
6 Interacting Classical Systems : Worked Examples

(6.1) Consider a model in which there are three possible states per site, which we can denote by A, B, and V. The
states A and B are for our purposes identical. The energies of A-A, A-B, and B-B links are all identical and equal to
W . The state V represents a vacancy, and any link containing a vacancy, meaning A-V, B-V, or V-V, has energy 0.

(a) Suppose we write σ = +1 for A, σ = −1 for B, and σ = 0 for V. How would you write a Hamiltonian for
this system? Your result should be of the form

Ĥ =
∑

〈ij〉

E(σi , σj) .

Find a simple and explicit function E(σ, σ′) which yields the correct energy for each possible bond configu-
ration.

(b) Consider a triangle of three sites. Find the average total energy at temperature T . There are 33 = 27 states
for the triangle. You can just enumerate them all and find the energies.

(c) For a one-dimensional ring ofN sites, find the 3×3 transfer matrixR. Find the free energy per site F (T,N)/N
and the ground state entropy per site S(T,N)/N in the N → ∞ limit for the cases W < 0 and W > 0.
Interpret your results. The eigenvalue equation for R factorizes, so you only have to solve a quadratic
equation.

Solution :

(a) The quantity σ2
i is 1 if site i is in state A or B and is 0 in state V. Therefore we have

Ĥ =W
∑

〈ij〉

σ2
i σ

2
j .

(b) Of the 27 states, eight have zero vacancies – each site has two possible states A and B – with energy E =
3W . There are 12 states with one vacancy, since there are three possible locations for the vacancy and then four
possibilities for the remaining two sites (each can be either A or B). Each of these 12 single vacancy states has
energy E = W . There are 6 states with two vacancies and 1 state with three vacancies, all of which have energy
E = 0. The partition function is therefore

Z = 8 e−3βW + 12 e−βW + 7 .

Note that Z(β = 0) = Tr 1 = 27 is the total number of ‘microstates’. The average energy is then

E = − 1

Z

∂Z

∂β
=

(
24 e−3βW + 12 e−βW

8 e−3βW + 12 e−βW + 7

)

W

(c) The transfer matrix is

Rσσ′ = e−βWσ2σ′2

=





e−βW e−βW 1
e−βW e−βW 1
1 1 1



 ,

where the row and column indices are A (1), B (2), and V (3), respectively. The partition function on a ring of N
sites is

Z = λN1 + λN2 + λN3 ,
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where λ1,2,3 are the three eigenvalues of R. Generally the eigenvalue equation for a 3 × 3 matrix is cubic, but
we can see immediately that detR = 0 because the first two rows are identical. Thus, λ = 0 is a solution to the
characteristic equation P (λ) = det

(
λI − R

)
= 0, and the cubic polynomial P (λ) factors into the product of λ and

a quadratic. The latter is easily solved. One finds

P (λ) = λ3 − (2x+ 1)λ2 + (2x− 2)λ ,

where x = e−βW . The roots are λ = 0 and

λ± = x+ 1
2 ±

√

x2 − x+ 9
4 .

The largest of the three eigenvalues is λ+, hence, in the thermodynamic limit,

F = −k
B
T lnZ = −Nk

B
T ln

(

e−W/kBT + 1
2 +

√

e−2W/k
B
T − e−W/k

B
T + 9

4

)

.

The entropy is S = −∂F
∂T . In the limit T → 0 with W < 0, we have

λ+(T → 0 , W < 0) = 2 e|W |/kBT + e−|W |/kBT +O(e−2|W |/kBT
)

.

Thus

F (T → 0 , W < 0) = −N |W | −Nk
B
T ln 2 + . . .

S(T → 0 , W < 0) = N ln 2 .

When W > 0, we have
λ+(T → 0 , W > 0) = 2 + 2

3 e
−W/kBT +O(e−2W/kBT

)
.

Then

F (T → 0 , W > 0) = −Nk
B
T ln 2− 1

3NkB
T e−W/kBT + . . .

S(T → 0 , W > 0) = N ln 2 .

Thus, the ground state entropies are the same, even though the allowed microstates are very different. For W < 0,
there are no vacancies. For W > 0, every link must contain at least one vacancy.
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(6.2) The Blume-Capel model is a spin-1 version of the Ising model, with Hamiltonian

H = −J
∑

〈ij〉

Si Sj −∆
∑

i

S2
i ,

where Si ∈ {−1 , 0 , +1} and where the first sum is over all links of a lattice and the second sum is over all sites. It
has been used to describe magnetic solids containing vacancies (S = 0 for a vacancy) as well as phase separation
in 4He − 3He mixtures (S = 0 for a 4He atom). For parts (b), (c), and (d) you should work in the thermodynamic
limit. The eigenvalues and eigenvectors are such that it would shorten your effort considerably to use a program
like Mathematica to obtain them.

