
PHYS 2D 
DISCUSSION SECTION 

2012/5/16 



  Quiz 3 is graded 
  Pick up quiz 3 today, tomorrow, or next Tuesday 
  Regrade request: 1 week 



Topics 

  Probability 
  Born interpretation 
  Normalization 
  Operators 
  x & p operators 
  Schrodinger’s equation 
  Free space wave function 
  Particle in a box & Finite square well 
  Quantum oscillator 



Probability 

  2 possible outcomes for a measurement: 
  Event 1 has probability p1 of happening, event 2 

has p2. When taking a measurement, either 1 
happens or 2 happens, so p1+p2=1 

  1 measurement: has a chance p1 to find result 1, 
chance p2 to find result 2 

  100 measurements: find result 1 100*p1 times, 
result 2 100*p2 times 

  N measurements: result in 1 Np1 times, 2 Np2 times 
  Np1+ Np2 =N(p1+p2)=N 



Probability 

  M possible outcomes for a measurement: 
  A measurement has chance px to return result x, where 

x goes from 1 to M, and Σxpx=1 
  If M is infinite: 
  Consider for example x=position of a particle 
  x is now continuous (infinite values of x) 
  If we assign each x a probability, sum over x blows up 
  Define p(x) so that a measurement has chance p(x)dx of 

finding the particle in an interval dx about x 
  p(x) is now a probability distribution 



Probability 

  P(x)dx is the probability of finding the particle in a 
small interval dx around x 

  If at each x a function f has value f(x), then the 
average measured value of f after lots of 
measurements is  

  Discrete example: Dice 
  x=1 to 6 
  px=1/6 
  fx=x 
  Average measured value of x =	
  Σxfxpx=3.5 



Wave function Ψ 

  Wave function Ψ(x) is used to describe a particle 
  It contains all the information about that particle 
  It is a complete description 
  In principle, if we know Ψ(x), we can deduce any 

physical quantity of the particle we want to know  



Born interpretation 

  Born interpretation: (the physical meaning of the 
wave function Ψ(x) ) 

  |Ψ(x)|2 is a probability distribution, which means a 
measurement (of position x) has a chance |Ψ(x)|
2dx of returning a value in the interval dx about x, 
or 

  When measuring the position of the particle, the 
returned value x, which is the position of the 
particle, can be anywhere from -­‐∞ to	
  ∞ as 

   long as |Ψ(x)|2≠0, but the probability for  
   each x is different 



Normalization 

  If our Ψ(x) describes 1 particle, then the probability 
of finding the particle at each x must add up to 1 

  For discrete x, Σxpx=1 
  For continuous x,                      (                          ) 

  This is the normalization condition, arising from the 
probabilistic nature of wave functions 



Operators 

  Wave function contains all physical quantities 
  Position, momentum, energy, etc. 
  To extract these information (observables), need to 

define operators for the corresponding measurable 
physical quantity f 

  Expectation value   =average value of f after large 
number of measurements (of f) 

  The operator for f,   is defined so that the 
expectation value is   

     can be a number or a differential operator 



x & p operators 

  For example, if f is the position x 
  By definition,  
  But 

  So   
  For momentum p,   is a differential operator 
  It can be derived:   
  So  
            acts on the wave function Ψ(x) to the right  



Schrodinger’s equation 

  Relates the wave function of a particle to the 
environment (U(x)) of the particle 

  The equation that determines the wave function 
  Total energy E=p2/2m+U(x) 
  Convert p to   and x to   to get  
    



Schrodinger’s equation 

  Time-dependent Schrodinger’s equation: 

   where   is the total energy operator (Hamiltonian) 
  If we assume that Ψ(x,t) can be separated 

  Then we have the time-independent Schrodinger’s 
equation                , where E is the total energy               

  Also 



Free space wave function 

  Putting Schrodinger’s equation to use 
  Free space: U(x)=0 

  So,  



Particle in a box 

  Not so trivial application of Schrodinger’s equation 
               doesn’t affect observables 
  1-D box, particle is restricted so  
  To prevent particle from moving beyond        , we 

let V=	
  ∞	
  outside the box 
  When V=	
  ∞, ψ(x)=0, the wall is infinitely high  
  To find ψ(x) in region II, consider the time-

independent Schrodinger’s equation and require 
ψ(x) be continuous (ψ(0)=ψ(L)=0) 



Particle in a box 

  ψ(x)=Asinkx=Asin[(nπ/L)x] 

    

  n=1, 2, 3, … 
  Integer n (quantization) comes from boundary 

conditions 



Finite square well 

  The potential outside II is now V=U, not ∞ 
  Wave function similar to particle in a box 
  Significant difference at the boundary (x=0 or L) 
  Wave function is non-zero outside II, for a small 

distance (penetration depth) 
  To find ψ(x), require ψ and dψ/dx be continuous at 

x=0 & x=L 



Quantum oscillator 

  Classical oscillator: E=p2/2m+U(x), U(x)=mω2x2/2 
  Ex. Spring 
  Quantum version: 
  E=(n+1/2)ħω, n=0, 1, 2, … 
  n=0 correspond to zero classical amplitude, but 

E=ħω/2≠0 
  Can model small oscillations around stable 

equilibrium points 



  Questions? 


