8-1
$$E = \frac{\hbar^2 \pi^2}{2m} \left[\left(\frac{n_1}{L_x} \right)^2 + \left(\frac{n_2}{L_y} \right)^2 + \left(\frac{n_3}{L_z} \right)^2 \right]$$

 $L_x=L$, $L_y=L_z=2L$. Let $\frac{\hbar^2\pi^2}{8mL^2}=E_0$. Then $E=E_0\left(4n_1^2+n_2^2+n_3^2\right)$. Choose the quantum numbers as follows:

n_1	n_2	n_3	$\frac{E}{E_0}$		
1	1	1	6		ground state
1	2	1	9	*	first two excited states
1	1	2	9	*	
2	1	1	18		
1	2	2	12	*	next excited state
2	1	2	21		
2	2	1	21		
2	2	2	24		
1	1	3	14	*	next two excited states
1	3	1	14	*	

Therefore the first 6 states are ψ_{111} , ψ_{121} , ψ_{112} , ψ_{112} , ψ_{113} , and ψ_{131} with relative energies $\frac{E}{E_0}$ = 6, 9, 9, 12, 14, 14. First and third excited states are doubly degenerate.

8-3
$$n^2 = 11$$

(a)
$$E = \left(\frac{\hbar^2 \pi^2}{2mL^2}\right) n^2 = \frac{11}{2} \left(\frac{\hbar^2 \pi^2}{mL^2}\right)$$

(b)
$$\begin{array}{c|cccc} n_1 & n_2 & n_3 \\ \hline 1 & 1 & 3 \\ 1 & 3 & 1 & 3\text{-fold degenerate} \\ \hline 3 & 1 & 1 \\ \end{array}$$

(c)
$$\psi_{113} = A \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{\pi y}{L}\right) \sin\left(\frac{3\pi z}{L}\right)$$

$$\psi_{131} = A \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{3\pi y}{L}\right) \sin\left(\frac{\pi z}{L}\right)$$

$$\psi_{311} = A \sin\left(\frac{3\pi x}{L}\right) \sin\left(\frac{\pi y}{L}\right) \sin\left(\frac{\pi z}{L}\right)$$

8-6 There is no force on a free particle, so that U(r) is a constant which, for simplicity, we take to be zero. Substituting $\Psi(\mathbf{r},t) = \psi_1(x)\psi_2(y)\psi_3(z)\phi(t)$ into Schrödinger's equation with U(r) = 0 gives $-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \Psi(\mathbf{r},t) = i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r},t)$. Upon dividing through by $\psi_1(x)\psi_2(y)\psi_3(z)\phi(t)$ we obtain $-\frac{\hbar^2}{2m} \left[\frac{\psi_1''(x)}{\psi_1(x)} + \frac{\psi_2''(y)}{\psi_2(y)} + \frac{\psi_3''(z)}{\psi_3(z)} \right] = \frac{i\hbar\phi'(t)}{\phi(t)}$. Each term in this equation is a function of one variable only. Since the variables x,y,z,t are all independent, each term, by itself, must be constant, an observation leads to the four separate equations

$$-\frac{\hbar^2}{2m} \left(\frac{\psi_1''(x)}{\psi_1(x)} \right) = E_1$$

$$-\frac{\hbar^2}{2m} \left(\frac{\psi_2''(x)}{\psi_2(x)} \right) = E_2$$

$$-\frac{\hbar^2}{2m} \left(\frac{\psi_3''(x)}{\psi_3(x)} \right) = E_3$$

$$i\hbar \left[\frac{\phi'(t)}{\phi(t)} \right] = E$$

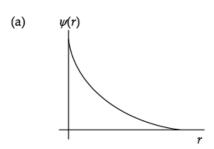
This is subject to the condition that $E_1+E_2+E_3=E$. The equation for ψ_1 can be rearranged as $\frac{d^2\psi_1}{dx^2}=\left(-\frac{2mE_1}{\hbar^2}\right)\!\!\psi_1(x)$, whereupon it is evident the solutions are sinusoidal $\psi_1(x)=\alpha_1\sin(k_1x)+\beta_1\cos(k_1x)$ with $k_1^2=\frac{2mE_1}{\hbar^2}$. However, the mixing coefficients α_1 and β_1 are indeterminate from this analysis. Similarly, we find

$$\psi_2(y) = \alpha_2 \sin(k_2 y) + \beta_2 \cos(k_2 y)$$

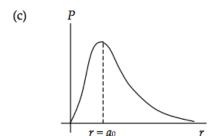
$$\psi_3(z) = \alpha_3 \sin(k_3 z) + \beta_3 \cos(k_3 z)$$