(a) Find the transfer matrix for the d = 1 Blume-Capel model.

(b) Find the free energy F (T,∆, N).

(c) Find the density of S = 0 sites as a function of T and ∆.

(d) Exciting! Find the correlation function 〈Sj Sj+n 〉 .

Solution :

(a) The transfer matrix R can be written in a number of ways, but it is aesthetically pleasing to choose it to be
symmetric. In this case we have

RSS′ = eβJSS′

eβ∆(S2+S′2)/2 =





eβ(∆+J) eβ∆/2 eβ(∆−J)

eβ∆/2 1 eβ∆/2

eβ(∆−J) eβ∆/2 eβ(∆+J)



 .

(b) For an N -site ring, we have

Z = Tr e−βH = Tr
(
RN ) = λN+ + λN0 + λN− ,

where λ+, λ0, and λ− are the eigenvalues of the transfer matrix R. To find the eigenvalues, note that

~ψ0 =
1√
2





1
0
−1





is an eigenvector with eigenvalue λ0 = 2 eβ∆ sinh(βJ). The remaining eigenvectors must be orthogonal to ψ0, and
hence are of the form

~ψ± =
1

√

2 + x2±





1
x±
1



 .

We now demand

R





1
x
1



 =





2 eβ∆ cosh(βJ) + x eβ∆/2

2 eβ∆/2 + x

2 eβ∆ cosh(βJ) + x eβ∆/2



 =





λ
λx
λ



 ,

resulting in the coupled equations

λ = 2 eβ∆ cosh(βJ) + x eβ∆/2

λx = 2eβ∆/2 + x .
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Eliminating x, one obtains a quadratic equation for λ. The solutions are

λ± =
(

eβ∆ cosh(βJ) + 1
2

)

±
√
(

eβ∆ cosh(βJ) + 1
2

)2

+ 2 eβ∆

x± = e−β∆/2

{(
1
2 − eβ∆ cosh(βJ)

)

±
√
(

1
2 − eβ∆ cosh(βJ)

)2

+ 2 eβ∆
}

.

Note λ+ > λ0 > 0 > λ− and that λ+ is the eigenvalue of the largest magnitude. This is in fact guaranteed by the
Perron-Frobenius theorem, which states that for any positive matrix R (i.e. a matrix whose elements are all positive)
there exists a positive real number p such that p is an eigenvalue ofR and any other (possibly complex) eigenvalue

of R is smaller than p in absolute value. Furthermore the associated eigenvector ~ψ is such that all its components
are of the same sign. In the thermodynamic limit N → ∞ we then have

F (T,∆, N) = −Nk
B
T lnλ+ .

(c) Note that, at any site,

〈S2〉 = − 1

N

∂F

∂∆
=

1

β

∂ lnλ+
∂∆

,

and furthermore that
δS,0 = 1− S2 .

Thus,

ν0 ≡ N0

N
= 1− 1

β

∂ lnλ+
∂∆

.

After some algebra, find

ν0 = 1− r − 1
2√

r2 + 2 eβ∆
,

where
r = eβ∆ cosh(βJ) + 1

2 .

It is now easy to explore the limiting cases ∆ → −∞, where we find ν0 = 1, and ∆ → +∞, where we find ν0 = 0.
Both these limits make physical sense.

(d) We have

C(n) = 〈Sj Sj+n 〉 = Tr
(
ΣRn ΣRN−n

)

Tr
(
RN
) ,

where ΣSS′ = S δSS′ . We work in the thermodynamic limit. Note that 〈+ |Σ |+ 〉 = 0, therefore we must write

R = λ+ |+ 〉〈+ |+ λ0 | 0 〉〈 0 |+ λ− | − 〉〈− | ,

and we are forced to choose the middle term for the n instances of R between the two Σ matrices. Thus,

C(n) =

(
λ0
λ+

)n
∣
∣〈+ |Σ | 0 〉

∣
∣
2

.

We define the correlation length ξ by

ξ =
1

ln
(
λ+/λ0

) ,

in which case
C(n) = Ae−|n|/ξ ,

where now we generalize to positive and negative values of n, and where

A =
∣
∣〈+ |Σ | 0 〉

∣
∣
2
=

1

1 + 1
2x

2
+

.
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(6.3) DC Comics superhero Clusterman and his naughty dog Henry are shown in Fig. 1. Clusterman, as his name
connotes, is a connected diagram, but the diagram for Henry contains some disconnected pieces.

(a) Interpreting the diagrams as arising from the Mayer cluster expansion, compute the symmetry factor sγ for
Clusterman.

(b) What is the total symmetry factor for Henry and his disconnected pieces? What would the answer be if,
unfortunately, another disconnected piece of the same composition were to be found?

