ�0a).
Suppose that by explicit computation we find

�L = L(�0)� L(�) = ✏@µFµ ,

that is, that the variation of the Lagrangian density vanishes up to a derivative, the
divergence of a four-vector. We do not require that the variation of L vanishes since
we want invariance of the action integral, to which total derivatives contribute only
vanishing surface terms. For any variation ��, not necessarily of the form displayed
above,

�L =
@L
@�a

��a +
@L

@(@µ�a)
@µ��

a .

If �a are solutions to the equations of motion, the first term can be rewritten and
the two terms combined,

�L = @µ

✓
@L

@(@µ�a)

◆
��a +

@L
@(@µ�a)

@µ��
a = @µ

✓
@L

@(@µ�a)
��a

◆
.
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Using the variation that by assumption vanishes up to a total derivative we have

@µFµ = @µ

✓
@L

@(@µ�a)
Dab�b

◆

so that

Jµ =
@L

@(@µ�a)
Dab�b � Fµ satisfies @µJ

µ = 0 .

This is Noether’s theorem. Note that this can be written in terms of a generalized
momentum conjugate, Jµ = ⇡aµD

ab�b � Fµ. Since Jµ is a conserved current, the
spatial integral of the time component is a conserved “charge,”

T =

Z
d3xJ0 has

dT

dt
= 0 .

The conserved charge is nothing but the generator of a continuous symmetry. We
can show from its definition that it commutes with the Hamiltonian.

Let’s look at some examples:

Translations The transformation is induced by xµ ! xµ + ✏aµ. Clearly

�L = ✏aµ@µL ) Fµ = aµL .

But L = L(x), is a function of xµ only through its dependence on �a(x), so

��a = ✏aµ@µ�
a ) Jµ

(a) = ⇡aµa⌫@⌫�
a � aµL = a⌫(⇡

aµ@⌫�a � ⌘µ⌫L) .

Since a⌫ is arbitrary, we can choose it to be alternatively along the direction of
any of the four independent directions of space-time, and we then have in fact four
independently conserved currents:

Tµ⌫ = ⇡aµ@⌫�a � ⌘µ⌫L

This is the energy and momentum tensor, also known as the stress-energy tensor.
The first index refers to the conserved current and the second labels which of the
four currents.

The conserved “charges” are

Pµ =

Z
d3xT 0µ .

They are associated with the transformation x ! x + a and hence they are mo-
menta. For example,

P 0 =

Z
d3x(⇡a�a � L) =

Z
d3xH = H
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as expected.
Example: In our Klein-Gordon field theory

L = 1

2

(@µ�)
2 � 1

2

m2�2 (3.4)

⇡µ =
@L

@(@µ�)
= @µ� (3.5)

) Tµ⌫ = @µ�@⌫�� ⌘µ⌫L (3.6)

We can verify this is conserved, by using equations of motion,

@µT
µ⌫ = @2�@⌫�+ @µ�@⌫@µ�� @⌫(1

2

(@µ�)
2 � 1

2

m2�2)

= �m2�@⌫�+ @µ�@⌫@µ�� @µ�@⌫@µ�+m2�@⌫�

= 0

Compute now the conserved 4-momentum operator in terms of creation and anni-
hilation operators. For the temporal component, P 0 = H, the computation was
done in the previous chapter. For the spatial components we have

P i =

Z
d3xT 0i =

Z
d3x (⇡@i�� ⌘0iL) =

Z
d3x⇡@i�

so that

P i =

Z
d3x @t�@

i�

=

Z
d3x

Z
(dk0)(dk) [(�iE~k 0)(↵~k 0e

�ik0·x � ↵†
~k 0e

ik0·x)][(�iki)(↵~k e
�ik·x � ↵†

~k
eik·x)]

=

Z
(dk0)(dk) (�iE~k 0)(�iki)

h⇣
(2⇡)3�(3)(~k 0 + ~k )↵~k 0↵~k e

�i(E
~

k

0+E
~

k

)t + h.c.
⌘

�
⇣
(2⇡)3�(3)(~k 0 � ~k )↵~k 0↵

†
~k
e�i(E

~

k

0�E
~

k

)t + h.c.
⌘i

=
1

2

Z
(dk)ki

h
↵~k↵�~k

e�2iE
~

k

t + ↵†
~k
↵†
�~k

e2iE~

k

t + ↵†
~k
↵~k + ↵~k↵

†
~k

i

In the last line the first two terms are odd under ~k ! �~k so they vanish upon
integration and we finally have

P i =

Z
(dk) 1

2

ki
⇣
↵†
~k
↵~k + ↵~k↵

†
~k

⌘
=

Z
(dk)ki↵†

~k
↵~k .

It follows that
[~P ,↵†

~k
] = ~k↵†

~k
so that Pµ|~k i = kµ|~k i .
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Lorentz Transformations The transformation of states was introduced earlier,
U(⇤)|~pi = |⇤~pi. Assuming the vacuum state is invariant under Lorentz trans-

formations we then may take U(⇤)↵†
~pU(⇤)† = ↵†

⇤~p and U(⇤)↵~pU(⇤)† = ↵
⇤~p .

