
6 Interacting Classical Systems : Summary

• Lattice-based models: Amongst the many lattice-based models of physical interest are

ĤIsing = −J
∑

〈ij〉

σi σj −H
∑

i

σi ; σi ∈ {−1,+1}

ĤPotts = −J
∑

〈ij〉

δσi,σj
−H

∑

i

δσ,1 ; σi ∈ {1, . . . , q}

Ĥ
O(n) = −J

∑

〈ij〉

n̂i ·n̂j −H ·
∑

i

n̂i ; n̂i ∈ Sn−1 .

Here J is the coupling between neighboring sites and H (or H) is a polarizing field which
breaks a global symmetry (groups Z2 , Sq , and O(n), respectively). J > 0 describes a
ferromagnet and J < 0 an antiferromagnet. One can generalize to include further neighbor
interactions, described by a matrix of couplings Jij . When J = 0, the degrees of freedom

at each site are independent, and Z(T,N, J = 0,H) = ζN , where ζ(T,H) is the single
site partition function. When J 6= 0 it is in general impossible to compute the partition
function analytically, except in certain special cases.

• Transfer matrix solution in d = 1: One such special case is that of one-dimensional systems.
In that case, one can write Z = Tr(RN ), where R is the transfer matrix. Consider a general
one-dimensional model with nearest-neighbor interactions and Hamiltonian

Ĥ = −
∑

n

U(αn, αn+1)−
∑

n

W (αn) ,

where αn describes the local degree of freedom, which could be discrete or continuous,
single component or multi-component. Then

Rαα′ = eU(α,α′)/k
B
T eW (α′)/k

B
T .

The form of the transfer matrix is not unique, although its eigenvalues are. We could
have taken Rαα′ = eW (α)/2k

B
T eU(α,α′)/k

B
T eW (α′)/2k

B
T , for example. The interaction matrix

U(α,α′) may or may not be symmetric itself. On a ring of N sites, one has Z =
∑K

i=1 λ
N
i ,

where {λi} are the eigenvalues and K the rank of R. In the thermodynamic limit, the
partition function is dominated by the eigenvalue with the largest magnitude.

• Higher dimensions: For one-dimensional classical systems with finite range interactions,
the thermodynamic properties vary smoothly with temperature for all T > 0. The lower
critical dimension dℓ of a model is the dimension at or below which there is no finite temper-
ature phase transition. For models with discrete global symmetry groups, dℓ = 1, while for
continuous global symmetries dℓ = 2. In zero external field the (d = 2) square lattice Ising
model has a critical temperature Tc = 2.269J . On the honeycomb lattice, Tc = 1.519J .
For the O(3) model on the cubic lattice, Tc = 4.515J . In general, for unfrustrated systems,
one expects for d > dℓ that Tc ∝ z, where z is the lattice coordination number (i.e. number of
nearest neighbors).
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• Nonideal classical gases: For Ĥ =
∑N

i=1
p2

i

2m +
∑

i<j u
(

|xi − xj|
)

, one has Z(T, V,N) =

λ−Nd
T QN (T, V ), where

QN (T, V ) =
1

N !

∫

ddx1 · · ·

∫

ddxN

∏

i<j

e−u(rij )/kBT

is the configuration integral. For the one-dimensional Tonks gas of N hard rods of length a
confined to the region x ∈ [0, L], one finds QN (T,L) = (L−Na)N , whence the equation of
state p = nk

B
T/(1 − na). For more complicated interactions, or in higher dimensions, the

configuration integral is analytically intractable.

• Mayer cluster expansion: Writing the Mayer function fij ≡ e−uij/kBT − 1, and assuming
∫

ddr f(r) is finite, one can expand the pressure p(T, z) and n(T, z) as power series in the
fugacity z = exp(µ/k

B
T ), viz.

p/k
B
T = λ−d

T

∑

γ

znγ bγ

n = λ−d
T

∑

γ

nγ z
nγ bγ .