(c) What is the lowest order virial coefficient to which Clusterman contributes?

Figure 1: Mayer expansion diagrams for Clusterman and his dog.

Solution :

First of all, this is really disgusting and you should all be ashamed that you had anything to do with this problem.

(a) Clusterman’s head gives a factor of 6 because the upper three vertices can be permuted among themselves
in any of 3! = 6 ways. Each of his hands gives a factor of 2 because each hand can be rotated by π about its
corresponding arm. The arms themselves can be interchanged, by rotating his shoulders by π about his body axis
(Clusterman finds this invigorating). Finally, the analysis for the hands and arms applies just as well to the feet
and legs, so we conclude

sγ = 6 ·
(
22 · 2

)2
= 3 · 27 = 384 .

Note that an arm cannot be exchanged with a leg, because the two lower vertices on Clusterman’s torso are not
equivalent. Plus, that would be a really mean thing to do to Clusterman.

(b) Henry himself has no symmetries. The little pieces each have s△ = 3!, and moreover they can be exchanged,

yielding another factor of 2. So the total symmetry factor for Henry plus disconnected pieces is s△△ = 2! ·
(3!)2 = 72. Were another little piece of the same. . . er. . . consistency to be found, the symmetry factor would be

s△△△ = 3! · (3!)3 = 24 · 34 = 1296, since we get a factor of 3! from each of the △ pieces, and a fourth factor of 3!
from the permutations among the △s.

(c) There are 18 vertices in Clusterman, hence he will first appear in B18.
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(6.4) Use the high temperature expansion to derive the spin-spin correlation functions for a spin- 12 (σn = ±1)
Ising chain and Ising ring. Compare with the results in chapter 6 of the lecture notes.

Solution :

The spin-spin correlation function Ckl = 〈σk σl〉 is expressed as a ratio Ykl/Z as in eqn. 6.51 of the Lecture Notes
(LN). For the chain, the only diagram which contributes to Z is Γ = {∅}, i.e. the trivial empty lattice. This is
because there is no way to form closed loops on a chain. Thus Zring = 2N (coshβJ)N−1 since the number of links
is N

L
= N − 1 (see LN eqn. 6.45). For the chain, in addition to the empty lattice, there is one closed loop that can

be formed which includes every link of the chain. Thus Zchain = 2N(coshβJ)N
(
1 + xN

)
, where x = tanhβJ . As

for the numerator Ykl, on the chain there is only one possible string, shown in Fig. 2, which extends between sites
k and l. Thus Y chain

kl = 2N (coshβJ)N−1x|k−l|. On the ring there are two possible strings, since the ring is multiply

connected. Thus Y ring
kl = 2N(coshβJ)N

(
x|k−l| + xN−|k−l|

)
. Therefore,

Cchain
kl = x|k−l| , Cring

kl =
x|k−l| + xN−|k−l|

1 + xN
.

1

1 1
2 2

2 3

3 3

4

4 4

5 6 7 8 9 10 11 12

5
5

66

7 7

88

9 9

10 10

11 11

1212

Figure 2: Diagrams for the numerator of the high temperature expansion of the spin-spin correlation function on
an Ising ring and chain.
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(6.5) An ionic solution of dielectric constant ǫ and mean ionic density n fills a grounded conducting sphere of
radius R. A charge Q lies at the center of the sphere. Calculate the ionic charge density as a function of the radial
coordinate r, assuming Q/r ≪ k

B
T .

Solution :

Debye-Hückel theory tells us that

n±(r) =
1
2n∞ e∓eφ(r)/kBT

and

∇2φ = −4πe

ǫ

(
n+ − n−

)
− 4π

ǫ
ρ

ext
,

where ǫ is the dielectric constant. Assuming φ≪ k
B
T , we have ∇2φ = κ2

D
φ− 4πǫ−1ρ

ext
, with

κ
D
=

√

4πn∞e
2

ǫ k
B
T

.

Assuming a spherically symmetric solution, with a point charge Q at the origin, we solve

(

− 1

r

∂2

∂r2
r + κ2

D

)

φ =
4πQ

ǫ
δ(r) .

The solution is then of the form φ(r) = 1
r u(r), with u′′ = κ2

D
u for r > 0. Thus,

φ(r) = A
cosh(κ

D
r)

r
+B

sinh(κ
D
r)

r
.

As r → 0 we must have an unscreened charge Q, hence A = Q/ǫ. The boundary condition on the conducting
sphere is φ(R) = 0, hence B = −A ctnh (κ

D
R). Thus,

φ(r) =
Q cosh(κ

D
r)

ǫ r
·
(

1− tanh(κ
D
r)

tanh(κ
D
R)

)

.