Therefore

U(⇤)�(x)U(⇤)† = �(⇤x) or U(⇤)†�(x)U(⇤) = �(⇤�1x)

Let ⇤µ
⌫ = �µ⌫ + ✏!µ

⌫ with ✏ infinitesimal. Then !µ⌫ = �!⌫µ, and therefore
has 4 ⇥ 3/2 = 6 independent components, three for rotations (!ij) and three for
boosts (!0i). We assume L = L(�, @µ�) is Lorentz invariant. What does this
mean? For scalar fields �(x) ! �0(x) = �(⇤�1x) = �(x0) and by the chain rule
@µ�(x0) = @µx0�@0��(x

0) = (⇤�1)�µ@0��(x
0) = ⇤µ

�@0��(x
0), which gives

L(�, @µ�)! L0 = L(�0(x), @µ�0(x)) = L(�(x0), @µ�(x0)) = L(�(x0),⇤µ
�@0��(x

0)) .

Invariance means L0 has the same functional dependence as L but in terms of x0,
that is, L is a scalar, L(x)! L0(x) = L(x0). This gives

L(�(x0),⇤µ
�@0��(x

0)) = L(�(x0), @0µ�(x0)) .

For example, ⌘µ⌫@µ�@⌫� ! ⌘µ⌫⇤µ
�⇤⌫

�@0��@
0
�� = ⌘��@0��@

0
�� works, but not so

aµ@µ� for constant vector aµ since aµ does not transform (it is a fixed constant).
We assume L is Lorentz invariant and compute:

�� = �(xµ � ✏!µ
⌫x

⌫)� �(xµ) = �✏!µ
⌫x

⌫@µ� = �✏!µ⌫x⌫@µ�

�L = �✏!µ⌫x⌫@µL = � [@µ(✏!
µ⌫x⌫L)� ✏!µ⌫⌘µ⌫L] = �@µ(✏!µ⌫x⌫L)

and then the conserved currents are

Jµ
(!) = �⇡

µ!��x�@��+ !µ⌫x⌫L

= �!��(⇡µx�@��� �µ�x�L)

or, since !µ⌫ is arbitrary, we have six conserved currents,

Mµ⌫� = (⇡µx⌫@� � ⌘µ�x⌫L)� ⌫ $ �

= x⌫Tµ� � x�Tµ⌫ .

This has

M⌫� =

Z
d3xM0⌫�

as generator of rotations (M ij) and boosts (M0i).
Comments:
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(i) The expression for Mµ⌫� is specific for scalar fields since we have used
U †(⇤)�(x)U(⇤) = �(⇤�1x). This defines scalar fields. We expect, for ex-
ample, that a vector field, Aµ(x) will transform like @µ�(x),

U †(⇤)Aµ(x)U(⇤) = ⇤µ
�A�(⇤

�1x) or U(⇤)†Aµ(x)U(⇤) = ⇤µ
�A

�(⇤�1x)

Then

�Aµ = (�µ⌫ + ✏!µ
⌫)A(x� � ✏!�

�x
�)�Aµ(x)

= �✏
⇥
!�

�x
�@�A

µ

| {z }
as before

� !µ
⌫A

⌫

| {z }
new term

⇤

This then gives a new term in Jµ
(!) of the form @L

@(@
µ

A
⇢

)

(!⇢⌫A⌫) leading to an

additional term in Mµ⇢⌫ ,

�Mµ⇢⌫ =
@L

@(@µA⇢)
A⌫ � @L

@(@µA⌫)
A⇢

=
@L

@(@µA�)
A�(�⇢��

⌫
� � �⇢��⌫�) (3.7)

There is a generalization of the matrices (I⇢⌫)�� = �⇢��
⌫
�� �

⇢
��⌫� to the case of

fields other than vectors, that is, fields that have other Lorentz transforma-
tions, like spin1

2

fields. The generalization has (I⇢⌫)�� ! (I⇢⌫)ab, where ⇢⌫
labels the matrices and ab give the specific matrix elements with a, b running
over the number of components of the new type of field. The matrices I⇢⌫

satisfy the same commutation relations as M⇢⌫ . We will explore this in more
detail later. For now, the important point is that physically we have a clear
interpretation:

Mµij = xiTµj � xjTµi

| {z }
orbital ang mom ✏ijkLk

+ �Mµij
| {z }

intrinsic ang mom (spin) ✏ijkSk

(ii) The conserved quantities M ij are angular momentum. What are M0i? To
get some understanding consider a classical “field” for point particles, with

T 0i =
X

n

pin�
(3)(~x � ~xm(t)) so that P i =

X

n

pin .

Then we can compute

M ij =

Z
d3x (xjT 0i � xiT 0j) =

X

n

(xinp
j
n � xjnp

i
n) = ✏ijk

X

n

Lk
n
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as expected. Turning to the mysterious components,

M0i =

Z
d3x (x0T 0i � xiT 00) = x0P i �

Z
d3xxiT 00

We can now see what conservation of M0i, namely dM0i

dt = 0, gives:

0 = P i � d

dt

Z
d3xxiT 00

The quantity
R
d3xxiT 00 is a relativistic generalization of center of mass,

say, a “center of energy.” This can be seen from T 00 being an energy density,
so that when all particles are at rest it corresponds to the mass density. So
conservation of M0i means that the center of energy motion is given by the
total momentum. This is the relativistic analogue of ~P = M ~V where ~P is
the total momentum of the system, M its total mass and ~V the velocity of
the center of mass. In the relativistic case we have that

P i

P 0

= velocity of “C.M.” =
d
dt

R
d3xxiT 00

P 0

That the “C.M.” moves with a constant speed is a relativistic conservation
law.

