
8 Nonequilibrium and Transport Phenomena : Worked Examples

(8.1) Consider a monatomic ideal gas in the presence of a temperature gradient ∇T . Answer the following
questions within the framework of the relaxation time approximation to the Boltzmann equation.

(a) Compute the particle current j and show that it vanishes.

(b) Compute the ‘energy squared’ current,

jε2 =

∫

d3p ε2v f(r,p, t) .

(c) Suppose the gas is diatomic, so cp = 7
2kB

. Show explicitly that the particle current j is zero. Hint: To do this,
you will have to understand the derivation of eqn. 8.85 in the Lecture Notes and how this changes when the
gas is diatomic. You may assume Qαβ = F = 0.

Solution :

(a) Under steady state conditions, the solution to the Boltzmann equation is f = f0 + δf , where f0 is the equilib-
rium distribution and

δf = − τf0

k
B
T

·
ε− cpT

T
v ·∇T .

For the monatomic ideal gas, cp = 5
2kB

. The particle current is

jα =

∫

d3p vα δf

= − τ

k
B
T 2

∫

d3p f0(p) vα vβ
(

ε− 5
2kB

T
) ∂T

∂xβ

= − 2nτ

3mk
B
T 2

∂T

∂xα

〈

ε
(

ε− 5
2kB

T
)〉

,

where the average over momentum/velocity is converted into an average over the energy distribution,

P̃ (ε) = 4πv2
dv

dε
P

M
(v) = 2√

π
(k

B
T )−3/2 ε1/2 φ(ε) e−ε/k

B
T .

As discussed in the Lecture Notes, the average of a homogeneous function of ε under this distribution is given by

〈

εα
〉

= 2√
π
Γ
(

α+ 3
2

)

(k
B
T )α .

Thus,
〈

ε
(

ε− 5
2kB

T
)〉

= 2√
π
(k

B
T )2

{

Γ
(

7
2

)

− 5
2 Γ

(

5
2

)

}

= 0 .

(b) Now we must compute

jαε2 =

∫

d3p vα ε2 δf

= − 2nτ

3mk
B
T 2

∂T

∂xα

〈

ε3
(

ε− 5
2kB

T
)〉

.
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We then have
〈

ε3
(

ε− 5
2kB

T
)〉

= 2√
π
(k

B
T )4

{

Γ
(

11
2

)

− 5
2 Γ

(

9
2

)

}

= 105
2 (k

B
T )4

and so

jε2 = −35nτk
B

m
(k

B
T )2∇T .

(c) For diatomic gases in the presence of a temperature gradient, the solution to the linearized Boltzmann equation
in the relaxation time approximation is

δf = −τ f0

k
B
T

·
ε(Γ )− cpT

T
v ·∇T ,

where

ε(Γ ) = εtr + εrot =
1
2mv2 +

L
2
1 + L

2
2

2I
,

where L1,2 are components of the angular momentum about the instantaneous body-fixed axes, with I ≡ I1 =
I2 ≫ I3. We assume the rotations about axes 1 and 2 are effectively classical, so equipartition gives 〈εrot〉 =
2 × 1

2kB
= k

B
. We still have 〈εtr〉 = 3

2kB
. Now in the derivation of the factor ε(ε− cpT ) above, the first factor of ε

came from the vαvβ term, so this is translational kinetic energy. Therefore, with cp = 7
2kB

now, we must compute

〈

εtr
(

εtr + εrot − 7
2kB

T
)〉

=
〈

εtr
(

εtr − 5
2kB

T
)〉

= 0 .

So again the particle current vanishes.