We stress that this solution is valid only where e φ(r) ≪ k
B
T .
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(6.6) Consider a three-dimensional gas of point particles interacting according to the potential

u(r) =







+∆0 if r ≤ a

−∆1 if a < r ≤ b

0 if b < r ,

where ∆0,1 are both positive. Compute the second virial coefficient B2(T ) and find a relation which determines
the inversion temperature in a throttling process.

Solution :

The Mayer function is

f(r) =







e−∆0/kBT − 1 if r ≤ 0

e∆1/kBT − 1 if a < r ≤ b

0 if b < r .

The second virial coefficient is

B2(T ) = − 1
2

∫

d3r f(r)

=
2πa3

3
·
[
(
1− e−∆0/kBT

)
+ (s3 − 1)

(
1− e∆1/kBT

)
]

,

where s = b/a. The inversion temperature is a solution of the equation B2(T ) = TB′
2(T ), which gives

s3 − 1 =
1 +

(
∆0

k
B
T − 1

)

e−∆0/kBT

1 +
(

∆
1

k
B
T + 1

)

e∆1
/k

B
T

.
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(6.7) At the surface of every metal a dipolar layer develops which lowers the potential energy for electrons inside
the metal. Some electrons near the surface escape to the outside, leaving a positively charged layer behind, while
overall there is charge neutrality. The situation is depicted in Fig. 3. The electron density outside the metal is very
low and Maxwell-Boltzmann statistics are appropriate.

Figure 3: Electron distribution in the vicinity of the
surface of a metal.

(a) Consider a flat metallic surface, normal to x̂, located at
x = 0. Assume for x > 0 an electronic distribution n(x) =
n0 exp(eφ/k

B
T ), where φ is the electric potential. For x > 0

there are only electrons; all the positive charges are located
within the metal. Write down the self-consistent equation for
the potential φ(x).

(b) Having found the self-consistent equation for φ(x), show
that, multiplying by φ′(x), the equation can be integrated
once, analogous to the conservation of energy for mechanical
systems (with φ playing the role of the coordinate and x play-
ing the role of time). Show that the equation can be integrated
once again to yield φ(x), with the constant determined by the
requirement that n(x = 0) = n0.

(c) Find n(x).

Solution :

(a) The self-consistent equation is Poisson’s equation,

∇2φ = −4πρ = 4πen0 e
eφ/kBT .

Since the only variation is along x, we have φ′′ = 4πen0 e
eφ/kBT . Multiplying each side by dφ

dx , we have

d

dx

(
1
2φ

′2
)
=

d

dx

(

4πn0 kB
T eeφ/kBT

)

,

and integrating this equation from x to ∞ we obtain

dφ

dx
= −(8πn0 kB

T )1/2 eeφ/2kBT .

Note also the choice of sign here, due to the fact that the potential −eφ for electrons must increase with x. The
boundary term at x = ∞ must vanish since n(∞) = 0, which requires eeφ(∞)/kBT = 0.

(b) Integrating once more, we have

e−eφ(x)/2kBT =

(
2πn0 e

2

k
B
T

)1/2

(x + a) ,

where a is a constant of integration. Since n(x = 0) ≡ n0, we must have φ(0) = 0, and hence

a =

(
k

B
T

2πn0 e
2

)1/2

.

Thus,

φ(x) = −2k
B
T

e
ln

(
x+ a

a

)

.

(c) The electron number distribution is then

n(x) = n0

(
a

x+ a

)2

.

9



(6.8) In §6.4.3 of the notes, the virial equation of state is derived for a single species of particle.

(a) Generalize eqn. 5.160 to the case of two species interacting by uσσ′ (r), where σ and σ′ are the species labels.

(b) For a plasma, show from Debye-Hückel theory that the pair correlation function is gσσ′ ∝ exp
(
−σσ′q2φ(r)/k

B
T
)
,

where σ and σ′ are the signs of the charges (magnitude q), and φ(r) is the screened potential due to a unit
positive test charge.

(c) Find the equation of state for a three-dimensional two-component plasma, in the limit where T is large.

Solution :

(a) Let i = 1, . . . , N+ +N− index all the particles, and let σi = ±1 denote the sign of the charge of particle i, with
σi = +1 for 1 ≤ i ≤ N+ and σi = −1 for (N++1) ≤ i ≤ (N++N−). In a globally neutral system, N+ = N− ≡ 1

2N .
We define

gµν(r) ≡
1

nµnν

〈∑

i6=j

δ(r − xi) δ(xj) δσ
i
,µ δσ

j
,ν

〉
,

where nµ is the density of particles of species µ, with µ = ±1. As defined, gµν(r) → 1 as r → ∞. If instead we

normalize gµν by dividing by n2
tot = (n+ + n−)

2, then we would have gµν(r → ∞) = 1
4 . We next work on the

virial equation of state,

p

k
B
T

=
N+ +N−

V
− 1

3V k
B
T

N++N
−∑

i=1

〈
xi ·∇iW

〉
.

