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Not acceptable — diverges as x = .

Acceptable.

Acceptable.

Not acceptable — not a single-valued function.

Not acceptable — the wave is discontinuous (as is the slope).

Normalization requires
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7" 126010 m =5.26x10"" kg m/s

v (x)= Acoskx+Bsinkx

8
¥ _ kAsinkx+kBcoskx

dx

2
%Y _ 12 Acosky-K*Bsinkx
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- )(Acoskx+Bsink"x)
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The Schrodinger equation is satisfied if 6_2 = (_;;Z—zm)(E -U)y or

Therefore E =

X

—k2 (Acoskx + Bsinkx) = (_ZrTE)(Acoskx+Bsinkx) .
1
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69  E, =l so AE=E,-EF ="
L smL

" osml?’
(1240 eV nm/c)2
8(938.28x10° eV/c?)(10™° nm)

AE=(3) 5 =6.14 MeV

This is the gamma ray region of the electromagnetic spectrum.

6-11  In the present case, the box is displaced from (0, L) by % . Accordingly, we may obtain the

wavefunctions by replacing x with x —% in the wavefunctions of Equation 6.18. Using

~

2 3/8)ha 1V .
6-12 AE=E=( h )[22—12] and L=[M] =793x10"" m=7.93 A.
mc



6-16 (a) v(x)=Asin (%) , L=3 A. Normalization requires

L L 2
1= [y ax = [ A2 st(ﬂde=Li

12
so A= (2)
L

3 3 3 12
P=| |y/|2dx=(3) [ smz(ﬂ)dx=3 [ sm2¢d¢=£[£—(3) ]:0.1955.
0 L/ T o T 8

(b) 91/=Asin(100L”x), A=(%)l/2

/3 100x/3
P=3jsm2(1°0“)dx=3( L ) 17 sin gag = 1 [100”_lsm(2°°”)]
L, L L\100z/ | 50z 6 4 3
=l_[L]sin(ﬁ)=l_£=o.3319

3 L200x 3 3 4007

6-23  Inside the well, the particle is free and the Schrodinger waveform is trigonometric with
12
wavenumber k = (z;;f) :
i

v (x)= Asinkx+ Bcoskx 0<x<L.



The infinite wall at x =0 requires ¢ (0)=B=0.Beyond x=L, U(x)=U and the

2
Schrodinger equation {riix_w = (Zm ){lI —E}y (x), which has exponential solutions for E <U

2 h_2
w(x)=Ce ** +De™ "%, x>L
_ 12
where a=[#] . To keep y bounded at x =0 we musttake D=0.At x=L,
i

continuity of ¥ and % demands
AsinkL =Ce™**
kA coskL = —aCe %t

Dividing one by the other gives an equation for the allowed particle energies: kcotkL = -« .
The dependence on E (or k) is made more explicit by noting that K +a’ = % , which

allows the energy condition to be written kcotkL = —[( 2:2”

12
) - kz] . Multiplying by L,

2
squaring the result, and using cot’ f+1=csc’ 6 gives (kL)? csc? (kL) = 2";# from which

2\y2
we obtain 'kl;cL =(2";:21L } . Since
sin

is never smaller than unity for any value of &,

simn

2mUI?
712

there can be no bound state energies if <1.

d? 2
6-24 After rearrangement, the Schrédinger equation is dx—VZ/ = (h—zz){l] (x)-E}yw(x) with

U(x)= %ma)zx2 for the quantum oscillator. Differentiating v (x) = CJce_"”‘2 gives

dy —ax®
— =2« x)+C
; ay (x)

and

d’y _ 2axdy

—2ay(x)-(2a x)Ce_"”'[2 =(2ax) v (x)-6ay(x).

dx’ dx



6-32

2
Therefore, for i (x) to be a solution requires (2« x)2 —ba = i—'zn{ll(x)— E}= (ﬂ) 22 —ﬂ .

h W

Equating coefficients of like terms gives 2a = % and 6a = 2;1—25 .Thus, a= no and
i
a 3ah’ 3

E = Ehw . The normalization integral is 1= [ |y (x)]? dx = 2C2Ixze_2“x2dx where the

m
second step follows from the symmetry of the integrand about x =0 . Identifying a with
1

12 3\
2¢ in the integral of Problem 6-32 gives 1=2C 2 (—) (L) or C= 32a .
8a/\2a /s

14
The probability density for this case is |y (x)|2 = Cée‘”2 with Cy = (i) and a= . For
T

1
®©

the calculation of the average position (x)= _[ x|wo (Jc)|2 dx we note that the integrand is an

—x

odd function, so that the integral over the negative half-axis x <0 exactly cancels that over
the positive half-axis (x > 0), leaving (x) =0. For the calculation of (xz > , however, the

integrand x? lwo |2 is symmetric, and the two half-axes contribute equally, giving

® 2 1 12
(x*)=2¢3 g e dx =2C2 (E)(%) .

12
Substituting for C, and a gives <x2) - % - Z:W and Ax = (<x2>— (x)? )1/2 _ (2;71@) .




