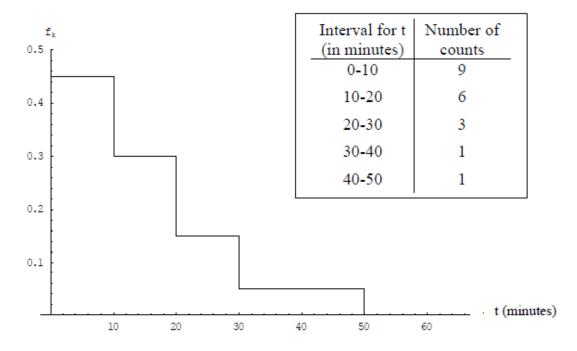
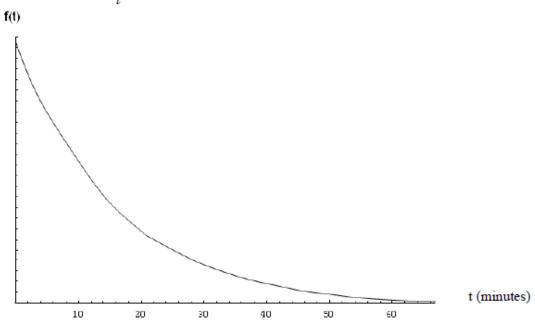
Physics 2BL Homework Set 03

Taylor Problems: 5.2, 5.6, 5.20, 5.36

<u>5.2</u>:



(A)
$$f(t) = \frac{1}{\tau} e^{-t/\tau}$$



(B) Eqn. 5.13 states:
$$\int_{-\infty}^{\infty} f(t)dt = 1$$

We are told f(t) = 0 for t < 0 in our case, so

$$\int_{-\infty}^{\infty} f(t)dt = \int_{0}^{\infty} f(t)dt = \int_{0}^{\infty} (1/\tau)Exp(-t/\tau)dt \qquad \text{Let } u = -t/\tau, \ du = -(1/\tau)dt \ \rightarrow dt = -\tau \ du$$

$$\int_{-\infty}^{\infty} f(t)dt = \int_{0}^{-\infty} (-\tau/\tau)e^{u}du = -\int_{0}^{-\infty} e^{u}du = e^{0} - e^{-\infty} = 1 - 0 = 1 \ , \text{ as expected}$$

(C) Eqn. 5.15 states:
$$\bar{t} = \int_{-\infty}^{\infty} tf(t)dt$$

Since f(t) = 0 for t < 0, we have $\int_{-\infty}^{\infty} tf(t)dt = \int_{0}^{\infty} tf(t)dt$

$$\int_{-\infty}^{\infty} tf(t)dt = \int_{0}^{\infty} (t/\tau)Exp(-t/\tau)dt \quad \text{Let } u = -t/\tau, \ du = -(1/\tau)dt \ \to dt = -\tau \ du$$

$$= \int_{0}^{-\infty} ue^{u}(-\tau)du = -\tau \int_{0}^{-\infty} ue^{u}du = \tau \int_{-\infty}^{0} ue^{u}du$$

$$= \tau \left[ue^{u} \Big|_{-\infty}^{0} - \int_{-\infty}^{0} e^{u}du \right] = \tau \left[0 - 0 - e^{u} \Big|_{-\infty}^{0} \right] = \tau \left[1 - 0 \right] = \tau$$

5.20: Mean height
$$\overline{h} = 69$$
", $\sigma = 2$ "

(A) How many men between 67" and 71" = $\overline{h} \pm 1\sigma$ 68% should be within the range of $\overline{h} \pm 1\sigma$. $\rightarrow N = 1000 \cdot 68\% = 680$ men

(B) How many men taller than 71" =
$$\overline{h} + 1\sigma$$

If 68% should be within the range of $\overline{h} \pm \sigma$, 32% should be outside that range.
Assuming it is symmetric, 16% should be lower than $\overline{h} - \sigma$ and 16% should be above $\overline{h} + \sigma$.
 $\rightarrow N = 1000 \cdot 16\% = 160$ men

(C) How many men taller than 75" = $\overline{h} + 3\sigma$ For same reasons as above, half of the men outside the range of $\overline{h} \pm 3\sigma$ $\rightarrow N = (1/2) (1-0.997) \cdot 1000 = 1.5 \approx 2 \text{ men}$

(D) How many men between 65" and 67" =
$$(\overline{h} - 2\sigma)$$
 and $(\overline{h} - \sigma)$
How many inside $\overline{h} + 2\sigma = (0.9545)\ 1000 = 954.5$
How many inside $\overline{h} + \sigma = (0.68)\ 1000 = 680$
 $(1/2)\ (955 - 680) = 137.5 \approx 138$ men

5.36:
$$x_A = 13 \pm 1$$
, $x_B = 15 \pm 1$
(A) $|x_A - x_B| = 2 \pm \sqrt{1^2 + 1^2} = 2.0 \pm 1.4$

(B)
$$t = \frac{|x_A - x_B|}{\sigma} = \frac{2}{1.4} = 1.4$$

Prob(outside 1.4 σ) = 1 - Prob(within 1.4 σ)
= 1 - 0.8385 \approx 0.16

Prob(outside 1.4 σ) = 16%

Assuming 5% tolerance, this discrepancy is not significant.