5 Quantum Statistics: Summary

- Second-quantized Hamiltonians: A noninteracting quantum system is described by a Hamiltonian $\hat{H} = \sum_{\alpha} \varepsilon_{\alpha} \, \hat{n}_{\alpha}$, where ε_{α} is the energy eigenvalue for the single particle state ψ_{α} (possibly degenerate), and \hat{n}_{α} is the number operator. Many-body eigenstates $|\vec{n}\rangle$ are labeled by the set of occupancies $\vec{n} = \{n_{\alpha}\}$, with $\hat{n}_{\alpha} \, |\vec{n}\rangle = n_{\alpha} |\vec{n}\rangle$. Thus, $\hat{H} \, |\vec{n}\rangle = E_{\vec{n}} \, |\vec{n}\rangle$, where $E_{\vec{n}} = \sum_{\alpha} n_{\alpha} \, \varepsilon_{\alpha}$.
- Bosons and fermions: The allowed values for n_{α} are $n_{\alpha} \in \{0, 1, 2, ..., \infty\}$ for bosons and $n_{\alpha} \in \{0, 1\}$ for fermions.
- *Grand canonical ensemble*: Because of the constraint $\sum_{\alpha} n_{\alpha} = N$, the ordinary canonical ensemble is inconvenient. Rather, we use the grand canonical ensemble, in which case

$$\Omega(T, V, \mu) = \pm k_{\rm B} T \sum_{\alpha} \ln \left(1 \mp e^{-(\varepsilon_{\alpha} - \mu)/k_{\rm B} T} \right) ,$$

where the upper sign corresponds to bosons and the lower sign to fermions. The average number of particles occupying the single particle state ψ_{α} is then

$$\langle \hat{n}_{\alpha} \rangle = \frac{\partial \Omega}{\partial \varepsilon_{\alpha}} = \frac{1}{e^{(\varepsilon_{\alpha} - \mu)/k_{\rm B}T} \mp 1}$$

In the Maxwell-Boltzmann limit, $\mu \ll -k_{\rm B}T$ and $\langle n_{\alpha} \rangle = z\,e^{-\varepsilon_{\alpha}/k_{\rm B}T}$, where $z=e^{\mu/k_{\rm B}T}$ is the fugacity. Note that this low-density limit is common to both bosons and fermions.

• Single particle density of states: The single particle density of states per unit volume is defined to be

$$g(\varepsilon) = \frac{1}{V} \operatorname{Tr} \ \delta(\varepsilon - \hat{h}) = \frac{1}{V} \sum_{\alpha} \delta(\varepsilon - \varepsilon_{\alpha}) \quad ,$$

where \hat{h} is the one-body Hamiltonian. If \hat{h} is isotropic, then $\varepsilon = \varepsilon(k)$, where $k = |\mathbf{k}|$ is the magnitude of the wavevector, and

$$g(\varepsilon) = \frac{\mathrm{g}\,\Omega_d}{(2\pi)^d}\,\frac{k^{d-1}}{d\varepsilon/dk} \quad ,$$

where g is the degeneracy of each single particle energy state (due to spin, for example).

• Quantum virial expansion: From $\Omega = -pV$, we have

$$\begin{split} n(T,z) &= \int\limits_{-\infty}^{\infty} \!\! d\varepsilon \, \frac{g(\varepsilon)}{z^{-1} \, e^{\varepsilon/k_{\rm B}T} \mp 1} = \sum\limits_{j=1}^{\infty} (\pm 1)^{j-1} \, z^j \, C_j(T) \\ \frac{p(T,z)}{k_{\rm B}T} &= \mp \int\limits_{-\infty}^{\infty} \!\! d\varepsilon \, g(\varepsilon) \, \ln \left(1 \mp z \, e^{-\varepsilon/k_{\rm B}T}\right) = \sum\limits_{j=1}^{\infty} (\pm 1)^{j-1} \, \frac{z^j}{j} \, C_j(T) \quad , \end{split}$$

where

$$C_j(T) = \int_{-\infty}^{\infty} d\varepsilon \, g(\varepsilon) \, e^{-j\varepsilon/k_{\rm B}T} \quad .$$

One now inverts n = n(T, z) to obtain z = z(T, n), then substitutes this into p = p(T, z) to obtain a series expansion for the equation of state,

$$p(T,n) = nk_{\rm B}T(1 + B_2(T) n + B_3(T) n^2 + \dots)$$
.

The coefficients $B_i(T)$ are the *virial coefficients*. One finds

$$B_2 = \mp \frac{C_2}{2C_1^2}$$
 , $B_3 = \frac{C_2^2}{C_1^4} - \frac{2C_3}{C_1^3}$.