3.4 Internal Symmetries

We have discussed symmetries that have to be present in any of the models we
will care about: invariance under translations and under Lorentz transformations,
or Poincare invariance. These symmetries transform fields at one space-time point
to fields at other space-time points. In this sense they are geometrical. But there
may be, in addition, symmetries that transform fields at the same space-time point.
These are not generic, they are specific to each model. They are called internal
symmetries. The name comes from the associated conserved quantities giving
“internal” characteristics fo the particles. For example, baryon number or isotopic
spin are symmetries and they are associated with the baryon number or the isotopic
spin of particles.

Let’s study a simple example. Consider a model with two real scalar fields,

L =
2X

n=1

1

2

@µ�n@µ�n � V (
2X

n=1

�2n)

This satisfies L(�0n) = L(�n) where

�0
1

(x) = cos ✓�
1

(x)� sin ✓�
2

(x)

�0
2

(x) = sin ✓�
1

(x) + cos ✓�
2

(x)
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or more concisely

~� 0 = R~�, where ~� =

✓
�
1

(x)
�
2

(x)

◆
and R =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
(3.8)

so that invariance is just the statement that the length of a two dimensional vector
is invariant under rotations, (R~r) · (R~r) = ~r · ~r. Note that RTR = 1. The set
of symmetry transformations form a group, O(2); the rotations given explicitly in
(3.8) have determinant +1 and tehy form the group SO(2). For this discussion we
focus on transformations that can be reached from 1 continuously, so we restrict
our attention to SO(2). Setting ✓ = ✏ infinitesimal in (3.8),

R = 1 + ✏

✓
0 �1
1 0

◆
= 1 + ✏D and ��n = ✏Dnm�m

Under this transformation �CL = 0. By Noether’s theorem

Jµ = ⇡µnDnm�m = ⇡µ
2

�
1

� ⇡µ
1

�
2

= �
1

@µ�
2

� �
1

 �
@ µ�

2

⌘ �
1

 !
@ µ�

2

is a conserved current.
To check that the current is conserved we need equations of motion,

@2�n + 2V 0�n = 0

Then
@µJµ = �

1

@2�
2

� (@2�
1

)�
2

= �
1

(2V 0�
2

)� (2V 0�
1

)�
2

= 0

The conserved charge is

Q =

Z
d3x (�

1

@t�2 � �2@t�1) =
Z

d3x (�
1

⇡
2

� �
2

⇡
1

) (3.9)

For the QFT at a fixed time, say t = 0, we have (equal-time) commutation relations

i[⇡n(~x),�m(~x 0)] = �nm�
(3)(~a � ~x 0)

and the others (�-� and ⇡-⇡) vanish. It follows that

[Q,�
1

(~x)] =

Z
d3x0 [�

1

(~x 0)⇡
2

(~x 0)� �
2

(~x 0)⇡
1

(~x 0),�
1

(~x)] = i�
2

(~x)

and similarly
[Q,�

2

(~x)] = �i�
1

(~x) .

Together

[Q,�n(~x)] = �iDnm�m(~x) = �i1
✏
��n(~x) or ��n(~x) = i✏[Q,�n(~x)] .



44 CHAPTER 3. SYMMETRIES

Since Q is time independent (commutes with H), ��n(~x, t) = i✏[Q,�n(~x, t)].
This is in fact a very general result: if ��n = Dnm�m is a symmetry of L then

the Noether charge Q associated with it has, in the QFT, ��n(~x, t) = i[Q,�n(~x, t)].
In order to better understand the physical content of this conserved charge,

let’s solve the eigensystem for D:
✓
0 �1
1 0

◆
� = �� ) � =

1p
2

✓
1
±i

◆

Therefore we define the field

 =
�
1

� i�
2p

2

We do not define a separate field for �1+i�2p
2

since this is just  † (classically this

would be  ⇤, but recall we are dealing with operators in the quantum theory).
Then,

[Q, ] = 1p
2

(i�
2

� i(�i�
1

)) = � and [Q, †] = 1p
2

(i�2 + i(�i�
1

)) =  †

So  has charge �1 while  † has charge +1. This is better seen from the rotation
by a finite amount,

 ! 1p
2

[(cos ✓�
1

� sin ✓�
2

)� i (sin ✓�
1

+ cos ✓�
2

)]

= cos ✓

✓
�
1

� i�
2p

2

◆
� i sin ✓

✓
�
1

� i�
2p

2

◆

or simply
 ! e�i✓ and  † ! ei✓ † (3.10)

displaying again that  ( †) has charge +1(�1). The set of transformations by
unitary n ⇥ n matrices form a group, U(n). The transformations in (3.10) are by
1⇥ 1 unitary matrices (the phases ei✓). So the symmetry group is U(1). Since we
already knew the symmetry group is SO(2) we see that these groups are really the
same ( isomorphic). In terms of  the classical Lagrangian density is

