
Chapter 2

Field Quantization

2.1 Classical Fields

Consider a (classical, non-relativistic) system of masses, mi, connected by springs,
so thatmi andmi+1 are connected by a spring with spring constat ki. In equilibrium
the masses all lie on a straight line, and the distance between masses mi and
mi+1 is `i. The masses are free to move only on a fixed direction perpendicular
to this straight line. This is shown in the figure below. We are free to use a
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coordinate system to describe the positions of the masses with the x-axis along
the equilibrium straight line and the y-axis the transverse direction in which the
masses are constrained to move. The i-th mass has coordinates �xi. To describe
the dynamics of this system we construct the Lagrangian,

L = L(ẏi, yi) =�
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so that, dropping the irrelevant constant
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We are interested in this system in the limit that we cannot resolve the indi-
vidual masses, so by our measuring apparatus the system appears as a continuum.
Mathematically we want to take the limit `i → 0 and describe the displacement of
the system from the x-axis at some point x along the axis, at time t, by a function
⇠(x, t). This function is called a field. Since the displacement is yi at position xi
along the axis, we identify yi(t)→ ⇠(xi, t). Note that while xi is used classically as
a coordinate of a particle, in ⇠(x, t) it is just a label telling us where we are mea-
suring the displacement ⇠. This is an important point, so I dwell on it a bit, since
first time students of quantum field theory often get confused with the role of x in
the argument of a field. The field value itself can be measuring something other
than displacement. For example, it could be temperature or pressure, or electric
field. The argument x, or in the three-dimensional case �x of a field indicates where
the field has a particular value. So x (or �x) is not a dynamical variable, but ⇠ is.

To rewrite the Lagrangian in terms of the field, use

yi+1 − yi → ⇠(xi + `i, t) − ⇠(xi, t) = `i
@⇠

@x
�
x=x

i

+� ,

where the ellipses stand for terms with higher powers of `i, and ẏi → @⇠
@t �x=x

i

.

Multiplying and dividing by `i and interpreting `i = xi+1 − xi as the �x, we have
then

L =�
i
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where the derivatives are evaluated at x = xi. We take the limit `i → 0 keeping the
ratio mi�`i and the product ki`i finite. These fixed ratio and product then can be
characterized with functions �(x) and (x) (with �(xi) = mi�`i and (xi) = ki`i
in the limiting process. Of course, the sum becomes an integral and we have

L = � dxL = � dx �1
2
�(x)�@⇠

@t
�
2

− 1

2
(x)�@⇠

@x
�
2

� .

The function L = L(@t⇠,@x⇠, ⇠, x, t) is called a Lagrangian density. This is our
first example of a field theory. The dynamics of the field ⇠(x, t) is specified by the
Lagrangian density

L = 1

2
�(x)�@⇠

@t
�
2

− 1

2
(x)�@⇠

@x
�
2

.

In no time we will get tired of saying “Lagrangian density” so, as is commonly
done in practice, we will improperly refer to L as a Lagrangian. The distinction
should be clear from the context (if it is integrated it is actually a Lagrangian,
else it is a density). It should be no surprise that a dynamical variable that varies
continuously in space requires densities for its description.
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We are often interested in systems that are homogeneous in space, that is,
the location of the origin of the coordinate system should be irrelevant. So we
impose that the Lagrangian be invariant under a space translation x′ = x − a. The
fields change into new fields ⇠′(x′, t) = ⇠(x, t), which is just a relabeling of the
dynamical variables (a canonical transformation, to be precise). But �(x) and
(x) do change, unless �(x+a) = �(x) and (x+a) = (x) for any a. This implies,
�(x) = � = constant and (x) =  = constant. Given this, it is convenient to
introduce a change of variables, �(x, t) =√⇠(x, t), so that the Lagrangian density
is written more simply:

L = 1

2

1

c2s
�@�
@t
�
2

− 1

2
�@�
@x
�
2

. (2.1)

where we have introduced the shorthand c2s = ��.
Before we go over to find the equations of motion for this system, let’s review the

derivation of the Euler-Lagrange equations (or equations of motion) for a system
with discrete degrees of freedom. Given a Lagrangian L = L(q̇a, qa), Hamilton’s
principle says the equations of motion are obtained from requiring that the action
integral be extremized:

�S[qa(t)] = ��
t2

t1
dl L(q̇a, qa) = 0 with qa(t

1

) = qa
ini

and qa(t
2

) = qa
fin

Computing we have,

0 = �
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t1
dt�

a
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d

dt
�qa + @L
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dt�

a
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+ @L
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@q̇a
�qa�
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The last term vanishes by the fixed boundary conditions �qa(t
1,2) = 0, and the first

term vansihes for arbitrary variation �qa(t) if

@L

@qa
− d

dt

@L

@q̇a
+ = 0

These are the Euler-Lagrange equations.
Moving on to the continuum case, we apply the same principle, that the action

integral be an extremum under variations of the dynamical variable, �(x, t):

�S[�(x, t)] = �� dtL = ��
t2

t1
dt� dxL(@t�,@x�,�, t) = 0.