with $k_2^2 = \frac{2mE_2}{\hbar^2}$ and $k_3^2 = \frac{2mE_3}{\hbar^2}$. The equation for ϕ can be integrated once to get $\phi(t) = \gamma e^{-i\omega t}$ with $\omega = \frac{E}{\hbar}$ and γ another indeterminate coefficient. Since the energy operator is $[E] = i\hbar \frac{\partial}{\partial t}$ and $i\hbar \left(\frac{\partial}{\partial t}\right) \phi = E \phi$ energy is sharp at the value E in this state. Also, since $[p_x^2] = -\hbar^2 \left(\frac{\partial^2}{\partial x^2}\right)$ and $-\hbar^2 \left(\frac{\partial^2}{\partial x^2}\right) \psi_1 = (\hbar k_1)^2 \psi_1$ the magnitude of momentum in the x direction is sharp at the value $\hbar k_1$. Similarly, the magnitude of momentum in the y and z directions are sharp at the values $\hbar k_2$ and $\hbar k_3$, respectively. (The sign of momentum also will be sharp here if the mixing coefficients are chosen in the ratios $\frac{\alpha_1}{\beta_1} = i$, and so on).

8-12
$$\psi(r) = \left(\frac{1}{\pi}\right)^{1/2} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$$



(b) The probability of finding the electron in a volume element $\mathrm{d}V$ is given by $|\psi|^2\,\mathrm{d}V$. Since the wave function has spherical symmetry, the volume element $\mathrm{d}V$ is identified here with the volume of a spherical shell of radius r, $\mathrm{d}V = 4\pi\,r^2\mathrm{d}r$. The probability of finding the electron between r and $r+\mathrm{d}r$ (that is, within the spherical shell) is $P = |\psi|^2\,\mathrm{d}V = 4\pi\,r^2\,|\psi|^2\,\mathrm{d}r$.



(d)
$$\int |\psi|^2 dV = 4\pi \int |\psi|^2 r^2 dr = 4\pi \left(\frac{1}{\pi}\right) \left(\frac{1}{a_0^3}\right) \int_0^\infty e^{-2r/a_0} r^2 dr = \left(\frac{4}{a_0^3}\right) \int_0^\infty e^{-2r/a_0} r^2 dr$$

Integrating by parts, or using a table of integrals, gives

$$\int |\psi|^2 \, dV = \left(\frac{4}{a_0^3}\right) \left[2\left(\frac{a_0}{2}\right)^3 \left(\frac{2}{a_0}\right)^3\right] = 1 \, .$$

(e)
$$P = 4\pi \int_{r_1}^{r_2} |\psi|^2 r^2 dr \text{ where } r_1 = \frac{a_0}{2} \text{ and } r_2 = \frac{3a_0}{2}$$

$$P = \left(\frac{4}{a_0^3}\right) \int_{r_1}^{r_2} r^2 e^{-2r/a_0} dr \qquad \text{let } z = \frac{2r}{a_0}$$

$$= \frac{1}{2} \int_{1}^{3} z^2 e^{-z} dz$$

$$= -\frac{1}{2} \left(z^2 + 2z + 2\right) e^{-z} \Big|_{1}^{3} \qquad \text{(integrating by parts)}$$

$$= -\frac{17}{2} e^{-3} + \frac{5}{2} e^{-1} = 0.496$$

- 8-13 Z = 2 for He⁺
 - (a) For n = 3, l can have the values of 0, 1, 2

$$l = 0 \rightarrow m_l = 0$$

 $l = 1 \rightarrow m_l = -1, 0, +1$
 $l = 2 \rightarrow m_l = -2, -1, 0, +1, +2$

(b) All states have energy $E_3 = \frac{-Z^2}{3^2}$ (13.6 eV)

$$E_3 = -6.04 \text{ eV}$$
.

- 8-16 For a d state, l=2. Thus, m_l can take on values -2, -1, 0, 1, 2. Since $L_z=m_l\hbar$, L_z can be $\pm 2\hbar$, $\pm \hbar$, and zero.
- 8-18 The state is 6g
 - (a) n=6

(b)
$$E_n = -\frac{13.6 \text{ eV}}{n^2}$$
 $E_6 = \frac{-13.6}{6^2} \text{ eV} = -0.378 \text{ eV}$

(c) For a g-state, l = 4

$$L = [l(l+1)]^{1/2} \hbar = (4 \times 5)^{1/2} \hbar = \sqrt{20} \hbar = 4.47 \hbar$$

(d)
$$m_l an be -4, -3, -2, -1, 0, 1, 2, 3, \text{ or } 4$$

$$L_z = m_l \hbar \; ; \; \cos \theta = \frac{L_z}{L} = \frac{m_l}{[l(l+1)]^{1/2}} \hbar = \frac{m_l}{\sqrt{20}}$$

$$m_l \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$L_z \quad -4\hbar \quad -3\hbar \quad -2\hbar \quad -\hbar \quad 0 \quad \hbar \quad 2\hbar \quad 3\hbar \quad 4\hbar$$

$$\theta \quad 153.4^\circ \quad 132.1^\circ \quad 116.6^\circ \quad 102.9^\circ \quad 90^\circ \quad 77.1^\circ \quad 63.4^\circ \quad 47.9^\circ \quad 26.6$$