The sum is over unlabeled connected clusters γ, and nγ is the number of vertices in γ. The
dimensionless cluster integral bγ(T ) is obtained by assigning labels {1, . . . nγ} to all the ver-
tices, and computing

bγ(T ) ≡
1

sγ

∫

ddx1
λd
T

· · ·

∫ ddxnγ−1

λd
T

γ
∏

i<j

fij ,

where fij appears in the product if there is a link between vertices i and j. sγ is the sym-
metry factor of the cluster, defined to be the number of elements from the symmetric group

Snγ
which, acting on the labels, would leave the product

∏γ
i<j fij invariant. By definition,

a cluster consisting of a single site has b• = 1. Translational invariance implies bγ(T ) ∝ V 0.
One then inverts n(T, z) to obtain z(T, n), and inserting the result into the equation for
p(T, z) one obtains the virial expansion of the equation of state,

p = nk
B
T
{

1 +B2(T )n+B3(T )n
2 + . . .

}

.

where
Bk(T ) = −(k − 1)λ

(k−1)d
T

∑

γ∈Γ
k

bγ(T )

is the kth virial coefficient and the sum over γ is limited to the set Γk of all one-particle irre-
ducible k-site clusters. A one-particle irreducible cluster is a connected cluster which does
not break apart into more than one piece if any of its sites and all of that site’s connecting
links are removed from the graph. Any site whose removal, along with all its connect-
ing links, would result in a disconnected graph is called an articulation point. Irreducible
clusters have no articulation points.
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• Liquids: In the ordinary canonical ensemble,

P (x1, . . . ,xN ) = Q−1
N ·

1

N !
e−βW (x

1
, ... ,x

N
) ,

where W is the total potential energy, and QN is the configuration integral,

QN (T, V ) =
1

N !

∫

ddx1 · · ·

∫

ddxN e−βW (x
1
, ... ,xN ) .

We can use P , or its grand canonical generalization, to compute thermal averages, such as
the average local density

n1(r) =
〈

∑

i

δ(r − xi)
〉

= N

∫

ddx2 · · ·

∫

ddxN P (r,x2, . . . ,xN )

and the two particle density matrix, two-particle density matrix n2(r1, r2) is defined by

n2(r1, r2) =
〈

∑

i 6=j

δ(r1 − xi) δ(r2 − xj)
〉

= N(N − 1)

∫

ddx3 · · ·

∫

ddxN P (r1, r2,x3, . . . ,xN ) .

• Pair distribution function: For translationally invariant simple fluids consisting of iden-
tical point particles interacting by a two-body central potential u(r), the thermodynamic
properties follow from the behavior of the pair distribution function (pdf),

g(r) =
1

V n2

〈

∑

i 6=j

δ(r − xi + xj)
〉

,

where V is the total volume and n = N/V the average density. The average energy per
particle is then

ε(n, T ) =
〈E〉

N
= 3

2 kB
T + 2πn

∞
∫

0

dr r2 g(r)u(r) .

Here g(r) is implicitly dependent on n and T as well In the grand canonical ensemble, the
pdf satisfies the compressibility sum rule,

∫

d3r
[

g(r) − 1
]

= k
B
T κT − n−1, where κT is the

isothermal compressibility. Note g(∞) = 1. The pdf also implies the virial equation of state,

p = nk
B
T − 2

3πn
2

∞
∫

0

dr r3 g(r)u′(r) .
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• Scattering: Scattering experiments are sensitive to momentum transfer ~q and energy
transfer ~ω, and allow determination of the dynamic structure factor

S(q, ω) =
1

N

∞
∫

−∞

dt eiωt
〈

∑

l,l′

eiq·xl
(0) e−iq·x

l′
(t)〉

T

=
2π~

N

∑

i

Pi

∑

j

∣

∣

〈

j
∣

∣

N
∑

l=1

e−iq·x
l

∣

∣ i
〉
∣

∣

2
δ(Ej − Ei + ~ω) ,

where | i 〉 and | j 〉 are (quantum) states of the system being studied, and Pi is the equilib-
rium probability for state i.1 Integrating over all frequency, one obtains the static structure
factor,

S(q) =

∞
∫

−∞

dω

2π
S(q, ω) =

1

N

∑

l,l′

〈

eiq·(xl
−x

l′
)〉

= N δq,0 + 1 + n

∫

ddr e−iq·r
[

g(r)− 1
]

.

