8 Nonequilibrium and Transport Phenomena : Worked Examples

(8.1) Consider a monatomic ideal gas in the presence of a temperature gradient V7. Answer the followin
g p p g g
questions within the framework of the relaxation time approximation to the Boltzmann equation.

(a) Compute the particle current 5 and show that it vanishes.

(b) Compute the ‘energy squared’ current,
Je = /dgp v f(r,p,1)

(c) Suppose the gas is diatomic, so ¢, = $k,. Show explicitly that the particle current j is zero. Hint: To do this,
you will have to understand the derivation of eqn. 8.85 in the Lecture Notes and how this changes when the

gas is diatomic. You may assume Q 5 = F = 0.

Solution :

(a) Under steady state conditions, the solution to the Boltzmann equation is f = fY + & f, where f° is the equilib-
rium distribution and
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For the monatomic ideal gas, ¢, = 3k,,. The particle current is
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where the average over momentum/velocity is converted into an average over the energy distribution,

P(e) = 4mv? v P,

T P) = Z ()22 o) e MoT

As discussed in the Lecture Notes, the average of a homogeneous function of € under this distribution is given by
(e%) = Z=T(a+3) (k,T)*

Thus,
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(b) Now we must compute
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We then have

and so

(c) For diatomic gases in the presence of a temperature gradient, the solution to the linearized Boltzmann equation
in the relaxation time approximation is
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where L, , are components of the angular momentum about the instantaneous body-fixed axes, with I = I, =
I, > I;. We assume the rotations about axes 1 and 2 are effectively classical, so equipartition gives (e,,;) =
2 x 1k, = k. We still have (e,,) = 2k,. Now in the derivation of the factor £(c — c,T') above, the first factor of ¢
came from the v*v” term, so this is translational kinetic energy. Therefore, with ¢, = £k, now, we must compute

E(F) = Etr + Erot = %m,UQ +

<Etr (Etr + Erot — %kBT)> = <€tr (Etr - ngT)> =0
So again the particle current vanishes.

Note added :

It is interesting to note that there is no particle current flowing in response to a temperature gradient when 7 is
energy-independent. This is a consequence of the fact that the pressure gradient Vp vanishes. Newton’s Second
Law for the fluid says that nmV + Vp = 0, to lowest relevant order. With Vp # 0, the fluid will accelerate.
In a pipe, for example, eventually a steady state is reached where the flow is determined by the fluid viscosity,
which is one of the terms we just dropped. (This is called Poiseuille flow.) When p is constant, the local equilibrium
distribution is T
0 __ Db/rs —p?/2mkyT
f (T7p) (27kaBT)3/2 € ?
where T' = T'(r). We then have
f('r,p):fo(r—'m',p) )

which says that no new collisions happen for a time 7 after a given particle thermalizes. I.e. we evolve the stream-
ing terms for a time 7. Expanding, we have

=

— T 5 p 0
which leads to j = 0, assuming the relaxation time 7 is energy-independent.

When the flow takes place in a restricted geometry, a dimensionless figure of merit known as the Knudsen number,
Kn = ¢/L, where ( is the mean free path and L is the characteristic linear dimension associated with the geometry.
For Kn <« 1, our Boltzmann transport calculations of quantities like x, 1, and ¢ hold, and we may apply the
Navier-Stokes equations!. In the opposite limit Kn > 1, the boundary conditions on the distribution are crucial.
Consider, for example, the case ¢ = co. Suppose we have ideal gas flow in a cylinder whose symmetry axis is @.

I These equations may need to be supplemented by certain conditions which apply in the vicinity of solid boundaries.



Particles with v,, > 0 enter from the left, and particles with v, < 0 enter from the right. Their respective velocity

distributions are 3/2
Pw) =y (o) et kT,
J T\ 27k, T;

where j = L or R. The average current is then

o= [ {n, 0. B (0) O0,) + 00, Py(0) (-0,
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(8.2) Consider a classical gas of charged particles in the presence of a magnetic field B. The Boltzmann equation
is then given by

0 e aof of
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Consider the case where T = T'(z) and B = BZ. Making the relaxation time approximation, show that a solution
to the above equation exists in the form §f = v-A(e), where A(e) is a vector-valued function of £(v) = imv?

which lies in the (z, y) plane. Find the energy current j,. Interpret your result physically.