- *Photon statistics*: Photons are bosonic excitations whose number is not conserved, hence $\mu=0$. The number distribution for photon statistics is then $n(\varepsilon)=1/(e^{\beta\varepsilon}-1)$. Examples of particles obeying photon statistics include phonons (lattice vibrations), magnons (spin waves), and of course photons themselves, for which $\varepsilon(k)=\hbar ck$ with ${\bf g}=2$. The pressure and number density for the photon gas obey $p(T)=A_dT^{d+1}$ and $n(T)=A_d'T^d$, where d is the dimension of space and A_d and A_d' are constants.
- *Blackbody radiation*: The energy density per unit frequency of a three-dimensional blackbody is givenP by

$$\varepsilon(\nu, T) = \frac{8\pi h}{c^3} \cdot \frac{\nu^3}{e^{h\nu/k_B T} - 1} \quad .$$

The total power emitted per unit area of a blackbody is $\frac{dP}{dA}=\sigma T^4$, where $\sigma=\pi^2k_{\rm B}^4/60\hbar^3c^2=5.67\times 10^{-8}\,{\rm W/m^2\,K^4}$ is Stefan's constant.

ullet Ideal Bose gas: For Bose systems, we must have $arepsilon_{lpha}>\mu$ for all single particle states. The number density is

$$n(T,\mu) = \int_{-\infty}^{\infty} d\varepsilon \, \frac{g(\varepsilon)}{e^{\beta(\varepsilon-\mu)} - 1} \quad .$$

This is an increasing function of μ and an increasing function of T. For fixed T, the largest value $n(T,\mu)$ can attain is $n(T,\varepsilon_0)$, where ε_0 is the lowest possible single particle energy, for which $g(\varepsilon)=0$ for $\varepsilon<\varepsilon_0$. If $n_{\rm c}(T)\equiv n(T,\varepsilon_0)<\infty$, this establishes a critical density above which there is Bose condensation into the energy ε_0 state. Conversely, for a given density n there is a critical temperature $T_{\rm c}(n)$ such that n_0 is finite for $T< T_{\rm c}$. For $T< T_{\rm c}$, $n=n_0+n_{\rm c}(T)$, with $\mu=\varepsilon_0$. For $T>T_{\rm c}$, $n(T,\mu)$ is given by the integral formula above, with $n_0=0$. For a ballistic dispersion $\varepsilon(\mathbf{k})=\hbar^2\mathbf{k}^2/2m$, one finds $n\lambda_{T_{\rm c}}^d=\mathrm{g}\,\zeta(d/2)$, i.e. $k_{\rm B}T_{\rm c}=\frac{2\pi\hbar^2}{m}\left(n/\mathrm{g}\,\zeta(d/2)\right)^{2/d}$. For $T< T_{\rm c}(n)$, one has $n_0=n-\mathrm{g}\,\zeta(\frac{1}{2}d)\,\lambda_T^{-d}=n\left(1-(T/T_{\rm c})^{d/2}\right)$ and $p=\mathrm{g}\,\zeta(1+\frac{1}{2}d)\,k_{\rm B}T\,\lambda_T^{-d}$. For $T>T_{\rm c}(n)$, one has $n=\mathrm{g}\,\mathrm{Li}_{\frac{d}{2}}(z)\,\lambda_T^{-d}$ and $p=\mathrm{g}\,\mathrm{Li}_{\frac{d}{2}+1}(z)\,k_{\rm B}T\,\lambda_T^{-d}$, where

$$\operatorname{Li}_q(z) \equiv \sum_{n=1}^{\infty} \frac{z^n}{n^q}.$$

- Ideal Fermi gas: The Fermi distribution is $n(\varepsilon) = f(\varepsilon \mu) = 1/\left(e^{(\varepsilon \mu)/k_{\rm B}T} + 1\right)$. At T=0, this is a step function: $n(\varepsilon) = \Theta(\mu \varepsilon)$, and $n=\int\limits_{-\infty}^{\mu} d\varepsilon \ g(\varepsilon)$. The chemical potential at T=0 is called the Fermi energy: $\mu(T=0,n)=\varepsilon_{\rm F}(n)$. If the dispersion is $\varepsilon(k)$, the locus of k values satisfying $\varepsilon(k)=\varepsilon_{\rm F}$ is called the Fermi surface. For an isotropic and monotonic dispersion $\varepsilon(k)$, the Fermi surface is a sphere of radius $k_{\rm F}$, the Fermi wavevector. For isotropic three-dimensional systems, $k_{\rm F}=(6\pi^2n/{\rm g})^{1/3}$.
- Sommerfeld expansion: Let $\phi(\varepsilon) = \frac{d\Phi}{d\varepsilon}$. Then

$$\int_{-\infty}^{\infty} d\varepsilon f(\varepsilon - \mu) \phi(\varepsilon) = \pi D \csc(\pi D) \Phi(\mu)$$

$$= \left\{ 1 + \frac{\pi^2}{6} (k_{\rm B} T)^2 \frac{d^2}{d\mu^2} + \frac{7\pi^4}{360} (k_{\rm B} T)^4 \frac{d^4}{d\mu^4} + \dots \right\} \Phi(\mu) ,$$

where $D=k_{\rm B}T\,\frac{d}{d\mu}$. One then finds, for example, $C_V=\gamma VT$ with $\gamma=\frac{1}{3}\pi^2k_{\rm B}^2\,g(\varepsilon_{\rm F})$. Note that nonanalytic terms proportional to $\exp(-\mu/k_{\rm B}T)$ are invisible in the Sommerfeld expansion.