The potential is

W =
∑

i<j

σi σj q
2

|xi − xj |
≡
∑

i<j

uσ
i
σ
j

(
|xi − xj |

)
,

with uσσ′(r) = σσ′q2/r. Then using translational invariance one has

p

k
B
T

= n+ + n− − 2π

3k
B
T

∑

σ,σ′

nσn σ′

∞∫

0

dr r3 u′σσ′ (r) gσσ′ (r)

(b) According to Debye-Hückel theory,

gσσ′ (r) = exp

(

− σσ′q φ(r)

k
B
T

)

,

where φ(r) is the screened potential at r due to a point charge q at the origin, which satisfies

∇2φ = 4πnq sinh
(
qφ/k

B
T
)
− 4πq δ(r) ,

where n+ = n− ≡ 1
2n. In the high temperature limit, we can expand the sinh function and we obtain the Yukawa

potential

φ(r) =
q

r
e−κDr ,

where

κ
D
=

(
4πnq2

k
B
T

)1/2
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is the Debye screening wavevector. Thus, we have

p

k
B
T

= n− πn2

6k
B
T

∞∫

0

dr r3
(

− q2

r2

)
∑

σ,σ′

σσ′ gσσ′ (r)

= n− 2πn2q3

3(k
B
T )2

∞∫

0

dr r φ(r) = n− 2πn2q4

3(k
B
T )2κ

D

= n

(

1−
√
π n1/2 q3

3 (k
B
T )3/2

)

.
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(6.9) Consider a liquid where the interaction potential is u(r) = ∆0 (a/r)
k , where ∆0 and a are energy and

length scales, respectively. Assume that the pair distribution function is given by g(r) ≈ e−u(r)/kBT . Compute the
equation of state. For what values of k do your expressions converge?

Solution:

According to the virial equation of state in eqn. 6.157 of the Lecture Notes,

p = nk
B
T − 2

3πn
2

∞∫

0

dr r3 g(r)u′(r) .

Substituting for u(r) and g(r) as in the statement of the problem, we change variables to

s ≡ u(r)

k
B
T

⇒ ds =
u′(r)

k
B
T
dr ,

so

r = a

(
∆0

k
B
T

)1/k

s−1/k

and

r3 g(r)u′(r) dr = k
B
T a3

(
∆0

k
B
T

)3/k

s−3/k e−s ds .

We then have

p = nk
B
T + 2

3πn
3a3k

B
T

(
∆0

k
B
T

)3/k
∞∫

0

ds s−3/k e−s

= nk
B
T

{

1 + 2
3πΓ

(
1− 3

k

)
na3
(

∆0

k
B
T

)3/k
}

.

Note that a minus sign appears because we must switch the upper and lower limits on the s integral. This expres-
sion converges provided k < 0 or k > 3.
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(6.10) Consider a charge Q impurity located at the origin of a two-dimensional metallic plane. You may model
the plane initially as a noninteracting Fermi gas in the presence of a neutralizing background. Poisson’s equation
is

∇2φ = 4πe
[
n(ρ)− n0

]
δ(z)− 4πQ δ(ρ) δ(z) ,

where r = (ρ, z) is decomposed into a two-dimensional vector ρ and the scalar z, and where n0 is the number
density of electrons at |ρ| = ∞.

(a) Using the Thomas-Fermi approach, find the two-dimensional electron number density n(ρ) in terms of the
local potential φ(ρ, 0).

(b) By Fourier transformation, show that

φ̂(k, q) =
4πQ

k2 + q2
− 4πn0e

2

εF

χ̂(k)

k2 + q2
,

where k is a two-dimensional wavevector, and

χ̂(k) =

∞∫

−∞

dq

2π
φ̂(k, q) .

(c) Solve for χ̂(k) and then for φ̂(k, q).

(d) Derive an expression for the potential φ(ρ, z).

(e) Derive an expression for the local charge density ̺(ρ) = en0 − en(ρ). Show that ̺(ρ) = Q
2πλ2 f(ρ/λ), where

λ is a screening length and f(s) is some function, and expression for which you should derive. Sketch f(s).

Solution:

(a) In two dimensions we have

n = 2

∫
d2k

(2π)2
Θ(kF − k) =

k2
F

2π
=
mεF
π~2

,

where we have used εF = ~
2k2

F
/2m. In the presence of a potential, the energy levels are shifted and it is the

electrochemical potential ε∞
F

= εF − eφ which is constant throughout the system. Thus, the local electron density
is

n(ρ) =
m

π~2

[

ε∞
F

+ e φ(ρ, 0)
]

= n0 +
me

π~2
φ(ρ, 0) .

Here, φ(r) = φ(ρ, z) is the electrostatic potential in three-dimensional space. When we restrict to the z = 0 plane
we write φ(ρ, 0).