L = @µ 
⇤@µ � V ( ⇤ )

exhibiting the symmetry under (3.10) quite explicitly.
We can get some further insights by inspecting the action of Q on states. For

this we need to expand the fields in terms of creation and annihilation operators
but we do not know how to do that for interacting theories (that is, for general
“potential” V ), nor do we know how to do that for complex fields  . So let’s take
V = 1

2

m2(�2
1

+ �2
2

) and analyze in terms of real fields. We have

�n(x) =

Z
(dk)

⇣
e�ik·x↵~k ,n

+ eik·x↵†
~k ,n

⌘
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Plugging this in (3.9) and computing we get

Q = i

Z
(dk)

⇣
↵†
~k ,2
↵~k ,1

� ↵†
~k ,1
↵~k ,2

⌘

If we label the particles by an “internal” quantum number, |~k , 1i = ↵†
~k ,1

|0i and
|~k , 2i = ↵†

~k ,2
|0i, then

Q|~k , 1i = i|~k , 2i, Q|~k , 2i = i|~k , 1i

just like the transformation of the fields. This gives relations between probability
amplitudes. For this it is important that [Q,H] = 0 (which we know holds, but
you can verify explicitly for Q and H in terms of creation/annihilation operators).
The relation obtained by an infinitesimal transformation is of the form

h f |eiHt (Q| ii) = (h f |Q) eiHt| ii

relating the amplitude for Q| ii to evolve into | f i in time t, to the amplitude for
| ii to evolve into Q| f i in the same time. The finite rotation version of this is

h f |eiHt| ii = h f |eiHte�i✓Qei✓Q| ii = h f |e�i✓QeiHtei✓Q| ii = h 0
f |eiHt| 0

ii

where | 0i = ei✓Q| i.
Going back to complex fields we have

 (x) =

Z
(dk)

2

666664

0

@
↵~k ,1

� i↵~k ,2p
2

1

A e�ik·x +

0

@
↵†
~k ,1
� i↵†

~k ,2p
2

1

A

| {z }
6= h.c. of the first term

eik·x

3

777775

=

Z
(dk)

⇣
b~k
e�ik·x + c†~k

eik·x
⌘

 †(x) =

Z
(dk)

⇣
c~k
e�ik·x + b†~k

eik·x
⌘

Notice that

[b~k
, b†~k 0 ] = [c~k

, c†~k 0 ] = 2E~k
(2⇡)3�(3)(~k 0 � ~k ) [b~k

, b~k 0 ] = [c~k
, c~k 0 ] = 0

So these are also creation and annihilation operators, but the one particle states
they create are not |~k , 1i or |~k , 2i, but rather superpositions,

|~k ,+i = b†~k
|0i = 1p

2
(|~k , 1i+ i|~k , 2i), and |~k ,�i = c†~k

|0i = 1p
2
(|~k , 1i � i|~k , 2i),
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It is straightforward to get Q in terms of these operators,

↵†
2

↵
1

� ↵†
1

↵
2

= i
2

(b† + c†)(�b+ c)�
�
� i

2

�
(�b† + c†)(b+ c) = �i(b†b� c†c)

so that

Q =

Z
(dk) (b†~k

b~k
� c†~k

c~k
) = N

+

�N�

where N
+

(N�) counts the number of particles of charge +(�), so that the total
charge Q = N

+

�N� is conserved.
While complex fields can always be recast in terms of pairs of real fields, they

can be very useful! So let’s discuss briefly the formulation of a field theory directly
in terms of  and  †. Given L( , ⇤, @µ , @µ ⇤) (say, as above), how do we obtain
the equations of motion? We can do this by varying �

1

and �
2

independently,
but how do we make a variation with respect to a complex field? The seemingly
dumbest thing to do is to forget that  ⇤ is not independent and vary with respect
to both  and  ⇤ (as if tehy were independent). Surprisingly this works. The
general argument is this. Suppose you want to find the extremum of a real function
F (z, z⇤),

�F = f�z + f⇤�z⇤ ,

for some f . If we naively treat �z and �z⇤ as independent we obtain the conditions
f = 0 = f⇤. To do this correctly we write z = x+ iy. For fixed y, �z⇤ = �z so that
f + f⇤ = 0; for fixed x, �z⇤ = ��z so that f � f⇤ = 0. Combining these conditions
we obtain f = f⇤ = 0. This is true for any number, even a continuum, of complex
variables. So the equations of motion read

@µ
@L

@(@µ )
� @L
@ 

= 0 = @µ
@L

@(@µ ⇤)
� @L
@ ⇤

Example:
L = @µ 

⇤@µ �m2 ⇤ 

We have
@L

@(@µ ⇤)
= @µ ,

@L
@ ⇤ = �m2 

so that
(@2 +m2) = 0 .

This is in accord with the above expansion in terms of plane waves. The real and
imaginary parts of  satisfy the Klein-Gordon equation. For the Poisson brackets
we need the momentum conjugate to  ,

⇡ =
@L

@(@t )
= @t 

⇤ .
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Then the equal-time commutation relation in the QFT is

i[⇡(~x), (~x 0)] = �(3)(~x � ~x 0) ) i[@t 
†(~x), (~x 0)] = �(3)(~x � ~x 0) .