The boundary conditions are now �(x, t
1

) = �
ini

(x) and �(x, t
2

) = �
fin

(x). We
have intentionally not specified boundary conditions for the x-integration. This
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will allow us to decide what are reasonable conditions as we derive equations of
motion. Computing the variation of S does not introduce new complications:

0 = �S = �
t2

t1
dt� dx

�������
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The first term on the last line vanishes by the boundary conditions at t = t
1,2.

The second term vanishes if we fix boundary conditions on �(x, t) at the limits of
integration for x. If the field is defined over the whole line x ∈ (−∞,∞) then we
can specify limx→±∞ �(x, t) = 0. This is reasonable. If you start with the collection
of springs and masses form its equilibrium configuration, and poke it somewhere,
it will take infinite time for the masses infinitely far away to be excited. But we are
considering finite time, and in finite time the masses far away never get displaced
from equilibrium. This is even clearer in the continuum case. We will see shortly
that � satisfies a wave equation with finite speed of propagation. Alternatively,
we can imagine the case of a finite system of springs and masses extending from
x = 0 to x = L. The limit of `i → 0 still requires that we take the number of masses
and springs to infinity, but we can do so with the field confined to the region
x ∈ [0, L]. In this case we need to introduce boundary conditions at x = 0 and L. If
the ends of the line of masses are fixed, then in the limit �(0, t) �(L, t) are fixed.
Another popular setup is to have periodic boundary conditions, �(L, t) = �(0, t).
This means the field is defined on a 1-dimensional torus (really a circle, but the
generalization to higher dimensions is a torus). This also makes the last terms
vanish. Physically, if we have only finite time and the size of the system L is
su�ciently large, the precise choice of boundary conditions should be irrelevant.

Setting to zero the coe�cient of the arbitrary variation ��(x, t) gives the Euler-
Lagrange equations:

− @
@t

@L
@ �@�@t �

− @

@x

@L
@ �@�@x�

+ @L
@�
= 0 ,

To obtain equations of motion in our example, (2.1), compute,

@L
@�
= 0 , @L

@ �@�@x�
= −@�

@x
,

@L
@ �@�@t �

= 1

c2s

@�

@t
,
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and use in the Euler-Lagrange equations:

1

c2s

@2�

@t2
− @

2�

@x2
= 0

You recognize this as the wave equation! The general solution is

�R(x − cst) + �L(x + cst)

describing right and left moving waves with speed of propagation cs (the speed of
“sound,” hence the subscript s).

Since the notation above is pretty unwieldy, we use, as previously advertised,
@t for @�@t, and @x for @�@x so that, for example, we write the Euler-Lagrange
equations as

−@t
@L
@t�
− @x

@L
@x�
+ @L
@�
= 0 .

Relativistic Fields In the example above we are free to take the speed of light
c = 1 for the parameter cs. The solutions to the equation of motion are waves that
propagate at the speed of light. Is this then a Lorentz invariant theory? Yes!

We can check this by verifying that if �(x, t) is a solution, so is �′(x, t) ≡ �(x′, t′)
where

x′ = �(x − �t)
t′ = �(t − �x) � = 1�

1 − �2

Alternatively, we can verify that the action integral , S = ∫ ∫ Ldt dx, from which
the equations are derived, is itself invariant. To this end compute,

@�′(x, t)
@x

= @�(x
′, t′)

@x
= @�(x

′, t′)
@x′ @x′

@x
+ @�(x

′, t′)
@t′ @t′

@x
= � @�(x

′, t′)
@x′ − �� @�(x

′, t′)
@t′

@�′(x, t)
@t

= @�(x
′, t′)

@x
= @�(x

′, t′)
@x′ @x′

@t
+ @�(x

′, t′)
@t′ @t′

@t
= −�� @�(x

′, t′)
@x′ + � @�(x

′, t′)
@t′

and use this in the Lagrangian density, (2.1) (with cs = c = 1):

L = 1

2
�@�

′(x, t)
@t

�
2

− 1

2
�@�

′(x, t)
@x

�
2

= 1

2
�@�(x

′, t′)
@t′ �

2

− 1

2
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.

Finally integrate this over ∫ ∫ dtdx to obtain the action. On the right hand side

of the equation change variables of integration , dxdt = � @(x,t)@(x′,t′) �dx′ dt′ = dx′ dt′ to
obtain finally

� � dt dxL(�′(x, t)) = � � dt′ dx′L(�(x′, t′)) = � � dt dxL(�(x, t))
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where in the last step we changed the label for the dummy variables of integration
from (x′, t′) to (x, t). This shows invariance of the action integral, S[�′(x, t)] =
S[�(x, t)]; the theory is Lorentz invariant.