Note added :

It is interesting to note that there is no particle current flowing in response to a temperature gradient when τ is
energy-independent. This is a consequence of the fact that the pressure gradient ∇p vanishes. Newton’s Second

Law for the fluid says that nmV̇ + ∇p = 0, to lowest relevant order. With ∇p 6= 0, the fluid will accelerate.
In a pipe, for example, eventually a steady state is reached where the flow is determined by the fluid viscosity,
which is one of the terms we just dropped. (This is called Poiseuille flow.) When p is constant, the local equilibrium
distribution is

f0(r,p) =
p/k

B
T

(2πmk
B
T )3/2

e−p2/2mk
B
T ,

where T = T (r). We then have
f(r,p) = f0(r − vτ,p) ,

which says that no new collisions happen for a time τ after a given particle thermalizes. I.e. we evolve the stream-
ing terms for a time τ . Expanding, we have

f = f0 − τp

m
· ∂f

0

∂r
+ . . .

=

{

1− τ

2k
B
T 2

(

ε(p)− 5
2kB

T
) p

m
·∇T + . . .

}

f0(r,p) ,

which leads to j = 0, assuming the relaxation time τ is energy-independent.

When the flow takes place in a restricted geometry, a dimensionless figure of merit known as the Knudsen number,
Kn = ℓ/L, where ℓ is the mean free path and L is the characteristic linear dimension associated with the geometry.
For Kn ≪ 1, our Boltzmann transport calculations of quantities like κ, η, and ζ hold, and we may apply the
Navier-Stokes equations1. In the opposite limit Kn ≫ 1, the boundary conditions on the distribution are crucial.
Consider, for example, the case ℓ = ∞. Suppose we have ideal gas flow in a cylinder whose symmetry axis is x̂.

1These equations may need to be supplemented by certain conditions which apply in the vicinity of solid boundaries.
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Particles with vx > 0 enter from the left, and particles with vx < 0 enter from the right. Their respective velocity
distributions are

Pj(v) = nj

(

m

2πk
B
Tj

)3/2

e−mv2/2k
B
Tj ,

where j = L or R. The average current is then

jx =

∫

d3v
{

n
L
vx PL

(v)Θ(vx) + n
R
vx PR

(v)Θ(−vx)
}

= n
L

√

2k
B
T

L

m
− n

R

√

2k
B
T

R

m
.
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(8.2) Consider a classical gas of charged particles in the presence of a magnetic field B. The Boltzmann equation
is then given by

ε− h

k
B
T 2

f0 v ·∇T − e

mc
v ×B · ∂ δf

dv
=

(

∂f

∂t

)

coll

.

Consider the case where T = T (x) and B = Bẑ. Making the relaxation time approximation, show that a solution
to the above equation exists in the form δf = v ·A(ε), where A(ε) is a vector-valued function of ε(v) = 1

2mv2

which lies in the (x, y) plane. Find the energy current jε. Interpret your result physically.

Solution : We’ll use index notation and the Einstein summation convention for ease of presentation. Recall that
the curl is given by (A×B)µ = ǫµνλ Aν Bλ. We write δf = vµ Aµ(ε), and compute

∂ δf

∂vλ
= Aλ + vα

∂Aα

∂vλ

= Aλ + vλ vα
∂Aα

∂ε
.

Thus,

v ×B · ∂ δf

∂v
= ǫµνλ vµ Bν

∂ δf

∂vλ

= ǫµνλ vµ Bν

(

Aλ + vλ vα
∂Aα

∂ε

)

= ǫµνλ vµ Bν Aλ .

We then have
ε− h

k
B
T 2

f0 vµ ∂µT =
e

mc
ǫµνλ vµ Bν Aλ −

vµ Aµ

τ
.

Since this must be true for all v, we have

Aµ − eBτ

mc
ǫµνλ nν Aλ = − (ε− h) τ

k
B
T 2

f0 ∂µT ,

where B ≡ B n̂. It is conventional to define the cyclotron frequency, ωc = eB/mc, in which case

(

δµν + ωcτ ǫµνλ nλ

)

Aν = Xµ ,

where X = −(ε− h) τf0
∇T/k

B
T 2. So we must invert the matrix

Mµν = δµν + ωcτ ǫµνλ nλ .

