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Phys 200A (Theoretical Mechanics), Problem Set I
Fetter & Walecka, problem #3.2.

Done by Munirov V. R.

1) Lagrangian

The Lagrangian of the system is straightforward:
L=T-YV,
L =20+ 20%2sin* 6y — mgl cos .

2) Equilibrium orbit

FEuler-Lagrange equations of motion:
d (@L) _ 9L _
at \ai or —
ml = mQ? sin? Byl — mg cos f.

In equilibrium I= 0, so we get the condition for an equilibrium circular orbit:

I = #52., QED.

3) Stability

To consider the stability of this orbit against small displacements along the wire
we write [ = lg+ Al (Al — 0) and put it into the equation of motion. By doing
that we get:

Al = 02 sin? 6, Al
which tells us that it is unstable equilibrium because coefficient before Al is
positive.

4) Balance of force

In non-inertial rotational reference frame there are three forces acting on the
point mass: gravitational force mg acting downward, centrifugal force mQ?21sin 6y
acting outward from rotational orbit and reaction force of the wire mQ? sin 6y cos fgl+
mg sin 0y pointing perpendicular to it . These three forces balance each other.
It is possible to obtain the expression for the reaction force using the method
of Lagrange multipliers.

L =202 4 21202 4 m021%sin ) — mgl cos f,

f(0) =0 =6y - constraints.
Equation of motion with constraints:

4 (8—L> — g—g = )\%, where X - Lagrange multiplier.

dt \ 90

leé = mN?? cosOsinh + mglsinf + A,
0=0,0=0,.

N = 2 = —mQ?l cos f sin §y — mg sin .
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3.8

A point mass m slides without friciton inside a surface of revolution z =
asin(r/R) whose symmetry axis lied along the direction of a uniform grav-
itational field g. Consider 0 < r/R < 1.

(a) Construct the lagrangian L and compute the equations of motion
for the generalized coordinates r and ¢. The lagrangian is

L= %m (7'“2 + 7"2q52 + (%)2 2 cos? (;)) — mgasin (%) .

The equation of motion are

4 ) o

mi <1 + (%)2 cos? (;)) = mrg.bQ +m (%)2 72 sin (%) cos (%) — mg% cos (%) .

Note that angular momentum is conserved in this system, L = mr2¢, so the
equation of motion for generalized coordinate r can be rewritten as

. 1+(a)2 2(7“) L2+ (04)2.2. (7”) (7’) a (r)
mi —) cos® (=) )| =—=+m (=) 7°sin(—=)cos|—=)—mg—=cos|—=]).
R R mrs T \R R rR)"R\R
(b) Are there stationary horizontal circular orbits? This problem can

be solved using the equation of motion or the effective potential, Ueg =
U+ L?/(2mr?). A stationary point, ro is defined by,

8I:]eff

or =0.

r=ro

For the effective potential at hand

U = —L—2+m gcos (1>
o mrd IR R/’

which leads to the transcendental equation

L2

_ B (i
m =Ty COS(TQ),

where 79 = r9/R. Depending on the value left-hand side of the above equa-
tion there can be 0, 1, or 2 stationary points.
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Figure 1: The frequency of oscillation about the equilibrium orbit.
(c) Which of these orbits is stable under small impluses along the sur-

face transverse to the direction of motion? An orbit is stable if the second
derivative of the effective potential is positive,

— mg— sin
9 R

O?Ueg B 3L? « ( r )
o2 mrd R?

This leads to the condition that a stationary point is stable if

3L2

.y~
m > o SIH(TO).

Substituting our result from the stationary point analysis into this equation
yields
3> 19 tan(fo).

Solving this numerically, we see that a stationary point is stable if g < 1.19.
(d) If the orbit is stable, what is the frequency of oscillation about the
equilibrium orbit? The frequency w is given by

mw? = OUest
or2

r=rQ

Because there are transcendental equations in the problem it will be easier
to proceed numerically. Figure 1 shows w?R?/ga as a function of ro/R in
the region where the stationary point is stable.
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