(b) We now have

∇2φ =
4

aB

φ(ρ, 0) δ(z)− 4πQ δ(ρ) δ(z) ,

where a
B
= ~

2/me2 is the Bohr radius. Now we take the Fourier transform by multiplying the above equation by

eik·ρeiqz and then integrating over all ρ and z. This gives

−(k2 + q2)φ̂(k, q) =
4

a
B

χ̂(k)
︷ ︸︸ ︷
∞∫

−∞

dq

2π
φ̂(k, q) −4πQ ,

13



Integrate@BesselJ@0, u aD ê H1 + uL, 8u, 0, Infinity<, Assumptions Ø Re@aD > 0 && Abs@Im@aDD ã 0D

1

2
p H-BesselY@0, aD + StruveH@0, aDL

F@x_D := 1 ê x +
1

2
p HBesselY@0, xD - StruveH@0, xDL

Plot@F@xD, 8x, 0, 10<, AxesLabel Ø 8s, F@s, 0D<, PlotStyle Ø ThickD

2 4 6 8 10
s

0.05

0.10

0.15

0.20

FHs, 0L

Figure 4: Plot of the screening charge density in units of −Q/2πλ2 for problem (10).

hence

φ̂(k, q) =
4πQ

k2 + q2
− 4

a
B

χ̂(k)

k2 + q2
.

(c) To solve for χ̂(k) we integrate the above equation over q and use the fact that

∞∫

−∞

dq

2π

eiqz

k2 + q2
=
e−|kz|

2 |k| .

Thus,

χ̂(k) =
2πQ

|k| − 2

|ka
B
|
χ̂(k)

Thus,

χ̂(k) =
2πQ

|k|+ λ−1
,

where λ = 1
2aB

. Plugging this back into our equation for φ̂(k, q), we obtain

φ̂(k, q) =
4πQ · |kλ|

(
k2 + q2

)(
1 + |kλ|

) .

14



(d) Now we Fourier transform back to real space:

φ(ρ, z) =

∫
d2k

(2π)2

∞∫

−∞

dq

2π
φ̂(k, q) eik·ρ eiqz

=

∫
d2k

(2π)2
e−|kz|

2 |k| · 4πQ |kλ|
1 + |kλ| · eik·ρ

=
Q

λ
F
(
ρ/λ, |z|/λ

)
,

where

F (σ, ζ) =

∞∫

0

du
u

1 + u
J0(σu) e

−ζu ,

where J0(s) is the Bessel function of order zero.

(e) We have

̺(ρ) = e
[
n0 − n(ρ)

]
= − Q

2πλ2
F (ρ/λ, 0) .

Note

F (ρ/λ, 0) =

∞∫

0

du
u J0(uρ/λ)

1 + u
=
λ

ρ
−

∞∫

0

du
J0(uρ/λ)

1 + u

=
λ

ρ
+ 1

2π Y0(ρ/λ)− 1
2πH0(ρ/λ) ,

where Y0(s) is a Bessel function of the second kind and H0(s) is the Struve function. Asymptotically1 we obtain

̺(ρ) =
Q

2πλ2

{
p−1
∑

n=1

(−1)n Γ2
(
1
2 + n

)
(
2λ

ρ

)(2n+1)

+ O
(
2λ/ρ)2p+1

}

.

Note that ̺(ρ) ∝ ρ−3 at large distances. In the above formula, p is arbitrary. Since Γ(z+ 1
2 ) ∼ z ln z−z, the optimal

value of p to minimize the remainder in the sum is p ≈ ρ/2λ. See Fig. 4 for a sketch.

1See Gradshteyn and Ryzhik §8.554, then use Γ(z) Γ(1− z) = π csc(πz).
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(11) The grand partition function for a system is given by the expression

Ξ = (1 + z)V/v0
(
1 + zαV/v0

)
,

where α > 0. In this problem, you are to work in the thermodynamic limit. You will also need to be careful to
distinguish the cases |z| < 1 and |z| > 1.

(a) Find an expression for the pressure p(T, z).

(b) Find an expression for the number density n(T, z).

(c) Plot v(p, T ) as a function of p for different temperatures and show there is a first order phase transition, i.e.

a discontinuity in v(p), which occurs for |z| = 1. What is the change in volume at the transition? .

Solution :

(a) The grand potential is

Ω(T, z) = −k
B
T ln Ξ = −kB

T V

v0
ln(1 + z)− k

B
T ln

(
1 + zαV/v0

)
.

Now take the thermodynamic limit V/v0 → ∞. One then has

Ω(T, z) = −kB
T V

v0
ln(1 + z)−

{

0 if |z| < 1
αkBT V

v
0

ln z if |z| > 1 .