To do so, we make the Ansatz,
M−1

νσ = Aδνσ +B nν nσ + C ǫνσρ nρ ,

and we determine the constants A, B, and C by demanding

Mµν M
−1
νσ =

(

δµν + ωcτ ǫµνλ nλ

)(

Aδνσ +B nν nσ + C ǫνσρ nρ

)

=
(

A− C ωc τ
)

δµσ +
(

B + C ωc τ
)

nµ nσ +
(

C + Aωc τ
)

ǫµσρ nρ ≡ δµσ .

Here we have used the result
ǫµνλ ǫνσρ = ǫνλµ ǫνσρ = δλσ δµρ − δλρ δµσ ,

as well as the fact that n̂ is a unit vector: nµ nµ = 1. We can now read off the results:

A− C ωcτ = 1 , B + C ωcτ = 0 , C +Aωcτ = 0 ,
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which entail

A =
1

1 + ω2
cτ

2
, B =

ω2
cτ

2

1 + ω2
cτ

2
, C = − ωcτ

1 + ω2
cτ

2
.

So we can now write

Aµ = M−1
µν Xν =

δµν + ω2
cτ

2 nµ nν − ωcτ ǫµνλ nλ

1 + ω2
cτ

2
Xν .

The α-component of the energy current is

jαε =

∫

d3p

h3
vα εα vµ Aµ(ε) =

2

3m

∫

d3p

h3
ε2 Aα(ε) ,

where we have replaced vα vµ → 2
3m ε δαµ. Next, we use

2

3m

∫

d3p

h3
ε2 Xν = − 5τ

3m
k2

B
T

∂T

∂xν

,

hence

jε = − 5τ

3m

k2
B
T

1 + ω2
cτ

2

(

∇T + ω2
cτ

2 n̂ (n̂·∇T ) + ωcτ n̂×∇T
)

.

We are given that n̂ = ẑ and ∇T = T ′(x) x̂. We see that the energy current jε is flowing both along −x̂ and along
−ŷ. Why does heat flow along ŷ? It is because the particles are charged, and as they individually flow along −x̂,
there is a Lorentz force in the −ŷ direction, so the energy flows along −ŷ as well.
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(8.3) Consider one dimensional motion according to the equation

ṗ+ γp = η(t) ,

and compute the average
〈

p4(t)
〉

. You should assume that

〈

η(s1) η(s2) η(s3) η(s4)
〉

= φ(s1 − s2)φ(s3 − s4) + φ(s1 − s3)φ(s2 − s4) + φ(s1 − s4)φ(s2 − s3)

where φ(s) = Γ δ(s). You may further assume that p(0) = 0.

Solution :

Integrating the Langevin equation, we have

p(t) =

t
∫

0

dt1 e
−γ(t−t

1
) η(t1) .

Raising this to the fourth power and taking the average, we have

〈

p4(t)
〉

=

t
∫

0

dt1 e
−γ(t−t

1
)

t
∫

0

dt2 e
−γ(t−t

2
)

t
∫

0

dt3 e
−γ(t−t

3
)

t
∫

0

dt4 e
−γ(t−t

4
)
〈

η(t1) η(t2) η(t3) η(t4)
〉

= 3Γ 2

t
∫

0

dt1 e
−2γ(t−t

1
)

t
∫

0

dt2 e
−2γ(t−t

2
) =

3Γ 2

4 γ2

(

1− e−2γt
)2

.

We have here used the fact that the three contributions to the average of the product of the four η’s each contribute
the same amount to 〈p4(t)〉. Recall Γ = 2Mγk

B
T , where M is the mass of the particle. Note that

〈

p4(t)
〉

= 3
〈

p2(t)
〉2

.
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(8.4) A photon gas in equilibrium is described by the distribution function

f0(p) =
2

ecp/kB
T − 1

,

where the factor of 2 comes from summing over the two independent polarization states.