We could have saved ourselves a lot of time had we taken advantage of the nota-
tion designed to exhibit the properties of quantities under Lorentz transformations.
We can rewrite the Lagrangian density

L = 1

2
�@�(x, t)

@t
�
2

− 1

2
�@�(x, t)

@x
�
2

= 1

2
⌘µ⌫ @µ�@⌫� =

1

2
@µ�@µ�

As we have seen @µ� transforms as a vector, and the Lagrangian is just the invariant
square of this vector!

Klein-Gordon, again While the Lagrangian density above was obtained by a
limiting process from a system fo discrete masses and springs, we do not insist
in interpreting the relativistic system as some collection of infinitesimal springs
and masses. We can take a more general approach to writing a Lagrangian density
which may be a good model for some physical system by insisting it written in terms
of the appropriate number and type of fields, and constraining it by principles and
symmetries we want to incorporate.

For example: Suppose we have a system in 1-spatial dimension that can be
described by a single field, �(x, t). Moreover, we want it to satisfy an equation
of motion of second order (no more than second time derivatives), and we want
the action to be invariant under Lorentz transformations. Then the Lagrangian
density, L = L(�,@µ�), can include derivatives only through the invariant @µ�@µ�.
The simplest Lagrangian density we can think of is the one in the example above,
L = 1

2

@µ�@µ�. The next simplest is

L = 1

2

@µ�@µ� − 1

2

m2�2.

We could have included also a linear term, g�, with g a a constant, but we can
eliminate that term by a field redefinition �→ �+g�m2. The Euler-Lagrange equa-
tion that follows from this Lagrangian density is the 1-spatial dimension version
of the Klein-Gordon equation! It is instructive to derive the equation of motion
anew, maintaing Lorentz covariance explicitly throughout the computation. We
first integrate by parts to recast the action as

S[�] = � d2x �−1

2

�@2� − 1

2

m2�2�

where @2 = @µ@µ. Taking a variation is now trivial,

0 = �S = −� d2x �� �@2� +m2��
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leading to
�@2 +m2��(x, t) = 0

which you recognize as the Klein-Gordon equation.

2.2 Field Quantization

As we argued in the introduction we need to account for pair creation not just
because it is a natural phenomena and because it matters for accuracy, but also
because it is required if we are to have a consistent relativistic quantum mechanical
theory. We could proceed by enlarging the Hilbert space to include multi-particle
states, ��p�, ��p, �p ′� = ��p� ⊗ ��p ′�, etc, and then introduce creation/annihilation oper-
ators to describe interactions that change particle number. The end result is the
same as what we will obtain from tackling head on the problem of quantization of
fields.

Before we do so, let’s review quantization of classical systems with a discrete
set of generalized coordinates qi, with i = 1, . . . ,N . We are given a Lagrangian,
from which conjugate momenta and a Hamiltonian follow:

L = L(qi, q̇i) ⇒ pi =
@L

@q̇i
and H = piq̇i −L

Poisson brackets are defined on any functions of pi and qi by

{f, g}P =
@f

@qi

@g

@pi
− @g
@qi

@f

@pi
. (2.2)

Note that here, and in the definition of the Hamiltonian, we have used the gener-
alized Einstein summation convention. One has, in particular, {qi, pj}P = �ij and
{qi, qj}P = 0 = {pi, pj}P . Moreover, the equations of motion in the Hamiltonian
formalism can be written as ṗj = {pj ,H}P = −@H�@qj and q̇j = {qj ,H}P = @H�@pj .
Quantization proceeds by associating an operator on a Hilbert space H with
each of the generalized coordinates and momenta, qi → q̂i and pi → p̂i, and
replacing the Poisson bracket by (−i times) the commutator of the operators,
{qi, pj}P = �ij → −i[q̂i, p̂j] = �ij . Similarly [q̂i, q̂j] = 0 = [p̂i, p̂j]. Evolution of
operators is given likewise, e.g., i̇̂pj = [p̂j , Ĥ] and i̇̂qj = [q̂j , Ĥ].

We would like to use this same method to quantize field theories. Let’s first un-
derstand the analogues of conjugate momentum, Hamiltonian and Poisson bracket
in classical field theory and only then quantize. Consider the 1-spatial dimensional
system of the previous section. How do we take the continuum limit of the Poisson
brackets, Eq. (2.2)? It is convenient to start with

�
j

{qi, pj}P =�
j

�ij = 1
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For the continuum limit rewrite ∑j pj = ∑j `(pj�`), where we have taken a common
separation `i = ` for simplicity. This suggests pj(t)→ ⇡(x, t), some sort of conjugate
momentum density. On the right hand side of the Poisson bracket then 1 = ∑j �ij →
∫ dx �(x − x′). That is

{�(x),⇡(x′)}P = �(x − x′)
Since

��(x)
��(x′) = �(x − x′)

we are led to define

{f, g}P = � dx � �f

��(x)
�g

�⇡(x) −
�g

��(x)
�f

�⇡(x)�

The momentum conjugate to � can be defined intrinsically (without taking a limit
of the discrete system),

⇡ = @L
@�̇

and the Hamiltonian density is defined by

H = ⇡�̇ −L .