The commutation relation for  † and its conjugate momentum is just the hermitian
conjugate of this relation.

Internal symmetries: a non-abelian symmetry example Take now a gen-
eralization of the previous example, with N real scalar fields, �n(x), with n =
1, . . . , N , and assume L(�0) = L(�) where �0n = Rnm�m with Rnm real and
RnlRml = �nm, or, in matrix notation, �0 = R� with RTR = RRT = 1. For
example,

L = 1

2

@µ�n@
µ�n � V (�n�n) =

1

2

@µ�
T@µ�� V (�T�)

where in the second step we have rewritten the first expression in matrix form. Note
that the set of matrices R that are continuously connected to 1 form the group of
special orthogonal transformations, SO(N). With R = 1 + ✏T , ✏ infinitesimal, the
condition RTR = 1 gives T T + T = 0. That is T is a real antisymmetric and real:
there are 1

2

N(N � 1) independent such matrices. For example, for N = 2, there is
only one such matrix,

T =

✓
0 �1
1 0

◆

as in our first example. For N = 3 there are three independent matrices which we
can take to be

T 12 =

0

@
0 1 0
�1 0 0
0 0 0

1

A , T 13 =

0

@
0 0 �1
0 0 0
1 0 0

1

A , T 23 =

0

@
0 0 0
0 0 1
0 �1 0

1

A .

Here “12” is a label for the matrix T 12, etc. We could as well label the matrices
T a with a = 1, 2, 3, with (T a)mn = ✏amn. In the general case take

(T ij)kl = �ik�
j
l � �

i
l�

j
k

Then Jµ = (⇡µ)TD� is a set of 1

2

N(N � 1) conserved currents

Jmn
µ = @µ�

TTmn� = @µ�k(T
mn)kl�l = @µ�m�n � @µ�n�m = �n

 !
@µ�m

The matrices Tmn don’t all commute with each other, so we cannot find simulta-
neous eigenstates to all of them. We will have more to say about this later and in
homework.

Notice the similarity between Jµmn and �Mµ⌫�. In both cases we have the
derivative of a field times the field. Notice also the similarity between the numerical
coe�cients, the matrices (Tmn)kl and (I⇢⌫)�� encountered in (3.7). This is not an
accident. The currents Jµmn generate SO(N) rotations among the fields �n while
�Mµ⌫� generate SO(1, 3) “rotations” among the fields Aµ.
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1

U(s)

K
0

U(s)K
0

J
0

U(s)J
0

Figure 3.1: Disconnected components of a group of symmetry transformations

3.5 Discrete Symmetries

Not every symmetry transformation is continuously connected to the identity. Ex-
ample,

L = 1

2

(@µ�)
2 � V (�2) is invariant under �(x)! �0(x) = ��(x) (3.11)

More genrally we can have both transformations that are continuously con-
nected to the identity and transformations that are not. The situation is depicted
in Fig. 3.1. The three regions shown form together this example of a group G.
One of the disconnected components contains a transformation, K

0

that cannot
be reached from 1 by a continuous transformation. By definition the connected
component of 1 contains transformations U(s) that are continuous functions of s
and satisfy U(0) = 1. We can get to all the elements of G that are in the connected
component of K

0

by U(s)K
0

(stated without proof). Likewise, the other discon-
nected component contains a reference element J

0

and all elements are obtained
by taking U((s)J

0

. Since we already understand the physical content of U(s) it
su�ces to look at a discrete set of symmetry transformations, one per disconnected
component, in order to understand this type of group of transformations. These
are the discrete symmetries we consider now.

Going back to the example in 3.11, we can introduce a unitary operator K such
that K†�(x)K = ��(x), K†K = KK† = 1. Note that

K†(K†�(x)K)K = �(x) ) K2 = 1) K�1 = K† = K
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1
(✓ = 0)

�1
(✓ = ⇡)

R(✓)

✓
K

(✓ = 0)
�K
(✓ = ⇡)

R(✓)K

✓

Figure 3.2: Disconnected components of SO(2) ⇡ U(1)

that is K is hermitian. Strictly speaking we did not show that K2 = 1, since
we could as well have K2 = ei↵; but we are free to choose the transformation
and we make the most convenient choice. Clearly K†a~k

K = �a~k , K†a†~k
K =

�a†~k , so assuming the vacuum is symmetric, K|0i = |0i, we have K|~p
1

, . . . , ~pni =
(�1)n|~p

1

, . . . , ~pni. Since n is just the number of particles in the state we can write
a representation of K in terms of the number operator, K = (�1)N . Note that we
may not have an explicit representation of N in terms of creation and annihilation
operators, as in N =

R
(dk) a†~k

a~k
, because the potential V (�2) generically produces

non-linearities (“interactions”) in the equation of motion (the case V (�2) = 1

2

m2�2

is special). Still, it is still true that K = (�1)N , but the number of particles is not
conserved. Since K†HK = H, K is conserved, number of particles, N , is conserved
mod 2. That means that evolution can change particle number by even numbers;
for example, if we call the particle the “chion”, �, then we can have a reaction
� + � ! � + � + � + � but not � + � ! � + � + �. Likewise 2� ! 84� and
3� ! 11� are allowed, but not 7� ! 16�. The transformations K and K2 = 1
form a group, G = {1,K}, isomorphic to Z

2

.