(a) Consider a photon gas (in three dimensions) slightly out of equilibrium, but in steady state under the influ-
ence of a temperature gradient ∇T . Write f = f0 + δf and write the Boltzmann equation in the relaxation
time approximation. Remember that ε(p) = cp and v = ∂ε

∂p = cp̂, so the speed is always c.

(b) What is the formal expression for the energy current, expressed as an integral of something times the distri-
bution f?

(c) Compute the thermal conductivity κ. It is OK for your expression to involve dimensionless integrals.

Solution :

(a) We have

df0 = − 2cp eβcp

(eβcp − 1)2
dβ =

2cp eβcp

(eβcp − 1)2
dT

k
B
T 2

.

The steady state Boltzmann equation is v · ∂f0

∂r =
(

∂f
∂t

)

coll
, hence with v = cp̂,

2 c2 ecp/kB
T

(ecp/kB
T − 1)2

1

k
B
T 2

p ·∇T = −δf

τ
.

(b) The energy current is given by

jε(r) =

∫

d3p

h3
c2p f(p, r) .

(c) Integrating, we find

κ =
2c4τ

3h3k
B
T 2

∫

d3p
p2 ecp/kB

T

(ecp/kB
T − 1)2

=
8πk

B
τ

3c

(

k
B
T

hc

)3 ∞
∫

0

ds
s4 es

(es − 1)2

=
4k

B
τ

3π2c

(

k
B
T

hc

)3
∞
∫

0

ds
s3

es − 1
,

where we simplified the integrand somewhat using integration by parts. The integral may be computed in closed
form:

In =

∞
∫

0

ds
sn

es − 1
= Γ(n+ 1) ζ(n+ 1) ⇒ I3 =

π4

15
,

and therefore

κ =
π2k

B
τ

45 c

(

k
B
T

hc

)3

.
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(8.5) Suppose the relaxation time is energy-dependent, with τ(ε) = τ0 e
−ε/ε

0 . Compute the particle current j and
energy current jε flowing in response to a temperature gradient ∇T .

Solution :

Now we must compute

{

jα

jαε

}

=

∫

d3p

{

vα

ε vα

}

δf

= − 2n

3mk
B
T 2

∂T

∂xα

〈

τ(ε)
{ ε

ε2

}

(

ε− 5
2kB

T
)〉

,

where τ(ε) = τ0 e
−ε/ε

0 . We find

〈

e−ε/ε
0 εα

〉

= 2√
π
(k

B
T )−3/2

∞
∫

0

dε εα+
1

2 e−ε/kBT e−ε/ε
0

= 2√
π
Γ
(

α+ 3
2

)

(k
B
T )α

(

ε0
ε0 + k

B
T

)α+ 3

2

.

Therefore,

〈

e−ε/ε
0 ε

〉

= 3
2 kB

T

(

ε0
ε0 + k

B
T

)5/2

〈

e−ε/ε
0 ε2

〉

= 15
4 (k

B
T )2

(

ε0
ε0 + k

B
T

)7/2

〈

e−ε/ε
0 ε3

〉

= 105
8 (k

B
T )3

(

ε0
ε0 + k

B
T

)9/2

and

j =
5nτ0k

2
B
T

2m

ε
5/2
0

(ε0 + k
B
T )7/2

∇T

jε = −5nτ0k
2
B
T

4m

(

ε0
ε0 + k

B
T

)7/2(
2ε0 − 5k

B
T

ε0 + k
B
T

)

∇T .

The previous results are obtained by setting ε0 = ∞ and τ0 = 1/
√
2nv̄σ. Note the strange result that κ becomes

negative for k
B
T > 2

5ε0.
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(8.6) Use the linearized Boltzmann equation to compute the bulk viscosity ζ of an ideal gas.

(a) Consider first the case of a monatomic ideal gas. Show that ζ = 0 within this approximation. Will your
result change if the scattering time is energy-dependent?

(b) Compute ζ for a diatomic ideal gas.

