8 Nonequilibrium and Transport Phenomena : Summary

o Boltzmann equation: The full phase space distribution for a Hamiltonian system, o(¢, ),
where ¢ = ({g,},{p,}), satisfies o + ¢ - Vo = 0. This is not true, however, for the one-
particle distribution f(q, p, t). Rather, f is related to two-, three-, and higher order particle
number distributions in a chain of integrodifferential equations known as the BBGKY hi-
erarchy. We can lump our ignorance of these other terms into a collision integral and write
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In the absence of collisions, the distribution evolves solely due to the streaming term with
r=p/mand p = —-VU,, . If p=F,, is constant, we have the general solution
t Ft? F .t
f(r7p7t):¢</r_%+ ext ’p_ ext > ,

2m m

valid for any initial condition f(r,p,t = 0) = ¢(r, p). We write the convective derivative as

L=04r. Lip. %. Then the Boltzmann equation may be written 2/ = (%) .

o Collisions: We are concerned with two types of collision processes: single-particle scatter-
ing, due to a local potential, and two-particle scattering, due to interparticle forces. Let I’
denote the set of single particle kinematic variables, e.¢. I' = (p,, p,, p,) for point particles
and I = (p, L) for diatomic molecules. Then
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for single particle scattering, and
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for two-body scattering, where f, is the two-body distribution, and where the approxi-
mation fo(r, ;7' I";t) = f(r,[;t) f(r',I"”;t) in the second line closes the equation. A
quantity A(r, I") which is preserved by the dynamics between collisions then satisfies
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Quantities which are conserved by collisions satisfy A = 0 and are called collisional invari-
ants. Examples include A = 1 (particle number), A = p (linear momentum, if translational
invariance applies), and A = ¢, (energy).



e Time reversal, parity, and detailed balance: With I' = (p, L), we define the actions of time
reversal and parity as
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where C' = PT is the combined operation. Time reversal symmetry of the underlying
equations of motion requires w(I"I7 | I'[) = w(I'"I{ | I'"T{"). Under conditions of de-
tailed balance, this leads to fO(I") fO(I7)) = fO(I"'7) fO(I77), where fU is the equilibrium dis-
tribution. For systems with both P and T'symmetries, w (1”1 | I'[}) = w(I'I7 | I'°TY°),
whence w(p’, p} | p,p;) = w(p, p, | P, p}) for point particles.

e Boltzmann’s H-theorem: Let h(r,t) = [dI'f(r,I',t)In f(r,I',t). Invoking the Boltzmann
equation, it can be shown that % < 0, which means Ccll—';' < 0, where H(t) = f dr h(r,t) is
Boltzmann's H-function. h(r, t) is everywhere decreasing or constant, due to collisions.

o Weakly inhomogeneous gas: Under equilibrium conditions, f° can be a function only of
collisional invariants, and takes the Gibbs form f9(r,p) = Ce#tVP=2r)/ksT  Assume now
that 41, V, and T are all weakly dependent on r and ¢. f then describes a local equilibrium
and as such is annihilated by the collision term in the Boltzmann equation, but not by the
streaming term. Accordingly, we seek a solution f = f9 + df. A lengthy derivation results
in
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and F* is an external force. For an ideal gas, h = c,T. The RHS is to be evaluated to first
order in Jf. The simplest model for the collision integral is the relaxation time approximation,

where v = g—; is the particle velocity, £ is the enthalpy per particle, Q5 = 1 (

where (%)COH =— g. Note that this form does not preserve any collisional invariants. The
scattering time is obtained from the relation nv, ;07 = 1, where ¢ is the two particle total
scattering cross section and v, is the average relative speed of a pair of particles. This

says that there is on average one collision within a tube of cross sectional area ¢ and length

0, 7. For the Maxwellian distribution, v, = V270 =4/ 16:7371, so 7(T) T-1/2 The mean

free path is defined as ¢ = v1 = \/Elm‘

e Transport coefficients: Assuming F&** = Q 5 = 0 and steady state, Eq. 8 yields
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The energy current is given by
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For a monatomic gas, one finds x** = 67 with x(T) = gnlvc, o T'/2. A similar result
follows by considering any intensive quantity ¢ which is spatially dependent through the
temperature 7'(r). The ¢-current across the surface z = 0 is
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Thus, j, = —KVT, with K = 3n€ o the associated transport coefficient. If qS (ep)s
then g-? = ¢,, ylelding x = SnEUC If <;5 (py), then j; = 1II,. = gnmfv 82 7766‘; ,
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where 7 is the shear viscosity. Using the Boltzmann equation in the relaxation time ap-

proximation, one obtains n = gnm/fv. From x and 7, we can form a dimensionless quan-
tity Pr = nc,/m#, known as the Prandtl number. Within the relaxation time approximation,

Pr = 1. Most monatomic gases have Pr ~ %

o Linearized Boltzmann equation: To go beyond the phenomenological relaxation time ap-
proximation, one must grapple with the collision integral,
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which is a nonlinear functional of the distribution f(p,t) (we suppress the ¢ index here).
Writing f(p) = f°(p) + f°(p) ¥ (p), we have (5F) ., = fO(p) Lv + O(v?), with
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The linearized Boltzmann equation (LBE) then takes the form ([: — %) ¥ =Y, where
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for point particles. To solve the LBE, we must invert the operator L — a_ Various useful
properties follow from defmmg the inner product (P [hg) = [d fO(p) ¥, (P) Yo (p), such
as the self-adjointness of L: (1, |Lt,) = (L1, |1,). We then have L]¢n> = )\ ol &, ), with
(Dmldrn) = 0,,,, and real eigenvalues \,,. There are five zero eigenvalues corresponding to
the collisional invariants:

. 9 A, _ .
When Y = 0, the formal solution to $¢ = L1 is ¢(p,t) = 3, C,, ¢, (p) e *'. Aside from
the collisional invariants, all the eigenvalues \,, must be positive, corresponding to relax-
ation to the equilibrium state. One can check that the particle, energy, and heat currents

are givenby j = (v [¢), j. = (vel|y),and g, = (v (e — p) [¢).