Solution: We’ll use index notation and the Einstein summation convention for ease of presentation. Recall that

the curlis givenby (A x B),, = €,,, 4, B,. We write  f = v, A,,(¢), and compute
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Since this must be true for all v, we have
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where B = Bn. It is conventional to define the cyclotron frequency, w, = eB/mc, in which case

(6#1, + WCT 6#1,)\ n)\) Al/ = _X

I )

where X = —(e — h) 7f° VT /k,T?. So we must invert the matrix
M,, = 5W + WeT €0 Ty

To do so, we make the Ansatz,
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and we determine the constants A, B, and C' by demanding
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Here we have used the result
€uvX Cvop = Corp Cvop = 6)\0' 0p — 6)\;) d
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as well as the fact that 7 is a unit vector: n, n, = 1. We can now read off the results:
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which entail -
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The a-component of the energy current is

2
where we have replaced v, v, — 57~ €4,,,. Next, we use

2 [ddp , 5T orT
P2y 9T jap 01
3m ) h3 & Ay 3m " Oz,

hence
57 k2T

2, 2~ (-~ ~
—% m (VT-'—(UCT n(nVT) “erTn X VT)

Je =
We are given that n = 2 and VT = T’(z) &. We see that the energy current j. is flowing both along —& and along
—y. Why does heat flow along 4? It is because the particles are charged, and as they individually flow along —,
there is a Lorentz force in the —y direction, so the energy flows along —y as well.



(8.3) Consider one dimensional motion according to the equation
pap=n(t) ,

and compute the average (p*(t)). You should assume that

<77(51) n(s2) 77(53) 77(54)> = ¢(s1 — 82) ¢(53 —54) + @51 — 53) P59 — 84) + (51 — 54) P(59 — 53)
where ¢(s) = I' §(s). You may further assume that p(0) = 0.
Solution :

Integrating the Langevin equation, we have

t
p(t) = /dtl e (=t n(ty)
0

Raising this to the fourth power and taking the average, we have
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We have here used the fact that the three contributions to the average of the product of the four #’s each contribute
the same amount to (p*(t)). Recall I' = 2M~k,T, where M is the mass of the particle. Note that



(8.4) A photon gas in equilibrium is described by the distribution function

2
0 _
f (p) - ecp/kBT _ 1 9

where the factor of 2 comes from summing over the two independent polarization states.

(a) Consider a photon gas (in three dimensions) slightly out of equilibrium, but in steady state under the influ-
ence of a temperature gradient V7. Write f = f° 4+ §f and write the Boltzmann equation in the relaxation
time approximation. Remember that ¢(p) = ¢cpand v = g—; = cp, so the speed is always c.

(b) What is the formal expression for the energy current, expressed as an integral of something times the distri-
bution f?

(c) Compute the thermal conductivity «. It is OK for your expression to involve dimensionless integrals.

Solution :
(a) We have
a0 — 2cp efep a4 — 2cpeler AT
(ePer —1)2 (ePer —1)2 k,T?
The steady state Boltzmann equation is v - %—f: = (%) " hence with v = ¢p,
2 ¢? ecr/kuT 1 p~VT:—6—f
(eP/FsT —1)2 kT2 T

(b) The energy current is given by

i.r) = [52 ép o)

(c) Integrating, we find
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where we simplified the integrand somewhat using integration by parts. The integral may be computed in closed
form:
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and therefore




(8.5) Suppose the relaxation time is energy-dependent, with 7(¢) = 7, e~*/<0. Compute the particle current j and
energy current j, flowing in response to a temperature gradient V7.

Solution :

Now we must compute
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where 7(g) = 7, e%/%0. We find
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The previous results are obtained by setting ¢, = o0 and 7, = 1/v/2nvo. Note the strange result that x becomes
negative for k,T > 2¢.



(8.6) Use the linearized Boltzmann equation to compute the bulk viscosity ¢ of an ideal gas.

(a) Consider first the case of a monatomic ideal gas. Show that ( = 0 within this approximation. Will your
result change if the scattering time is energy-dependent?

(b) Compute ¢ for a diatomic ideal gas.