We are ready to quantize this 1+1 dimensional field theory. We introduce her-
mitian operators �̂ and ⇡̂ on a Hilbert space, and use the quantization prescription
that gives us commutation relations from the Poisson brackets,

− i[�̂(x, t), ⇡̂(x′, t)] = �(x − x′) , [�̂(x, t), �̂(x′, t)] = 0 = [⇡̂(x, t), ⇡̂(x′, t)] (2.3)
Note that the commutation relations are given at a common time, but separate
space coordinate. The field operators satisfy equations of motion, the Euler-
Lagrange equations from the Lagrangian density L. Alternatively, time evolution
is given by

i@t⇡̂(x, t) = [⇡̂(x, t), Ĥ] and i@t�̂(x, t) = [�̂(x, t), Ĥ]

where the Hamiltonian is
Ĥ = � dx Ĥ .

Let’s work this out for the 1+1 Klein-Gordon example:

L = 1

2

@µ�̂@µ�̂ − 1

2

m2�̂2 .

The momentum conjugate to �̂ is

⇡̂ = @L
@�̇
= @t�̂
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and the Hamiltonian density is

Ĥ = 1

2

⇡̂2 + 1

2

(@x�̂)2 + 1

2

m2�̂2 .

The quantum field equation is just the Klein-Gordon equation,

[@2 +m2]�̂(x, t) = 0 .

Alternatively,

i@t⇡̂(x, t) = [⇡̂(x, t), Ĥ] = −i(−@2x�̂+m2�̂) and i@t�̂(x, t) = [�̂(x, t), Ĥ] = i⇡̂(x, t)

The fields satisfy the equal-time commutation relations (2.3). To understand the
content of this theory, we Fourier expand, at fixed time, say t = 0

�̂(x) = �
dk

2⇡
�̃(k)eikx and ⇡̂(x) = �

dk

2⇡
⇡̃(k)eikx.

That t = 0 is implicit here and in the next few lines. Since �̂†(x) = �̂(x) we
have �̃(k)† = �̃(−k) and ⇡̃(k)† = ⇡̃(−k). The equal-time commutation relations
[�̂(x), �̂(x′)] = 0 and [⇡̂(x), ⇡̂(x′)] = 0 imply

[�̃(k), �̃(k′)] = 0 = [⇡̃(k), ⇡̃(k′)]
Then [�̂(x), ⇡̂(x′)] = i�(x − x′) gives

i�(x − x′) = � dk

2⇡ �
dk′
2⇡
��̃(k)eikx, ⇡̃(k′)eik′x′�⇒ [�̃(k), ⇡̃(k′)] = 2⇡i�(k + k′)

The advantage of Fourier transforming shows up first in computing the Hamilto-
nian, since the @2x term is diagonalized:

Ĥ = �
dk

2⇡
�1
2

⇡̃†(k)⇡̃(k) + 1

2

(k2 +m2)�̃†(k)�̃(k)�

= �
dk

2⇡
�1
2

⇡̃†(k)⇡̃(k) + 1

2

!2

k�̃
†(k)�̃(k)�

I have written !k for the energy !k = Ek =
√
k2 +m2 for two reasons: (i) we have

not shown that k is a momentum so we have no right yet to think of
√
k2 +m2 as

the energy, and (ii) it becomes clear that the expression for H is that of an infinite
sun of linear harmonic oscillators, Ĥ = 1

2

p̂2 + 1

2

!2q̂2.
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Review of QM-simple harmonic oscillator Consider the spring mass system
described by

L = 1

2

q̇2 − 1

2

!2q2

Correspondingly

H = 1

2

p2 + 1

2

!2q2

Here q and p, aas well as H, are operators on the Hilbert space, but we are sup-
pressing the hat over the symbols since there will be no occasion for confusion:

i[p, q] = 1

Let

a = 1√
2!
(!q + ip)

a† = 1√
2!
(!q − ip)

Then a†a = 1�2!(!2q2 + p2 − i![p, q]) = 1�2!(2H − !) or

H = !(a†a + 1

2

)

Moreover, [a, a†] = 1

2! [!q + ip,!q − ip] =
1

2! (2i!)[p, q] so we have

[a, a†] = 1
[a, a] = 0
[a†, a†] = 0

and then

[H,a†] = !a†

[H,a] = −!a

We can use these to find the spectrum. Assume that the state �E� is an energy
eigenstate:

H �E� = E�E�

Then

H(a†�E�) = (E + !) �a†�E��
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which means �E + !� = N+a†�E� for some normalization constant, N+. If �E� is
normalized, �E�E� = 1, then

