PHYS 2D
DISCUSSION SECTION




Quiz 3 is graded
Pick up quiz 3 today, tomorrow, or next Tuesday

Regrade request: 1 week



Topics

Probability

Born interpretation

Normalization

Operators

x & p operators

Schrodinger’s equation

Free space wave function

Particle in a box & Finite square well

Quantum oscillator



Probability

2 possible outcomes for a measurement:

Event 1 has probability p, of happening, event 2
has p,. When taking a measurement, either 1
happens or 2 happens, so p,+p,=1

1 measurement: has a chance p, to find result 1,
chance p, to find result 2

100 measurements: find result T 100%p, times,
result 2 100*p, times

N measurements: result in 1 Np, times, 2 Np, times

Np;+ Np, =N(p;+p,)=N



QR

Probability

M possible outcomes for a measurement:

A measurement has chance p, to return result x, where
x goes from 1 to M, and 2 p =1

If M is infinite:

Consider for example x=position of a particle

x is now continuous (infinite values of x)

If we assign each x a probability, sum over x blows up

Define p(x) so that a measurement has chance p(x)dx of
finding the particle in an interval dx about x

pP(x) is now a probability distribution



Probability

P(x)dx is the probability of finding the particle in a
small interval dx around x

If at each x a function f has value f(x), then the
average measured value of f after lots of

measurements is £= [£2 (0 ax
Discrete example: Dice
x=1to 6

p.=1/6

=X

Average measured value of x =2 f p =3.5



Wave function W Nt

Wave function W(x) is used to describe a particle
It contains all the information about that particle
It is a complete description

In principle, if we know W(x), we can deduce any
physical quantity of the particle we want to know



Born interpretation

Born interpretation: (the physical meaning of the
wave function W(x) )

|W(x)|?is a probability distribution, which means a
measurement (of position x) has a chance | W(x)|
2dx of returning a value in the interval dx about x,
or P(x)dx = |‘P(x,t)|2dx

When measuring the position of the particle, the

returned value x, which is the position of the A A

particle, can be anywhere from -o° to oo as J\\/ /\\/\/
long as | W(x)|220, but the probability for .~ ~_
each x is different N

e

1 1



Normalization

(il " - ==

0 If our W(x) describes 1 particle, then the probability
of finding the particle at each x must add up to 1

1 For discrete x, 2 p, =1

o For continuous x, [[W(x,ndx=1 (P(x)dx =[W(x,0)| dx )

71 This is the normalization condition, arising from the
probabilistic nature of wave functions



Operators

Wave function contains all physical quantities
Position, momentum, energy, etc.

To extract these information (observables), need to
define operators for the corresponding measurable
physical quantity f

Expectation value £ =average value of f after large
number of measurements (of f)

The operator for f, zis defined so that the
expectation value is £- [T=* @ 22 (0 ax

£ can be a number or a differential operator



x & p operators

For example, if f is the position x
By definition, #- f} (x) &2 (x) dx
BU-I- X = fXP (x) dx = fx |2 (%) |2dlx

=Fx§* (x) & (x) cﬂx:J‘DQ’* (x) x T (x) dx

=X

)

So

For momentum p, sis a differential operator

° A d
It can be derived: s-- —

i dx
A d
So §=J\D§* (x)ﬁg(x)eh:fbg* (x) = — & (x) dx

1 dx

acts on the wave function W(x) to the right



Schrodinger’s equation) |

11 Relates the wave function of a particle to the

environment (U(x)) of the particle

o N
iAh— T (x, t) =HEZ (x, t)
ot

o1 The equation that determines the wave function
1 Total energy E=p?/2m+U(x)

11 Convert p to ®? and x to # to get &

5 (_7’ 2)2
i ax R b2 d2 R
+U(X) = -— — +U (%)
m 2m 2m dax2

d¥(x.1)
ot

+U(x)¥Y(x,t)=ih



Schrodinger’s equation

Time-dependent Schrodinger’s equation:

a ~
ih— T (x, t) =HEZ (x, t)
ot

where i is the total energy operator (Hamiltonian)
If we assume that W(x,t) can be separated

E(x, t) =¥ (x) ¢ ()
Then we have the time-independent Schrodinger’s
equation #v & == ) where E is the total energy

o
AISO iﬁ;¢ (t) = E¢ (%)



Free space wave function

01 Putting Schrodinger’s equation to use

1 Free space: U(x)=0

Hy (x) = EY (x)

o
ih— ¢ (t) = E¢ (t)
ot
§2 n2 d2

d2
— cos (x) = -cos (x)
dx2
d2
—— 8in (x) = -sin (x)
dx2
e'* = cos (x) +isin (x)

T (x, t) = Cet (%9t _ Clcos (tkx - wt) +isin (tkx - wt) ]



region 1 region I region 111

Particle in a box

x=0 x=L

Not so trivial application of Schrodinger’s equation
¢ (0) =3 doesn’t affect observables
1-D box, particle is restricted so =< 10, 11

To prevent particle from moving beyond 0. 21 , we
let V= oo outside the box
When V= oo, |h(x)=0, the wall is infinitely high

To find Y(x) in region ll, consider the time-
independent Schrodinger’s equation and require

J(x) be continuous (P(0)=Y(L)=0)



Particle in a box

o P(x)=Asinkx=Asin[(nTt/L)x]

2> 5
2mlL

0 F =

o n=1, 2, 3, ... 0 L

71 Integer n (quantization) comes from boundary

conditions



I 11 111

U

Finite square well

0 L

_

The potential outside Il is now V=U, not oo
Wave function similar to particle in a box
Significant difference at the boundary (x=0 or L)

Woave function is non-zero outside |l, for a small
distance (penetration depth)

To find (x), require Y and d{/dx be continuous at
x=0 & x=L i




Quantum oscillator

Classical oscillator: E=p?/2m+U(x), U(x)=mw?x2/2

Ex. Spring

Quantum version: -5, ¥ @+ =
E=(n+1/2)hw, n=0, 1, 2, ...
n=0 correspond to zero classical amplitude, but

E=hw/2#0

Can model small oscillations around stable

¥ (x) = E¥ (x)

equilibrium points




1 Questions?