Solution :

According to the Lecture Notes, the solution to the linearized Boltzmann equation in the relaxation time approxi-
mation is

Tf0 o 3OV, k
Of = T {mv v? 9208 (64 + Erot) iV-V}

We also have
Tr 11 = nm (v?) =2n(e,,) =3p - 3( V-V

We then compute Tr 11
TrII=2n(e,)=3p—3¢CV-V
=20 [ar (10 +50) 2,

The f° term yields a contribution 3nk,T" = 3p in all cases, which agrees with the first term on the RHS of the
equation for Tr II. Therefore

(VV = —%n/dl”éfstr

(a) For the monatomic gas, I" = {p,,p,,p,}. We then have

2nt aV, €
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Here we have replaced mv®v? — mv? = 2¢,, under the integral. If the scattering time is energy dependent, then

we put 7(¢) inside the energy integral when computing the average, but this does not affect the final result: ¢ = 0.

(b) Now we must include the rotational kinetic energy in the expression for ¢ f, and we have ¢;, = 5k,. Thus,
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(8.7) Consider a two-dimensional gas of particles with dispersion (k) = Jk?, where k is the wavevector. The
particles obey photon statistics, so i = 0 and the equilibrium distribution is given by

1
0 _
f (k) - ee(k)/kBT -1

(a) Writing f = fY + df, solve for §f(k) using the steady state Boltzmann equation in the relaxation time

approximation,
of° of
v — = ——
or T
Work to lowest order in VT'. Remember that v = %g—z is the velocity.

(b) Show that 7 = —A VT, and find an expression for A\. Represent any integrals you cannot evaluate as dimen-
sionless expressions.

(c) Show that j, = —« VT, and find an expression for . Represent any integrals you cannot evaluate as
dimensionless expressions.

Solution :

(a) We have

B 8f0 B 8f0
6f = —T7 - W = —T'U'VTW

2 J2k2 e(k)/kgT
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(b) The particle current is
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We may now send k*k” — k26" under the integral. We then read off
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(c) The energy current is
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We therefore repeat the calculation from part (), including an extra factor of Jk? inside the integral. Thus,

27 J4 kg eIk /kpT
K= —
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(8.8) Due to quantum coherence effects in the backscattering from impurities, one-dimensional wires don’t obey
Ohm’s law (in the limit where the ‘inelastic mean free path’ is greater than the sample dimensions, which you
may assume). Rather, let R(L) = R(L)/(h/e?) be the dimensionless resistance of a quantum wire of length L, in
units of h/e? = 25.813k(. Then the dimensionless resistance of a quantum wire of length L + §L is given by

R(L+ L) =R(L) + R(6L) + 2R(L)R(SL) + 2 cosa \/R(L) [1+R(L)] R(6L) [1 4+ R(6L)]
where « is a random phase uniformly distributed over the interval [0, 27). Here,

oL

is the dimensionless resistance of a small segment of wire, of length JL < ¢, where / is the “elastic mean free path’.
(Using the Boltzmann equation, we would obtain ¢ = 2whnTt/m.)

Show that the distribution function P(R, L) for resistances of a quantum wire obeys the equation

oP 1 0 oP
ﬁ—ﬂ%{m”mﬁ}

Show that this equation* may be solved in the limits R < 1 and R > 1, with

1
P(R,z) = =e R/?

z

forR <« 1,and 1
P(R,z) = (471'2)_1/2 = e~ (InR—2)?/4z

for R > 1, where z = L/2( is the dimensionless length of the wire. Compute (R) in the former case, and (In R) in
the latter case.

Solution :

From the composition rule for series quantum resistances, we derive the phase averages

(oR) = (1+ 2R(L))62—i
(FR)?) = (1 + 2R(L))2 (%)2 +2R(L) (1 + R(L)) ‘;—i (1 + %)
—2R(L) (1 + R(L)) ‘;—5 +0((6L)?)
whence we obtain the drift and diffusion terms

Note that 2F; (R) = dFy/dR, which allows us to write the Fokker-Planck equation as

oP 0 [R(O+R) 0P
oL OR 20 IR

Defining the dimensionless length z = L/2/¢, we have

oP 0 oP
a—ﬁ{m”mﬁ}
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In the limit R <« 1, this reduces to
0P L 0P 0P
9z OR? OR
which is satisfied by P(R,z) = z=! exp(—R/z). For this distribution one has (R)

= Z.
In the opposite limit, R > 1, we have

oP ., 0P oP
5 N oare PIReR
_or op
T ov2 ov '

where v = InR. This is solved by the log-normal distribution,

P(R,z) = (4mz)"1/2 e~ (v2)?/4z
Note that

InR — z)?
P(R,2)dR = (472)~ 2 exp { - M} dInR

4z
One then obtains (InR) = 2.
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