1 = �E + !�E + !� = �N+�2�E�aa†�E�
= �N+�2�E� �[a, a†] + a†a� �E�

= �N+�2�E� �1 + 1

2!
(2H − !) + a†a� �E�

= �N+�2 �E
!
+ 1

2
�

Similarly, �E − !� = N−a�E� and
1 = �E − !�E − !� = �N−�2�E�a†a�E� = �N−�2 �E

!
+ 1

2
�

So we have an infinite tower of states with energies E, E ± !, E ± 2!, . . . Since
the operators a† and a raise and lower energies, we call them raising and lowering
operators, respectively. To avoid a spectrum that is unbounded from below (a
catastrophic instability once the system is coupled to external forces), we can insist
that for some state �0� the tower stops:

a�0� = 0

This is the minimum energy state, the “ground state.” It has energy H �0� = 1

2

!�0�,
called the “zero-point” energy. Then a†�0� has energy E

1

= !+ !
2

and so on, (a†)n�0�
has energy En = !(n + 1

2

). The tower of states then can be labeled by an integer,

�En� = �n�. We assume they are normalized. Then, from above, �n + 1� = N+a†�n�
with

�N+�−2 = En

!
+ 1

2
= n + 1

so that

�n + 1� = 1√
n + 1

a†�n� = 1�
(n + 1)n

(a†)2�n − 1� = � = 1�
(n + 1)!

(a†)n+1�0�
Note that since aa† = a†a + 1 one has 1

2

!(aa† + a†a) = 1

2

!(2a†a + 1) =H. This way

of writing H = 1

2

!(aa† + a†a) hides the zero-point energy.

2.2.1 Particle Interpretation

This suggests introducing

ak =
1√
2⇡

1√
2!k

�!k�̃(k) + i⇡̃(k)�

a†
k =

1√
2⇡

1√
2!k

�!k�̃(k)† − i⇡̃(k)†�
(2.4)
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These have
[ak, a†

k′] = �(k − k
′)

[ak, ak′] = 0
[a†

k, a
†
k′] = 0

(2.5)

where we have used !−k = !k. To compute the Hamiltonian, note that

a†
kak =

1

4⇡!k
�!2

k�̃(k)†�̃(k) + ⇡̃(k)†⇡̃(k) − i!k⇡̃(k)†�̃(k) + i!k�̃(k)†⇡̃(k)� . (2.6)

Since we are going to sum over ∫ dk, we can change variables k → −k in the last
term,

1

4⇡!k
i!k�̃

†(k)⇡̃(k)→ i

4⇡
�̃†(−k)⇡̃(−k) = i

4⇡
�̃(k)⇡̃(−k)

The first two terms in (2.6) are the Hamiltonian density and the last two combine
into a commutator, so we have

Ĥ = 1

2 �
dk

2⇡
�⇡̃(k)†⇡̃(k) + !2

k�̃(k)†�̃(k)�

= 1

2 �
dk

2⇡
�4⇡!ka

†
kak + !ki[⇡̃(k)†, �̃(k)]�

= � dk �!ka
†
kak + !k�(0)�

= 1

2 � dk!k �a†
kak + aka

†
k�

Let’s examine what we have. Assuming that there is a ground state such that
ak�0� = 0 for all k, we have a Hilbert space obtained by acting with a†

k’s on �0�, e.g.,

(a†
k1
)n1(a†

k2
)n2�)�0� . (2.7)

The ground state �0� has energy E
0

given by

Ĥ �0� = � dk′ !k′ �a†
k′ak′ + �(0)� �0� = � dk′ !k′�(0)�0� ≡ E0

�0� ,

and the state �k� = a†
k�0� has energy

Ĥ �k� = � dk′ !k′ �a†
k′ak′ + �(0)� �k� = (!k +E0

)�k�

While the zero-point energy, E
0

, is infinite, the di↵erence of energy between the
state �k� and the ground state is well defined, finite, �E = !k. The same is true
of the energy of any of the states (2.7). We can only measure energy di↵erences
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(except in gravitation; that’s another story). That is, we are free to add a constant
to H without changing the physical content of the theory. So we can redefine

Ĥ = � dk!ka
†
kak

Examining this more closely write

Ĥ = 1

2 � dk!k �a†
kak + aka

†
k − �0�a

†
kak + aka

†
k�0�� = � dk!ka

†
kak .

We say that in the new expression the operators a†
k and ak appear “normal ordered”

and the operation is called “normal ordering” or “Wick ordering:”

∶1
2

(a†
kak + aka

†
k)∶ ≡ a

†
kak .

Under ∶⇠∶ the operators in ⇠ commute. The computation above uses the ground
state for reference. We will need to make sure that this procedure preserves Lorentz
invariance. More on this later.