Figure 1: Comparison of the static structure fac-
tor as determined by neutron scattering work of
J. L. Yarnell et al., Phys. Rev. A 7, 2130 (1973) with
molecular dynamics calculations by Verlet (1967)
for a Lennard-Jones fluid.

• Theories of fluid structure – The BBGKY hi-
erarchy is set of coupled integrodifferential
equations relating k- and (k + 1)-particle
distribution functions. In order to make
progress, a truncation must be performed,
expressing higher order distributions in
terms of lower order ones. This results in
various theories of fluids, known by their
defining equations for the pdf g(r). Ex-
amples include the Born-Green-Yvon equa-
tion, the Percus-Yevick equation, the hy-
pernetted chains equation, the Ornstein-
Zernike approximation, etc. Except in the
simplest cases (such as the OZ approxima-
tion), these equations must be solved nu-
merically. OZ approximation deserves spe-
cial mention. There we write S(q) ≈ 1

(R/ξ)2+R2q2
for small q, where ξ(T ) is the correlation

length and R(T ) is related to the range of interactions.

• Debye-Hückel theory – Due to the long-ranged nature of the Coulomb interaction, the
Mayer function decays so slowly as r → ∞ that it is not integrable, so the virial expansion
is problematic. Progress can be made by a self-consistent mean field approach. For a sys-
tem consisting of charges ±e, one assumes a local electrostatic potential φ(r). Boltzmann

1In practice, what is measured is S(q, ω) convolved with spatial and energy resolution filters appropriate
to the measuring apparatus.
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statistics then gives a charge density

ρ(r) = eλ−d
+ z+ e−e φ(r)/k

B
T − eλ−d

− z− ee φ(r)/kBT ,

where λ± and z± are the thermal de Broglie wavelengths and fugacities for the + and −

species. Assuming overall charge neutrality at infinity, one has λ−d
+ z+ = λ−d

− z− = n∞ ,
and we have ρ(r) = −2en∞ sinh

(

e φ(r)/k
B
T
)

. The local potential is then determined self-
consistently, using Poisson’s equation:

∇2φ = 8πen∞ sinh(eφ/k
B
T )− 4πρext .

If eφ ≪ k
B
T , we can expand the sinh function to obtain ∇2φ = κ2

D
φ− 4πρext , where the

Debye screening wavevector is κ
D
= (8πn∞e2/k

B
T )1/2. The self-consistent potential arising

from a point charge ρext(r) = Qδ(r) is then of the Yukawa form φ(r) = Q exp(−κ
D
r)/r in

three space dimensions.

• Thomas-Fermi screening – In an electron gas with k
B
T ≪ ε

F
, we may take T = 0. If the

Fermi energy is constant, we write ε
F
=

~2k2
F
(r)

2m − e φ(r), and local electron number density
is n(r) = k3

F
(r)/3π2. Assuming a compensating smeared positive charge background ρ+ =

e n∞, Poisson’s equation takes the form

∇2φ = 4πen∞ ·

{

(

1 +
eφ(r)

εF

)3/2

− 1

}

− 4πρext(r) .

If eφ ≪ ε
F
, we expand in the presence of external sources to obtain ∇2φ = κ2

TF
φ − 4πρext,

where κTF = (6πn∞e2/ε
F
)1/2 is the Thomas-Fermi screening wavevector. In metals, where the

electron dispersion is a more general function of crystal momentum, the density response
to a local potential φ(r) is δn(r) = e φ(r) g(ε

F
) to lowest order, where g(ε

F
) is the density

of states at the Fermi energy. One then finds κTF =
√

4πe2g(ε
F
).
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