
CHAPTER 14:  Oscillations 

 

Responses to Questions 

 

2.   The acceleration of a simple harmonic oscillator is momentarily zero as the mass passes through 

the equilibrium point. At this point, there is no force on the mass and therefore no acceleration. 

5. The maximum speed of a simple harmonic oscillator is given by
k

v A
m

 .  The maximum speed 

can be doubled by doubling the amplitude, A. 

8.  The tire swing is a good approximation of a simple pendulum. Pull the tire back a short distance 

and release it, so that it oscillates as a pendulum in simple harmonic motion with a small 

amplitude. Measure the period of the oscillations and calculate the length of the pendulum from 

the expression 2T
g


l

. The length, l , is the distance from the center of the tire to the branch. 

The height of the branch is l  plus the height of the center of the tire above the ground.  

11. The two masses reach the equilibrium point simultaneously. The angular frequency is independent 

of amplitude and will be the same for both systems. 

14. When you rise to a standing position, you raise your center of mass and effectively shorten the 

length of the swing.  The period of the swing will decrease. 

Solutions to Problems 

3. The spring constant is found from the ratio of applied force to displacement. 
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The frequency of oscillation is found from the total mass and the spring constant. 
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4. (a) The motion starts at the maximum extension, and so is a cosine.  The amplitude is the  

displacement at the start of the motion. 
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 (b) Evaluate the position function at t = 1.8 s. 
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5. The period is 2.0 seconds, and the mass is 35 kg.  The spring constant can be calculated from Eq. 14-

7b. 
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10. The spring constant is the same regardless of what mass is attached to the spring. 
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13. (a) For A, the amplitude is 
A

2.5mA  .  For B, the amplitude is 
B

3.5mA  . 

(b)  For A, the frequency is 1 cycle every 4.0 seconds, so 
A

0.25Hzf  .  

              For B, the frequency is 1 cycle every 2.0 seconds, so 
B

0.50 Hzf  . 

 (c) For C, the period is 
A

4.0sT  .  For B, the period is 
B

2.0sT   

 (d) Object A has a displacement of 0 when 0t  , so it is a sine function.   
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Object B has a maximum displacement when 0t  , so it is a cosine function.   
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14. Eq. 14-4 is  cosx A t   . 
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 (f) If  0 2x A , then  1 1 1
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 The ambiguity in the answers is due to not knowing the direction of motion at t = 0. 

19. When the object is at rest, the magnitude of the spring force is equal to the force of gravity.  This 

determines the spring constant.  The period can then be found. 
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24. Consider the first free-body diagram for the block while it is 

at equilibrium, so that the net force is zero.  Newton’s 

second law for vertical forces, with up as positive, gives this. 
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Now consider the second free-body diagram, in which the 

block is displaced a distance x  from the equilibrium point.  Each upward force will have increased 

by an amount kx , since 0x  .  Again write Newton’s second law for vertical forces. 
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This is the general form of a restoring force that produces SHM, with an effective spring constant of 

2k .  Thus the frequency of vibration is as follows.  
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28. (a) The total energy is the maximum potential energy. 
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 (b) Now we are given that 1
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  Thus the energy is divided up into 81

9 9
potential and  kinetic .  

 

31. The spring constant is found from the ratio of applied force to displacement. 
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Assuming that there are no dissipative forces acting on the ball, the elastic potential energy in the 

loaded position will become kinetic energy of the ball. 
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35. (a) The work done in compressing the spring is stored as potential energy.  The compressed  

location corresponds to the maximum potential energy and the amplitude of the ensuing 

motion. 
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(b) The maximum acceleration occurs at the compressed location, where the spring is exerting the  

maximum force.  If the compression distance is positive, then the acceleration is negative. 
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41. The period of a pendulum is given by 2T L g .  The length is assumed to be the same for the 

pendulum both on Mars and on Earth. 
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45. If we consider the pendulum as starting from its maximum displacement, then the equation of 

motion can be written as 
0 0

2
cos cos .

t
t

T


       Solve for the time for the position to decrease 

to half the amplitude. 
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It takes 1

6
T for the position to change from 10   to 5  .  It takes 1

4
T for the position to change 

from 10   to 0.  Thus it takes 1 1 1

4 6 12
T T T  for the position to change from 5  to 0.  Due to the 

symmetric nature of the cosine function, it will also take 1

12
T for the position to change from 0 to 

5  , and so from 5   to 5  takes 1

6
.T   The second half of the cycle will be identical to the first, 

and so the total time spent between 5   and 5  is 1

3
.T   So the pendulum spends one-third of its 

time between 5   and 5 .   

47.  Use energy conservation to relate the potential energy at the  

maximum height of the pendulum to the kinetic energy at the 

lowest point of the swing.  Take the lowest point to be the zero 

location for gravitational potential energy.  See the diagram. 
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52. The meter stick used as a pendulum is a physical pendulum.  The period is given by Eq. 14-14, 

2 .
I

T
mgh

   Use the parallel axis theorem to find the moment of inertia about the pin.  Express 

the distances from the center of mass. 
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 Use the distance for h to calculate the period. 
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59. (a) The energy of the oscillator is all potential energy when the cosine (or sine) factor is 1, 

and so  
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    The oscillator is losing 6.0% of its energy per cycle.  Use this to find the 

actual frequency, and then compare to the natural frequency. 
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(b) The amplitude’s decrease in time is given by 2

0
.

bt

mA A e


   Find the decrease at a time of nT, and  

solve for n.  The value of 
2

b

m
 was found in part (a). 
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60. The amplitude of a damped oscillator decreases according to 2

0 0
.
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    The data can be 

used to find the damping constant. 
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67. Apply the resonance condition, 
0
,  to Eq. 14-23, along with the given condition of 

0

0
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s .  
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81. Assume the block has a cross-sectional area of A.  In the equilibrium position, the net force on the 

block is zero, and so 
buoy

.F mg   When the block is pushed into the water (downward) an additional 

distance ,x  there is an increase in the buoyancy force (
extra

F ) equal to the weight of the additional 

water displaced.  The weight of the extra water displaced is the density of water times the volume 

displaced. 

   extra add. water add. water water
water water

F m g V g gA x gA x        

This is the net force on the displaced block.  Note that if the block is pushed down, the additional 

force is upwards.  And if the block were to be displaced upwards by a distance x , the buoyancy 

force would actually be less than the weight of the block by the amount 
extra

F  , and so there would 

be a net force downwards of magnitude 
extra

F .  So in both upward and downward displacement, 

there is a net force of magnitude  watergA x   but opposite to the direction of displacement.  As a 

vector, we can write the following.   



   net watergA  F x
r r

 

 This is the equation of simple harmonic motion, with a “spring constant” of 
water
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