The energy of the state �k� is Ek = !k =
√
k2 +m2. So we identify p = k

the momentum of the state. This is just as in our introductory presentation of
relativistic QM for a single non-interacting particle. This is then interpreted as a
single particle state. But now the theory is much richer. For one thing we have
many other states, as in (2.7). The Hilbert space of states in (2.7) is called a “Fock
space.” We interpret them as many particle states. To see this we check a few
things:

(i) Energy of (a†
k1
)n1(a†

k2
)n2��0� is E = n

1

Ek1 + n2

Ek2 +�

(ii) Momentum of (a†
k1
)n1(a†

k2
)n2��0� is p = n

1

k
1

+ n
2

k
2

+�

The first one follows trivially from the expression for Ĥ and its action on the states
in (2.7). For the second we introduce the operator

p̂ = � dk k a†
kak

which gives the desired eigenvalues. We will verify this is the momentum operator
below.

From now on we call the operators a†
k and ak creation and annihilation oper-

ators, respectively, rather than raising and lowering operators, to remind us that
they are adding or taking away a particle from a state. The ground state, �0� is
particleless, so we call it the vacuum state or just the vacuum.
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Statistics As promised, that particles are identical is an automatic consequence
of QFT. Note that all particles have the same mass. Moreover, the multiple particle
states are automatically symmetric. For example, let �k

1

, k
2

� = a†
k1
a†
k2
�0�. Then

�k
1

, k
2

� = a†
k1
a†
k2
�0� = a†

k2
a†
k1
�0� = �k

2

, k
1

�

where we have used the commutation relations (2.5). More generally �k
1

, . . . , kn�
is symmetric under exchange of any ki’s. This is an unexpected surprise! In
NR-QM one simply assumes the wave function is symmetric for bosons (Bose-
Einstein statistics), anti-symmetric for fermions (Fermi-Dirac statistics), and it is
observed empirically that integer-spin particles are bosons while half-integer spin
particles are fermions. There was a hidden assumption in our calculation that
resulted in bosonic particles. The assumption is that quantization goes through
the replacement p, qP → i[p̂, q̂]− = i(p̂q̂− q̂p̂) rather than p, qP → i[p̂, q̂]+ = i(p̂q̂+ q̂p̂).
We will later see that a consistent formulation of QFT requires we use [ , ]− for
integer spin fields and [ , ]+ for half-integer spin fields. So not only we will get
identical particles automatically, we will get the correct assignment automatically
too:

• bosons: spin-0, 1, . . .

• fermions: spin-1
2

, 3

2

, . . .

Normalization Note also that

�k�k′� = �0�aka†
k′ �0� = �0�[ak, a

†
k′]�0� = �(k − k

′)
�k

1

, k
2

�k′
1

, k′
2

� = �0�ak1ak2a
†
k′1a

†
k′2 �0� = �(k1 − k

′
1

)�(k
2

− k′
2

) + �(k
1

− k′
2

)�(k
2

− k′
1

)

exactly what we expect of identical particle plane wave states. But this is not the
desired relativistic normalization. Not a problem, we only need to take for the
definition of states

�k� =
�
(2⇡)(2Ek)a†

k�0� ⇒ �k�k′� = (2⇡)2Ek�(k − k′)
Plane waves are not normalizable states, but we can make normalizable wave

packets out of them:

� � = � dk (k)a†
k�0� ⇒ � � � = � dk dk′ (k)∗ (k′)�0�aka†

k′ �0� = � dk � (k)�2 <∞

It is often convenient to define creation and annihilation operators by rescaling
the ones we have:

↵k =
�
(2⇡)(2Ek)ak
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so that �k� = ↵k�0� has relativistic normalization. In terms of these

Ĥ = � (dk)Ek↵
†
k↵k

p̂ = � (dk)k↵†
k↵k

where (dk) is the relativistic invariant measure.

Number Operator The state with n-particles is an energy Eigenstate. It there-
fore evolves into a state with n particles (itself). Particle number is conserved
because there are no interactions (yet). This suggest there must be an observable,
that is, a hermitian operator, N̂ that

(i) is conserved , [N̂ , Ĥ] = 0

(ii) � �N̂ � � = N , the number of particles in state  (if it has a definite number
of particles)

It should be obvious by now that

N̂ = � dk a†
kak = � (dk)↵

†
k↵k

satisfies the above conditions.
We will see later how to generalize these statements to when we include in-

teractions. The startegy will be to derive the form of p̂µ and N̂ from conserved
currents associated with symmetries of L.

Time evolution We have quantized at t = 0. In the Heisenberg representation
fields have time dependence. So consider �̂(x, t), with �̂(x,0) corresponding to
the field we denoted by �̂(x) at t = 0 above. Note that the initial choice t = 0
is arbitrary since we have time translation invariance (the Lagrangian does not
depend explicitly on time). Now,

@t�̂(x, t) = ⇡̂(x, t) = i[Ĥ, �̂(x, t)] .