Solution :

According to the Lecture Notes, the solution to the linearized Boltzmann equation in the relaxation time approxi-
mation is

δf = − τf0

k
B
T

{

mvαvβ
∂Vα

∂xβ
−
(

εtr + εrot
) k

B

cV
∇·V

}

.

We also have
Tr Π = nm 〈v2〉 = 2n 〈εtr〉 = 3p− 3ζ∇·V .

We then compute Tr Π:

Tr Π = 2n 〈εtr〉 = 3p− 3ζ∇·V

= 2n

∫

dΓ (f0 + δf) εtr

The f0 term yields a contribution 3nk
B
T = 3p in all cases, which agrees with the first term on the RHS of the

equation for Tr Π. Therefore

ζ∇·V = − 2
3n

∫

dΓ δf εtr .

(a) For the monatomic gas, Γ = {px, py, pz}. We then have

ζ∇·V =
2nτ

3k
B
T

∫

d3p f0(p) ε

{

mvαvβ
∂Vα

∂xβ
− ε

cV /kB
∇·V

}

=
2nτ

3k
B
T

〈(

2
3 − k

B

c
V

)

ε
〉

∇·V = 0 .

Here we have replaced mvαvβ → 1
3mv2 = 2

3εtr under the integral. If the scattering time is energy dependent, then
we put τ(ε) inside the energy integral when computing the average, but this does not affect the final result: ζ = 0.

(b) Now we must include the rotational kinetic energy in the expression for δf , and we have cV = 5
2kB

. Thus,

ζ∇·V =
2nτ

3k
B
T

∫

dΓ f0(Γ ) εtr

{

mvαvβ
∂Vα

∂xβ
−
(

εtr + εrot
) k

B

cV
∇·V

}

=
2nτ

3k
B
T

〈

2
3ε

2
tr −

k
B

c
V

(

εtr + εrot
)

εtr

〉

∇·V ,

and therefore

ζ =
2nτ

3k
B
T

〈

4
15 ε

2
tr − 2

5kB
T εtr

〉

= 4
15nτkB

T .
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(8.7) Consider a two-dimensional gas of particles with dispersion ε(k) = Jk2, where k is the wavevector. The
particles obey photon statistics, so µ = 0 and the equilibrium distribution is given by

f0(k) =
1

eε(k)/kB
T − 1

.

(a) Writing f = f0 + δf , solve for δf(k) using the steady state Boltzmann equation in the relaxation time
approximation,

v · ∂f
0

∂r
= −δf

τ
.

Work to lowest order in ∇T . Remember that v = 1
~

∂ε
∂k

is the velocity.

(b) Show that j = −λ∇T , and find an expression for λ. Represent any integrals you cannot evaluate as dimen-
sionless expressions.

(c) Show that jε = −κ∇T , and find an expression for κ. Represent any integrals you cannot evaluate as
dimensionless expressions.

Solution :

(a) We have

δf = −τ v · ∂f
0

∂r
= −τ v ·∇T

∂f0

∂T

= −2τ

~

J2k2

kBT
2

eε(k)/kB
T

(

eε(k)/kB
T − 1

)2 k·∇T

(b) The particle current is

jµ =
2J

~

∫

d2k

(2π)2
kµ δf(k) = −λ

∂T

∂xµ

= −4τ

~2

J3

kBT
2

∂T

∂xν

∫

d2k

(2π)2
k2 kµ kν

eJk
2/k

B
T

(

eJk
2/k

B
T − 1

)2

We may now send kµkν → 1
2k

2δµν under the integral. We then read off

λ =
2τ

~2

J3

kBT
2

∫

d2k

(2π)2
k4

eJk
2/k

B
T

(

eJk
2/k

B
T − 1

)2

=
τk2

B
T

π~2

∞
∫

0

ds
s2 es

(

es − 1
)2 =

ζ(2)

π

τk2
B
T

~2
.

Here we have used
∞
∫

0

ds
sα es

(

es − 1
)2 =

∞
∫

0

ds
α sα−1

es − 1
= Γ(α+ 1) ζ(α) .

