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E=ﬁl(n_ljz+(n_z)2+(ﬁ]”
2m |\ L, L, L J

W’

L.=L,L,=L =2L.Let Sm—LZ=E0.Then E=E0(4n12+n§+n§).Choosethequantum

numbers as follows:

n ny ny £
E,
1 1 1 6 ground state
1 2 1 9 * first two excited states
1 1 2 9 *
2 1 1 18
1 2 2 12 * next excited state
2 1 2 21
2 2 1 21
2 2 2 24
1 1 3 14 * next two excited states
1 3 1 14 *

Therefore the first 6 states are w111, Y121, Y112, Vi, Y113, and w3 with relative energies

E

0

n’ =11
2,2 2.2
o s(EpU)
2mL 2\ mL
(b) e T
1 1 3
1 3 1 3-fold degenerate
3 1 1

(©) w113 = Asin

E_ =6,9,9, 12, 14, 14. First and third excited states are doubly degenerate.



8-6

There is no force on a free particle, so that U(r) is a constant which, for simplicity, we take to
be zero. Substituting ¥(r, )=y, (x)¥, (y¥)w;(z)$(t) into Schrodinger’s equation with

: (e & & I ..
U(r)=0 gives ~om +—5 ¥(r, t)=zh—‘P(r, t) . Upon dividing through by

_+_
m\éx* &y* oz

. Each term in this

2
w1 ()W, (¥)¥a (2)9(¢) we obtain ~ ["’1"‘) Vi) vi@)|]_ing' )

2m |y (x) V/z(y) wi(z)]  ¢(t)
equation is a function of one variable only. Since the variables x, y, z, t are all independent,
each term, by itself, must be constant, an observation leads to the four separate equations

'I/l(x)
2m[w1(x)) &
w5 (x)
Zm(u/z(x)] F
__(V/s(x)]=E
2m\y3(x) }

(0]
[W‘J

This is subject to the condition that E, + E, + E; = E. The equation for y; can be rearranged
dy, (_ 2mE,
dx? n?

as

)yll (x), whereupon it is evident the solutions are sinusoidal

2mkE,

v, (x) = a, sin(k,x)+ B, cos(k,x) with k} = . However, the mixing coefficients @; and

B, are indeterminate from this analysis. Similarly, we find
v2(y)=a;sin(kyy)+ B, cos(kyy)
W:‘(Z) = (23 Sin(k3z)+ﬂ3 COS(k3z)

with k3 = ZYZZE 2 and K = 2:—53 . The equation for ¢ can be integrated once to get

- . E . . . . .
d(t)=ye ™" with w= - and y another indeterminate coefficient. Since the energy operator

is[E]= zhai and zh( )45 E¢ energy is sharp at the value E in this state. Also, since
2 2 8 2 8° 2 . .
|:pJr ] =-h Py and —h Pl v, =(hk, )" v, the magnitude of momentum in the x
X x

direction is sharp at the value #k, . Similarly, the magnitude of momentum in the y and z
directions are sharp at the values hk, and hk,, respectively. (The sign of momentum also

will be sharp here if the mixing coefficients are chosen in the ratios % -, and so on).
1
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() The probability of finding the electron in a volume element dV is given by |y[*dV .
Since the wave function has spherical symmetry, the volume element dV is identified
here with the volume of a spherical shell of radius 7, dV = 47 r*dr . The probability of
finding the electron between r and r +dr (that is, within the spherical shell) is
P=yPdV =4xr?|y|*dr.

(c) P

@  [wPav=axfylrdr= M(l)[% ) [e 2 ortdr = [13] [e 2 Tr2ar
Ti\ap Jo % Jo

Integrating by parts, or using a table of integrals, gives

o (g

3ay

r
(e) P=4x [y r’dr where r, = % and r, = 5

L]

P

n

(%]j Peogy  letz= 2"

a4 Jr, a
3

-1 z%e dz

1

= —%(z2 +2z+ 2)e'2 ?

=17 5,5 10496
2¢ "3

N

(integrating by parts)



8-13 Z=2 for He'

(a) For n=3, 1 can have the values of 0, 1, 2

- m,=0

0
1 » m=-10, +1
2

I
I
I - m=-2,-1,0,+1, +2

_72
(b) All states have energy E; = 3L2(155.6 eV)

E,=-6.04 eV.

8-16  For ad state, [=2.Thus, m; can take on values-2,-1,0, 1, 2. Since L, =mh, L, canbe
+2h, +h, and zero.

8-18  The state is 6g

(@) n=6

-13.6
(b) E, = 3 E, = 6_2 eV =-0.378 eV
(c) For a g-state, [=4

L=[I1(1+1)]"* h=(4x5)"2 h=v20h=4.47h

(d) m; canbe 4,-3,-2,-1,0,1,2,3,0r4

L m m,
L, =mh; cosf =—"== ! h=—nx
! L [(+1]2" V20
m -4 -3 -2 -1 0 1 2 3 4

L, —4hn -3n  -2h —h 0 h 2h 3h 4h
6 153.4° 132.1° 116.6° 102.9° 90° 77.1° 63.4° 47.9° 26.6°