From this we compute the pressure,

p = −
(
∂Ω

∂V

)

T,µ

=
k

B
T

v0
ln(1 + z) +

αk
B
T

v0
· z

αV/v0 ln z

1 + zαV/v
0

=
k

B
T

v0
ln(1 + z) +

{

0 if |z| < 1
αkBT
v
0

ln z if |z| > 1 .

(b) For the density, we have

n = − z

V k
B
T

(
∂Ω

∂z

)

T,V

=
1

v0
· z

1 + z
+
α

v0
· zαV/v0

1 + zαV/v
0

=
1

v0
· z

1 + z
+

{

0 if |z| < 1

α/v0 if |z| > 1 .

(c) We eliminate z from the above equations, and we write v = 1/n as the volume per particle. The fugacity z(v)
satisfies

z(v) =







v0
v−v

0

if v > 2v0

1 if
2v0

1+2α < v < 2v0

v0−αv
(1+α)v−v

0

if
v0

1+α < v <
2v0

1+2α

∞ if v <
v0

1+α
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We then have

pv0
k

B
T

=







ln
(

v
v−v

0

)

v > 2v0

ln 2
2v0

1+2α < v < 2v0

ln
[(

v
(1+α)v−v

0

)(
v0−αv

(1+α)v−v
0

)α]
v0

1+α < v <
2v0

1+2α

∞ v <
v0

1+α

Sample plots of z(v) and p(v) are shown in Fig. 5.

Figure 5: z(v) and p(v) for α = 0.2, 1.0, and 3.0.

17



(6.12) In problem 11, you considered the thermodynamic properties associated with the grand partition function
Ξ(V, z) = (1 + z)V/v0

(
1 + zαV/v0

)
. Consider now the following partition function:

Ξ(V, z) = (1 + z)V/v0

K∏

j=1

{

1 +

(
z

σj

)αV/Kv0
}

.

Consider the thermodynamic limit where α is a number on the order of unity, V/v0 → ∞, and K → ∞ but with
Kv0/V → 0. For example, we might have K ∝ (V/v0)

1/2.

(a) Show that the number density is

n(T, z) =
1

v0

z

1 + z
+
α

v0

|z|∫

0

dσ g(σ) ,

where

g(σ) =
1

K

K∑

j=1

δ(σ − σj) .

(b) Derive the corresponding expression for p(T, z).

(c) In the thermodynamic limit, the spacing between consecutive σj values becomes infinitesimal. In this case,
g(σ) approaches a continuous distribution. Consider the flat distribution,

g(σ) =
1

w
Θ(σ − r)Θ(r + w − σ) =

{

w−1 if r < σ < r + w

0 otherwise.

The model now involves three dimensionless parameters2: α, r, and w. Solve for z(v). You will have to take
cases, and you should find there are three regimes to consider3.

(d) Plot pv0/kB
T versus v/v0 for the case α = 1

4 and r = w = 1.

(e) Comment on the critical properties (i.e. the singularities) of the equation of state.

Solution :

(a) We have

1

V
ln Ξ =

1

v0
ln(1 + z) +

α

Kv0

K∑

i=1

ln(z/σi)Θ
(
|z| − σi

)
,

so from n = V −1z ∂ ln Ξ/∂z,

n =
1

v0

z

1 + z
+

α

Kv0

K∑

i=1

Θ
(
|z| − σi

)

=
1

v0

z

1 + z
+
α

v0

|z|∫

0

dσ g(σ) .

2The quantity v
0

has dimensions of volume and disappears from the problem if one defines ṽ = v/v
0

.
3You should find that a fourth regime, v < (1 + r−1)v

0
, is not permitted.
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(b) The pressure is p = V −1k
B
T ln Ξ:

p =
k

B
T

v0
ln(1 + z) +

αk
B
T

Kv0

K∑

i=1

ln(z/σi)Θ
(
|z| − σi

)

=
k

B
T

v0
ln(1 + z) +

αk
B
T

v0

|z|∫

0

dσ g(σ) ln
(
z/σ

)
.

(c) We now consider the given form for g(σ). From our equation for n(z), we have

nv0 =
v0
v

=







z
1+z if |z| ≤ r
z

1+z + α
w (z − r) if r ≤ |z| ≤ r + w

z
1+z + α if r + w ≤ |z| .

We need to invert this result. We assume z ∈ R
+. In the first regime, we have

z ∈ [ 0 , r ] ⇒ z =
v0

v − v0
with

v

v0
∈
[
1 + r−1 , ∞

]
.

In the third regime,

z ∈ [ r + w , ∞ ] ⇒ z =
v0 − αv

(1 + α) v − v0
with

v

v0
∈
[

1

1 + α
,

1 + r + w

(1 + α)(r + w) + α

]

.