3.5.1 Charge Conjugation (C)

Above we saw the example of a Lagrangian with two real fields,

L =
2X

n=1

1

2

@µ�n@µ�n � V (
2X

n=1

�2n) = @µ 
⇤@µ � V ( ⇤ )

which is invariant under �n(x) ! ��n(x). But this is not new, it is an SO(2)
transformation, a rotation by angle ⇡:

✓
�
1

(x)
�
2

(x)

◆
!

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆����
✓=⇡

✓
�
1

(x)
�
2

(x)

◆
=

✓
�1 0
0 �1

◆✓
�
1

(x)
�
2

(x)

◆

In terms of the complex field  ! ei⇡ = � . The more general form of a
transformation by a matrix R that preserves the form of the Lagrangian requires
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only that R be a real orthogonal matrix, that is, that it satisfies RTR = RRT =
1. This implies det(R) = ±1; the matrices R(✓) with det(R(✓)) = +1 are the

rotations, elements of SO(2). For each of them R(✓)K with K =

✓
1 0
0 �1

◆
is a

matrix with negative determinant, an element of O(2) that is not in SO(2). This
is shown in Fig. 3.2, where the left disconnected component is SO(2) and the two
components together form O(2).

So let’s study K. It is just like above, with K = (�1)N2 , and for the linear

Klein-Gordon theory N
2

=
R
(dk)a†~k ,2

a~k ,2
. In terms of the complex field, K†(�i �

i�
2

)K = �i + i�
2

, so that  !  †, that is, K acts as hermitian conjugation.
Since  carries charge,  !  † conjugates charge. Hence the name,

K†QK = �Q charge conjugation

Recall also that b = (a
1

� ia
2

)/
p
2 and c = (a

1

+ ia
2

)/
p
2; hence K†b~kK = c~k

and K†c~kK = b~k . Since b† (c†) creates particles with charge +1(�1) the action
of K is to exchange one particle states of charge +1 with one particle states of
charge �1. We refer to the Q = +1 states as particles and to the Q = �1 states
as anti-particles, and what we have is that charge conjugation exchanges particles
with antiparticles.

In the generic case charge conjugation C has C|particlei = |antiparticlei and
one still has C2 = 1 and C�1 = C† = C.

3.5.2 Parity (P )

A familiar discrete symmetry in particle mechanics is space inversion,

~x ! �~x

It’s QFT version is called parity. This is di↵erent than the above in that it acts
on xµ. It is part of the Lorentz group, an orthochronous Lorentz transformation
(⇤0

0

> 0) with det⇤ = �1. As we saw earlier, there are four disconnected compo-
nents of the Lorentz group. And we want representatives from each component:

(i) ⇤ = diag(1, 1, 1, 1), ⇤0

0

> 0, det⇤ = +1 Identity

(ii) ⇤ = diag(�1, 1, 1, 1), ⇤0

0

< 0, det⇤ = �1 Time Reversal (T , t! �t)

(iii) ⇤ = diag(1,�1,�1,�1), ⇤0

0

> 0, det⇤ = �1 Parity (P , ~x ! �~x)

(iv) ⇤ = diag(�1,�1,�1,�1), ⇤0

0

< 0, det⇤ = +1 PT (xµ ! �xµ)
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We’ll consider T in the next section.
Consider again the Lagrangian in (3.11). Notice that it satisfies L(�0) = L(�)

with �0(~x, t) = �(�~x, t). But we could just as well take �0(~x, t) = ��(�~x, t). If
L has an internal symmetry under � ! U †�U and under a parity transformation
� ! U †

P�UP , then eUP = UUP (and also UPU) defines an equally good parity

symmetry transformation, �! eU †
P�

eUP .
Terminology: if �(~x, t) ! �(�~x, t) is a symmetry we say that � is a scalar

field, as opposed to if �(~x, t) ! ��(�~x, t) a symmetry, in which case we say it is
a pseudo-scalar field. If both are symmetries the distinction is immaterial .

The action of parity on states easily understood in terms of creation and anni-
hilation operators (applicable to Klein-Gordon theory, but the result applies more
generally):

U †
P�(~x, 0)UP = �(�~x, 0) )

Z
(dk)

⇣
U †
P↵~kUP e

i~k ·~x + h.c.
⌘
=

Z
(dk)

⇣
↵~k e

�i~k ·~x + h.c.
⌘

) U †
P↵

†
~k
UP = ↵†

�~k
) UP |~k 1

, . . . ,~k ni = |� ~k
1

, . . . ,�~k ni

More generally, L is symmetric under parity if it is invariant under a transfor-
mation of the form

�n(~x, t)! �0n(~x, t) = Rnm�m(�~x, t) n,m = 1, . . . , N

for some real matrix R.
Examples:

(i) L = 1

2

(@µ�)2 � V (�2) is P and Z
2

invariant.

(ii) L = 1

2

(@µ�)2� 1

2

m2�2�g�3 is P invariant with � a scalar (but not a pseudo-
scalar).