(c) The energy current is

jµε =
2J

~

∫

d2k

(2π)2
Jk2 kµ δf(k) = −κ

∂T

∂xµ
.
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We therefore repeat the calculation from part (c), including an extra factor of Jk2 inside the integral. Thus,

κ =
2τ

~2

J4

kBT
2

∫

d2k

(2π)2
k6

eJk
2/k

B
T

(

eJk
2/k

B
T − 1

)2

=
τk3

B
T 2

π~2

∞
∫

0

ds
s3 es

(

es − 1
)2 =

6 ζ(3)

π

τk3
B
T 2

~2
.
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(8.8) Due to quantum coherence effects in the backscattering from impurities, one-dimensional wires don’t obey
Ohm’s law (in the limit where the ‘inelastic mean free path’ is greater than the sample dimensions, which you
may assume). Rather, let R(L) = R(L)/(h/e2) be the dimensionless resistance of a quantum wire of length L, in
units of h/e2 = 25.813 kΩ. Then the dimensionless resistance of a quantum wire of length L+ δL is given by

R(L + δL) = R(L) +R(δL) + 2R(L)R(δL) + 2 cosα
√

R(L)
[

1 +R(L)
]

R(δL)
[

1 +R(δL)
]

,

where α is a random phase uniformly distributed over the interval [0, 2π). Here,

R(δL) =
δL

2ℓ
,

is the dimensionless resistance of a small segment of wire, of length δL<∼ ℓ, where ℓ is the ‘elastic mean free path’.
(Using the Boltzmann equation, we would obtain ℓ = 2π~nτ/m.)

Show that the distribution function P (R, L) for resistances of a quantum wire obeys the equation

∂P

∂L
=

1

2ℓ

∂

∂R

{

R (1 +R)
∂P

∂R

}

.

Show that this equation* may be solved in the limits R ≪ 1 and R ≫ 1, with

P (R, z) =
1

z
e−R/z

for R ≪ 1, and

P (R, z) = (4πz)−1/2 1

R e−(lnR−z)2/4z

for R ≫ 1, where z = L/2ℓ is the dimensionless length of the wire. Compute 〈R〉 in the former case, and 〈lnR〉 in
the latter case.

Solution :

From the composition rule for series quantum resistances, we derive the phase averages

〈

δR
〉

=
(

1 + 2R(L)
)δL

2ℓ
〈

(δR)2
〉

=
(

1 + 2R(L)
)2

(

δL

2ℓ

)2

+ 2R(L)
(

1 +R(L)
) δL

2ℓ

(

1 +
δL

2ℓ

)

= 2R(L)
(

1 +R(L)
) δL

2ℓ
+O

(

(δL)2
)

,

whence we obtain the drift and diffusion terms

F1(R) =
2R+ 1

2ℓ
, F2(R) =

2R(1 +R)

2ℓ
.

Note that 2F1(R) = dF2/dR, which allows us to write the Fokker-Planck equation as

∂P

∂L
=

∂

∂R

{R (1 +R)

2ℓ

∂P

∂R

}

.

Defining the dimensionless length z = L/2ℓ, we have

∂P

∂z
=

∂

∂R

{

R (1 +R)
∂P

∂R

}

.
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In the limit R ≪ 1, this reduces to
∂P

∂z
= R ∂2P

∂R2
+

∂P

∂R ,

which is satisfied by P (R, z) = z−1 exp(−R/z). For this distribution one has 〈R〉 = z.

In the opposite limit, R ≫ 1, we have

∂P

∂z
= R2 ∂2P

∂R2
+ 2R ∂P

∂R

=
∂2P

∂ν2
+

∂P

∂ν
,

where ν ≡ lnR. This is solved by the log-normal distribution,

P (R, z) = (4πz)−1/2 e−(ν+z)2/4z .

Note that

P (R, z) dR = (4πz)−1/2 exp

{

− (lnR− z)2

4z

}

d lnR .

One then obtains 〈lnR〉 = z.
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