Note that there is a minimum possible volume per particle, vmin = v0/(1 +α), hence a maximum possible density
nmax = 1/vmin. This leaves us with the second regime, where z ∈ [ r , r + w ]. We must invert the relation

v0
v

=
z

1 + z
+
α

w
(z − r) ⇒ α

w
z2 +

(
α

w
(1− r) + 1− v0

v

)

z −
(
αr

w
+
v0
v

)

= 0 .

obtaining

z =
−
[
α
w (1 − r) + 1− v0

v

]

+

√
[
α
w (1− r) + 1− v

0

v

]2

+ 4α
w

(
αr
w +

v
0

v

)

2α/w
,

which holds for

a ∈ [ r , r + w ] ⇒ v

v0
∈
[

1 + r + w

(1 + α)(r + w) + α
, 1 + r−1

]

.

The dimensionless pressure π = pv0/kB
T is given by

z ∈ [ 0 , r ] ⇒ π = ln(1 + z) with
v

v0
∈
[
1 + r−1 , ∞

]
.

and
z ∈ [ r + w , ∞ ] ⇒ π = ln(1 + z) + α ln z − α

w

[

(r + w) ln(r + w)− r ln r − w
]

in the large volume region and
v

v0
∈
[

1

1 + α
,

1 + r + w

(1 + α)(r + w) + α

]

in the small volume region. In the intermediate volume region, we have

π = ln(1 + z) +
α

w
(z − r) ln z − α

w

(

z ln z − r ln r − z + r
)

,
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which holds for

z ∈ [ r , r + w ] ⇒ v

v0
∈
[

1 + r + w

(1 + α)(r + w) + α
, 1 + r−1

]

.

(d) The results are plotted in Fig. 4. Note that v is a continuous function of π, indicating a second order transition.

(e) Consider the thermodynamic behavior in the vicinity of z = r, i.e. near v = (1 + r−1)v0. Let’s write z = r + ǫ
and work to lowest nontrivial order in ǫ. On the low density side of this transition, i.e. for ǫ < 0, we have, with
ν = nv0 = v0/v,

ν =
z

1 + z
=

r

1 + r
+

ǫ

(1 + r)2
+O(ǫ2)

π = ln(1 + z) = ln(1 + r) +
ǫ

1 + r
+O(ǫ2) .

Eliminating ǫ, we have
ν < νc ⇒ π = ln(1 + r) + (1 + r)(ν − νc) + . . . ,

where νc = r/(1 + r) is the critical dimensionless density. Now investigate the high density side of the transition,
where ǫ > 0. Integrating over the region [ r , r + ǫ ], we find

ν =
z

1 + z
+
α

w
(z − r) =

r

1 + r
+

[
1

(1 + r)2
+
α

w

]

ǫ+O(ǫ2)

π = ln(1 + z) +
α

w

[

z + r ln(r/z)− r
]

= ln(1 + r) +
ǫ

1 + r
+O(ǫ2) .

Figure 6: Fugacity z and dimensionless pressure pv0/kBT versus dimensionless volume per particle v/v0 for prob-
lem (2), with α = 1

4 and r = w = 1. Different portions of the curves are shown in different colors. The dashed line
denotes the minimum possible volume vmin = v0/(1 + α).
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Note that ∂π/∂z is continuous through the transition. As we are about to discover, ∂π/∂ν is discontinuous.
Eliminating ǫ, we have

ν > νc ⇒ π = ln(1 + r) +
1 + r

1 + (1 + r)2 (α/w)
(ν − νc) + . . . .

Thus, the isothermal compressibility κT = − 1
v

(
∂v
∂p

)

T
is discontinuous at the transition. This can be seen clearly as

a kink in Fig. 6.

Suppose the density of states g(σ) behaves as a power law in the vicinity of σ = r, with g(σ) ≃ A (σ − r)t.
Normalization of the integral of g(σ) then requires t > −1 for convergence at this lower limit. For z = r + ǫ with
ǫ > 0, one now has

ν =
r

1 + r
+

ǫ

(1 + r)2
+
αA ǫt+1

t+ 1
+ . . .

π = ln(1 + r) +
ǫ

1 + r
+

αA ǫt+2

(t+ 1)(t+ 2)r
+ . . . .

If t > 0, then to order ǫ the expansion is the same for ǫ < 0, and both π and its derivative ∂π
∂ν are continuous across

the transition. (Higher order derivatives, however, may be discontinuous or diverge.) If −1 < t < 0, then ǫt+1

dominates over ǫ in the first of these equations, and we have

ǫ =

(
(t+ 1)(ν − νc)

αA

) 1
t+1

and

π = ln(1 + r) +
1

1 + r

(
t+ 1

αA

) 1
t+1

(ν − νc)
1

t+1 ,

which has a nontrivial power law behavior typical of second order critical phenomena.
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