(iii) Pions are known to be pseudo-scalars. Here is an example related to ⇡0 ! ��.
It involves the 4-vector potential A� for the electro-magnetic field ( ~E =
�@

0

~A� ~rA
0

, ~B = ~r⇥ ~A):

L = 1

2

(@µ�)
2 � 1

2

m2�2 + g�✏µ⌫��@µA⌫@�A�

where ✏0123 = +1 is the totally antisymmetric 4-index symbol. You may
recall that under parity ~A(~x, t) ! � ~A(�~x, t) and A

0

(~x, t) ! A
0

(�~x, t). If
you do not recall you can either look at Maxwell’s equations or you can take a
shortcut: from minimal substitution, ~r ! ~r�e ~A one must have ~A transform
as ~r, and by Lorentz invariance also A

0

as @
0

. Then the interaction term
contributes one of @

0

or A
0

and thee of @i or Ai, so ✏µ⌫��@µA⌫@�A� is odd
under P . Hence L is P symmetric only if � is a pseudo-scalar, �(~x, t) !
�(�~x, t). Note that the conclusion is unchanged if A� is a pseudo-vector,
that is, if ~A(~x, t)! ~A(�~x, t) and A

0

(~x, t)! �A
0

(�~x, t) under P .
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(iv) Add h�3 to the previous example. Now there is no possibility of defining
parity that leaves L invariant.

(v) Consider

L =
X

1,2

�
1

2

(@µ�n)
2 � 1

2

m2�2n
�
+ g✏µ⌫��@µA⌫@�A�(�

2

1

��2
2

)+h(�3
1

�
2

��
1

�3
2

) .

This is symmetric under the parity transformation

�
1

(~x, t)! ��
2

(�~x, t)
�
2

(~x, t)! �
1

(�~x, t)

In this example (U †
P )

2�n(~x, t)U2

P = ��n(~x, t). It is not true that U2

P = 1 in
general (although for common applications it is).

Remark: in the examples above you may feel cheated by the introduction of
4-vector fields, since we have not discussed them in any length. You may instead
replace ✏µ⌫��@µA⌫@�A� ! ✏µ⌫��@µ�1@⌫�2@��3@��4, for which you need four ad-
ditional fields. By itself this term in the Lagrangian does not give rise to any
dynamics since it is a total derivative. But when multiplied by a function of yet
another field it is no longer a total derivative and gives a non-trivial contribution
to equations of motion. So consider

L =
5X

n=1

1

2

(@µ�n)
2 � g�

5

✏µ⌫��@µ�1@⌫�2@��3@��4 .

Under P , �n(~x, t) ! (�1)⇡n�n(�~x, t) and the interaction term transforms by a
factor of �(�1)

P
n

⇡
n .

3.5.3 Time Reversal (T )

In classical mechanics t ! �t is not a symmetry. If L = L(t) only though its
dependence on q = q(t) and q̇ = q̇(t), then while L(t)! L(�t) is form invariant, so
that q(�t) is a solution of equations of motion, the boundary conditions q(t

1

) = q
1

and q(t
2

) = q
2

break the symmetry. This simply means that if L has no explicit
time dependence and the motion of q(t) from t

1

to t
2

with q(t
1

) = q
1

and q(t
2

) = q
2

is allowed, then so is q(�t) from q(�t
2

) to q(�t
1

):

t

q

t
1

t
2

t

q

�t
1

�t
2
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We’d like to aim for something analogous in QM: an operator that takes a
solution of the equation of motion to another,

U�1

T q(t)UT
?

= q(�t)

However, if UT is a unitary operator we encounter contradictions:

(i) Since we want U�1

T q̇(t)UT
?

= �q̇(�t), then U�1

T p(t)UT
?

= �p(�t). Then

U�1

T [q(t), p(t)]UT
?

=

(
U�1

T iUT = i if commutator is computed first

[q(�t),�p(�t)] = �i if UT applied to operators first

(ii) For any operator, A(t) = eiHtA(0)e�iHt ⌘ eiHtAe�iHt implies

A(�t) ?

= U�1

T A(t)UT = U�1

T eiHtUTU
�1

T A(0)UTU
�1

T e�iHtUT =
�
U�1

T eiHtUT

�
A
�
U�1

T e�iHtUT

�

but this is also
A(�t) = e�iHtAeiHt .

Since this is to hold for any A, we must have,

U�1

T eiHtUT
?

= e�iHt .

For t = ✏, infinitesimal, we expand to get U�1

T (1 + i✏H)UT
?

= 1 � i✏H or

U�1

T HUT
?

= �H. This means the spectrum of H is the same of �H. If H
is not bounded from above then it is not bounded from below. This does
not seem right, that time reflection symmetry requires a negative energy
catastrophe!

The solution to these di�culties is to replace an anti-unitary transformation ⌦T

for the unitary UT . Then in (i) and (ii) above ⌦�1

T i⌦T = �i, and problem solved!
While the problem with (ii) above is resolved, it still leads to the requirement

⌦�1

T H⌦T = H T -invariance

When this is satisfied

( f , e
�iH�t i) = ( f ,⌦

�1

T eiH�t⌦T i) (�t = tf � ti)

= (⌦T⌦
�1

T eiH�t⌦T i,⌦T f )

= (eiH�t⌦T i,⌦T f )

= (⌦T i, e
�iH�t⌦T f )
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so the amplitude for  i at t = ti to evolve to  f at t = tf is the same as the
amplitude for ⌦T f at t = �tf to evolve to ⌦T i at t = �ti.