In steady state, the solution to L) = Y is¢) = L~'Y. This is valid provided Y is orthogonal
to each of the collisional invariants, in which case
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Once we have |1 ), we may obtain the various transport coefficients by computing the
requisite currents. For example, to find the thermal conductivity x and shear viscosity 7,
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e Variational approach: The Schwarz inequality, (¢ | — LYY -(o|H|¢) > <¢]]fl\1/1>2,

holds for the positive semidefinite operator = —L. One therefore has
L (1%, _om? (9]X,)’
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Using variational functions ¢,, = (¢ — 5k,7) v, and ¢, = v, v, one finds, after tedious
calculations,
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Taking the lower limit in each case, we obtain a Prandtl number Pr =
close to what is observed for monatomic gases.

o Quantum transport: For quantum systems, the local equilibrium distribution is of the
Bose-Einstein or Fermi-Dirac form,
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with k = p/h, and
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where w = w(k,k, |K',k)), f = f(k), f; = f(ky), f' = f(K'), and f] = f(k]), and where
we have assumed time-reversal and parity symmetry. The most important application is to
electron transport in metals and semiconductors, in which case f 0 is the Fermi distribution.
With f = f° + 6f, one has, within the relaxation time approximation,
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where € = —V(¢ — u/e) = E — e~V is the gradient of the “electrochemical potential’
¢ — e~ p. For steady state transport with B = 0, one has
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where LY = 2757, Ly} = TLSy = —e 7", and Lyy = + 75, with
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These results entail
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1 1 1 1 .
=S5 L Q== N=— 0T k=2 (R0 )

These results describe the following physical phenomena:

Electrical resistance (VT = B = 0): An electrical current j will generate an electric field
& = pj, where p is the electrical resistivity.

Peltier effect (V' = B = 0): An electrical current j will generate an heat current j, = I3,
where M is the Peltier coefficient.

Thermal conduction (j = B = 0): A temperature gradient VT gives rise to a heat current
J, = —xVT,where k is the thermal conductivity.

Seebeck effect (j = B = 0): A temperature gradient VT gives rise to an electric field
£ = QVT, where Q is the Seebeck coefficient.

For a parabolic band with effective electron mass m*, one finds
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with M = T'Q, where ¢, is the Fermi energy. The ratio x/oT = %2 (ky/e)? = 2.45 x
10 8V2K~2 is then predicted to be universal, a result known as the Wiedemann-Franz law.
This also predicts all metals to have negative thermopower, which is not the case. In the
presence of an external magnetic field B, additional transport effects arise:

Hall effect (g—g = g_:g = jy = 0): An electrical current j = j, « and a field B = B, 2 yield
an electric field £ The Hall coefficient is Ry = &,/ j» B



Ettingshausen effect (‘g—z = Jy = Jgy = 0): An electrical current j = j, & and a field

A . . aT . > .
B = B. z yield a temperature gradient 7. The Ettingshausen coefficient is P = ay L /j. B

Nernst effect (j. = jy = 3, = 0): A temperature gradient V1" = 8T zand afield B = B, 2
yield an electric field £. The Nernst coefficient is A = &£, /9L 5 B

Righi-Leduc effect (j; = j, = &, = 0): A temperature gradient VT = 9L & and a field
B = B, z yield an orthogonal gradient %—5. The Righi-Leduc coefficient is ﬁ = 8y L/ TR,

e Stochastic processes: Stochastic processes involve a random element, hence they are not
wholly deterministic. The simplest example is the Langevin equation for Brownian mo-
tion, p+yp = F'+n(t), where p is a particle’s momentum, v a damping rate due to friction,
F' an external force, and 7(t) a stochastic random force. We can integrate this first order
equation to obtain
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We assume that the random force 7(¢) has zero mean, and furthermore that
(n(s)n(s') = d(s =) m Lé(s —5)

in which case one finds (p?(t)) = (p(t))? + %(1 — e~ 1), If there is no external force, we

expect the particle thermailzes at long times, i.e. <%> = 1k,T. This fixes I' = 2ymk,T,

where m is the particle’s mass. One Can integrate again to find the position. At late times

t > ~v71, one finds (z(t)) = const. —|— L corresponding to a mean velocity (p/m) = F/7.
The RMS fluctuations in position, however grow as
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where D = k,T'/vym is the diffusion constant. Thus, after the memory of the initial condi-
tions is lost (t > 1), the mean position advances linearly in time due to the external
force, and the RMS fluctuations in position also increase linearly.

o Fokker-Planck equation: Suppose x(t) is a stochastic variable, and define
dz(t) = x(t + 0t) — x(t)

Furthermore, assume (dz(t)) = F, (z(t))dt and ([6z(t)]*) = F,(x(t))dt, but that ([6z(¢)]")—
O(6t?) for n > 2. One can then show that the probability density P(xz,t) = (6(z — z(t)))
satisfies the Fokker-Planck equation,
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For Brownian motion, F}(xz) = F//ym = u and F,(z) = 2D. The resulting Fokker-Planck
equation is then P, = —uP, + DP,,, where P, = %—Ij , P = % , etc. The Galilean trans-

formation x — x — ut then results in P, = DP,,, which is known as the diffusion equation,

xx/
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a general solution to which is given by P(z,t) = [da' K(z —2/,t —t') P(2/,t'), where
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is the diffusion kernel. Thus, Az, = V2DAL.