The solution is well known,

�̂(x, t) = eiHt�̂(x)e−iHt .

To understand how this operator acts on the Fock space we cast it in terms of
creation and annihilation operators. To this end we invert (2.4)

↵k = !k�̃(k) + i⇡̃(k)
↵†−k = !k�̃(k) − i⇡̃(k)

⇒
�̃(k) = 1

2!k
�↵k + ↵†−k�

⇡̃(k) = − i

2!k
�↵k − ↵†−k�
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Hence
�̂(x) = � (dk)�↵ke

ikx + ↵†
ke
−ikx� .

The time dependence is now straightforward:

�̂(x, t) = eiHt�̂(x)e−iHt = � (dk)�↵ke
−iE

k

t+ikx + ↵†
ke

iE
k

t−ikx�
= � (dk)�↵ke

−ik⋅x + ↵†
ke

ik⋅x� ,
where in the last line we have introduced kµ = (E,k) and xµ = (t, x) to make
relativistic invariance explicit. Clearly Ĥ, p̂ and N̂ are time independent; this is
easily seen by taking ↵k → e−iEk

t↵k in the expressions for Ĥ, p̂ and N̂). Noe the
presence of positive and negative energies in �̂(x, t). But there are no “negative
energy states.” Instead there are annihilation operators that subtract honestly
positive energies form states, and creation operators that add it.

Note that the field �̂(x, t) satisfies the equation of motion,

�@2t − @2x +m2� �̂(x, t) = 0

This should be the case, as expected from the commutation relations @t⇡̂ = i[Ĥ, ⇡̂]
and @t�̂ = i[Ĥ, �̂]. But we can verify this directly from the expansion in creation
and annihilation operators using

(@2t − @2x)e−iEk

t+ikx = −(E2

k − k2)e−iEk

t+ikx = −m2e−iEk

t+ikx ,
or in relativistic notation,

@2e−ik⋅x = −k2e−ik⋅x = −m2e−ik⋅x .
Momentum Operator We would like the momentum operator to be defined
so that ip̂ generates translations (and is conserved). We have already defined the
operator, so we check now that it does what we want:

[p̂,�(x, t)] = � (dk′)(dk) �k′↵†
k′↵k′ ,↵ke

−iE
k

t+ikx + ↵†
ke

iE
k

t−ikx�
= � (dk)k �−↵ke

−iE
k

t+ikx + ↵†
ke

iE
k

t−ikx�
= i@x� (dk)�↵ke

−iE
k

t+ikx + ↵†
ke

iE
k

t−ikx�
= i@x�̂(x, t) .

Moreover,
[p̂, Ĥ] = 0

so p̂ is a constant in time, that is, it is conserved.
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Causality While the vanishing of the equal-time commutation relation,
[�(x′,0),�(x,0)] = 0, was assumed from the start, there is no reason to suspect an
analogous result for non-equal times. Let’s compute,

[�(x, t),�(x′, t′)] = � (dk)(dk′) �↵ke
−ik⋅x + ↵†

ke
ik⋅x,↵k′e−ik′⋅x′ + ↵†

k′e
ik′⋅x′�

= � (dk)�eik⋅(x′−x) − e−ik⋅(x′−x)� (2.8)

Notice that the right hand side is explicitly Lorentz invariant and only a function
of the di↵erence of 2-vectors, x′ − x. We define

i�(x′ − x) = [�(x, t),�(x′, t′)] .
Using Lorentz invariance it is easy to prove that �(x) = 0 for space-like x. Since
�(x) is Lorentz invariant we can compute it in a boosted frame. For space-like x
there is a boost that sets t = 0, that is, for space-like separation x′ − x there is a
frame for which t′ = t. The commutator vanishes at equal times, and we can then
boost back to the original frame to obtain �(x) = 0 for x2 < 0. It is not di�cult to
verify this from the integral above by explicit calculation. One assumes x2 < 0 and
continues the integral of the first term in (2.8) much as was done in Fig. 1.1. The
second term is continued along a contour on the lower half plane. The two terms
cancel each other.

As promised causality is restored. The contribution of the positive and negative
energy states cancelled each other. Only, there are no negative energy states. There
are annihilation operators.