For a single free scalar field,

⌦�1

T �(~x, t)⌦T = ⌘T�(~x,�t) ,

where ⌘T = ±1 (same ambiguity by Z
2

as in case of P ). Then, if � satisfies
the Klein-Gordon equation we can expand in terms of creation and annihilation
operators and

⌦�1

T ↵~p⌦T = ↵�~p , ⌦�1

T ↵†
~p⌦T = ↵†

�~p , ) ⌦T |~k 1

, . . . ,~k ni = (⌘T )
n|�~k

1

, . . . ,�~k ni .

Notice that this is much like P . We can define a PT anti-unitary operator ⌦�1

PT�(x
µ)⌦PT =

⌘PT�(�xµ), which is simpler in that it leaves the states |~k
1

, . . . ,~k ni unchanged
(save for a factor of (⌘PT )n = (⌘P ⌘T )n).

3.5.4 CPT Theorem (baby version)

Since ⌦PT does not seem to do much, maybe any theory is invariant under PT?
Answer: no. Example, a complex scalar field with

L = @µ 
†@µ � (h 3 + h⇤ †3 + g 4 + g⇤ †4) .

Then ⌦�1

PT (h 
3(x)+g 4(x))⌦PT = h⇤ 3(�x)+g⇤ 4(�x) and the interaction part

of the Hamiltonian, H
int

=
R
d3x (h 3 + h⇤ †3 + g 4 + g⇤ †4) has ⌦�1

PTHint

⌦PT =R
d3x (h⇤ 3 + h †3 + g⇤ 4 + g †4) which is invariant only if h⇤ = h and g⇤ = g.

(Actually the condition is only (h⇤/h)4 = (g⇤/g)3, because one can redefine  !
ei↵ and choose to make g or h real, and when (h⇤/h)4 = (g⇤/g)3 both can be made
simultaneously real). But note that since U�1

C  (x)UC =  †(x), if we combine C
with PT we obtain

⌦�1

CPTH⌦CPT = H .

For this to work it was crucial that H† = H, as well as that L is Lorentz invariant.
More generally, if we have Lorentz invariance but not hermiticity of the Hamilto-
nian, we would have ⌦�1

CPTH⌦CPT = H†. For example, ifH
int

=
R
d3x (g 4+h †4)

then ⌦�1

CPTHint

⌦CPT =
R
d3x (h⇤ 4 + g⇤ †4) .

Notice that we took ⌦�1

PT (x)⌦PT =  (�x), which is natural for a complex
field: it leaves b~k and c~k unchanged, as was the case of ↵~k for real fields. The

operation that takes  (x) into  †(�x) is CPT. If ⌦�1

CPT�n(x)⌦CPT = �n(�x),
then

⌦�1

CPT

✓
�
1

(x)� i�
2

(x)p
2

◆
⌦CPT =

�
1

(�x) + i�
2

(�x)p
2

=  †(�x) .
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To obtain a PT transformation  (x)!  (�x) from the transformation of the real
fields one must have ⌦�1

PT�1(x)⌦PT = �
1

(�x) and ⌦�1

PT�2(x)⌦PT = ��
2

(�x). Of
course we are free to define anti-unitary operations from the product of a putative
⌦T and any unitary ones, say, UC or UP , and investigate then which of these may
be a symmetry of the system under consideration. But we want ⌦T to stand for
what we physically interpret as time-reversal, which does not involve exchanging
anti-particles for particles.

More generally we arrive at the following CPT theorem. Consider L to be
a Lorentz invariant function of real scalar fields �n(x) and complex scalar fields
 i(x). If H† = H then ⌦�1

CPTH⌦CPT = H. The proof should be obvious by now.

Roughly, H = H(g,�n, i, 
†
i ); H

† = H implies H = H(g⇤,�n, 
†
i , i), and

⌦�1

CPTH(g,�n, i, 
†
i )⌦CPT = H(⌦�1

CPT g⌦CPT ,⌦
�1

CPT�n⌦CPT ,⌦
�1

CPT i⌦CPT ,⌦
�1

CPT 
†
i⌦CPT )

= H(g⇤,�n, 
†
i , i)

= H(g,�n, i, 
†
i ) .

There is an implicit analysis of the monomials that sum up to H, that shows that
Lorentz invariance is su�cient to make the change xµ ! �xµ a formal invari-
ance. Note that for this it is important that the combination PT is a Lorentz
transformation with det⇤ = +1.

The CPT theorem is a surprising consequence of relativistic invariance in consis-
tent (hermitian Hamiltonian) quantum field theory. It implies, for example, that if
a theory is CP invariant (which involves unitary transformations) it automatically
is T invariant (an anti-unitary transformation). It also gives equality of properties,
like mass, of particles and anti-particles. The latter may seem trivial, but it is not
once you consider particles that are complex bound states due to srong forces (like
the proton, which by CPT has the same mass, magnitude of charge and magnetic
moment, as the anti-proton).