2.3 3 + 1 Dimensions

Remarkably little changes as we move on to discuss the case of 3 pace and 1 time
dimensions. Now

L(t) = � d3xL = � d3x �1
2

(@µ�)2 − 1

2

m2�2� ,

where the equality is general and the second gives the explicit case of the Lagrangian
for Klein-Gordon theory. We have used � = �(�x, t) = �(xµ), often also denoted as
�(x), and (@µ�)2 = ⌘µ⌫@µ�@⌫� (sometimes also denoted as (@�)2, we really like to
compress notation). The Poisson brackets are as before, replacing �(3)(�x′ − �x) for
�(x′ −x). This goes over directly into the quantum version. So we have equal time
commutation relations

− i[�̂(�x, t), ⇡̂(�x′, t)] = �(3)(�x − �x′) , [�̂(�x, t), �̂(�x′, t)] = 0 = [⇡̂(�x, t), ⇡̂(�x′, t)]
(2.9)
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As before these are solved by

�̂(�x,0) = � (dk) �↵�kei�k⋅�x + ↵†�ke−i�k⋅�x�
⇡̂(�x,0) = −i� (dk)E�k �↵�kei�k⋅�x − ↵†�ke−i�k⋅�x�

with

[↵�k ,↵†�k ′] = (2⇡)32E�k�(3)(�k − �k ′)
[↵�k ,↵�k ′] = 0 = [↵†�k ,↵†�k ′]

and these are interpreted as annihilation and creation operators for relativistically
normalized particle states with mass m: if the vacuum state is �0� then

��k� = ↵†�k �0� has ��k ��k ′� = (2⇡)32E�k�(3)(�k − �k ′) .
After normal ordering the Hamiltonian is

Ĥ = � (dk)E�k ↵†�k↵�k .
The conserved operator

N̂ = � (dk)↵†�k↵�k .
counts number of particles and

�̂p = � (dk) �k↵†�k↵�k .
are the conserved momentum operators and generate translations. As before the
particles are identical and multiplarticle states satisfy Bose-Einstein statistics. In
contrast to the 1+1 case, in 3-spatial dimensions we can speak meaningfully of the
spin of a particle. It must correspond to a quantum number that transforms under
rotations. Our field is invariant under Lorentz transformations, �(x) → �′(x) =
�(x′), where x′ = ⇤x, and this is results in spinless particles. The spin-statistics
connection comes out automatically: spin-0 identical particles satisfy Bose-Einstein
statistics.

Time evolution is still given by

�̂(x) = �̂(�x, t) = eiHt�(�x,0)e−iHt

= � (dk) �↵�kei�k⋅�x−iE�kt + ↵†�ke−i�k⋅�x+iE�kt�
= � (dk) �↵�ke−ik⋅x + ↵†�keik⋅x�



32 CHAPTER 2. FIELD QUANTIZATION

where k0 = E�k. The operator �̂(x) satisfies the Klein-Gordon equation,

�@2 +m2� �̂(x) = 0

which is the Euler-Lagrange equation for the Lagrangian density given above.
We will encounter later the product �̂(x

1

)�̂(x
2

), and we will need its relation to
the normal ordered product ∶ �̂(x

1

)�̂(x
2

) ∶ . It is convenient to introduce “positive
and negative frequency operators,”

�̂(−)(x) = � (dk)eik⋅x↵†�k ,
�̂(+)(x) = � (dk)e−ik⋅x↵�k .

Then

�̂(x
1

)�̂(x
2

) = ��̂(+)(x
1

) + �̂(−)(x
1

)���̂(+)(x
2

) + �̂(−)(x
2

)�

= �̂(+)(x
1

)�̂(+)(x
2

) + �̂(+)(x
1

)�̂(−)(x
2

) + �̂(−)(x
1

)�̂(+)(x
2

) + �̂(−)(x
1

)�̂(−)(x
2

)
= �̂(+)(x

1

)�̂(+)(x
2

) + �̂(−)(x
2

)�̂(+)(x
1

) + �̂(−)(x
1

)�̂(+)(x
2

)
+ �̂(−)(x

1

)�̂(−)(x
2

) + [�̂(+)(x
1

), �̂(−)(x
2

)]
= ∶�̂(x

1

)�̂(x
2

)∶+ [�̂(+)(x
1

), �̂(−)(x
2

)]

Hence the di↵erence between the product and the normal ordered product is a
c-number,

�+(x2 − x1) ≡ [�̂(+)(x1), �̂(−)(x2)]
= � (dk1)(dk2) eik1⋅x1−ik2⋅x2[↵�k1 ,↵†�k2]
= � (dk) e−ik⋅(x2−x1) . (2.10)

That �+ is only a function of the di↵erence is the result of the explicit calculation
above. You may recognize this as the integral in (1.1). Note that

�@2 +m2��+(x) = 0 for x ≠ 0,

so �+(x) is a solution of the Klein-Gordon equation that does not vanish for
spacelike argument.

Quantum theory is weird, of course, but QFT is even weirder. Consider this.
The expectation value of �̂(x) in the vacuum state is zero at any point x,

�0��̂(x)�0� = 0
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But the expectation value of the square �̂2(x) is infinite:

�0��̂2(x)�0� =�+(0) = � (dk) .
Fluctuations of quantum fields at any point are wild, even for the simplest empty
state! The problem arises from localization: we should not insist in determining
the field precisely in an arbitrarily small region of space (in this case, one point).
In homework you will show that the square remains finite for the field smeared
over a region.


