PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #9 SOLUTIONS

(1) Consider a two-state Ising model, with an added quantum dash of flavor. You are invited to investigate the *transverse Ising model*, whose Hamiltonian is written

$$
\hat{H} = -J \sum_{\langle ij \rangle} \sigma_i^x \sigma_j^x - H \sum_i \sigma_i^z ,
$$

where the σ_i^{α} are Pauli matrices:

$$
\sigma_i^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_i \qquad , \qquad \sigma_i^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}_i \; .
$$

(a) Using the trial density matrix,

$$
\varrho_i = \frac{1}{2} + \frac{1}{2} \, m_x \, \sigma_i^x + \frac{1}{2} \, m_z \, \sigma_i^z
$$

on each site, compute the mean field free energy $F/N\hat{J}(0) \equiv f(\theta, h, m_x, m_z)$, where $\theta = k_{\rm B}T/\hat{J}(0)$, and $h = H/\hat{J}(0)$. Hint: Work in an eigenbasis when computing $\text{Tr}(\varrho \ln \varrho).$

- (b) Derive the mean field equations for m_x and m_z .
- (c) Show that there is always a solution with $m_x = 0$, although it may not be the solution with the lowest free energy. What is $m_z(\theta, h)$ when $m_x = 0$?
- (d) Show that $m_z = h$ for all solutions with $m_x \neq 0$.
- (e) Show that for $\theta \leq 1$ there is a curve $h = h^*(\theta)$ below which $m_x \neq 0$, and along which m_x vanishes. That is, sketch the mean field phase diagram in the (θ, h) plane. Is the transition at $h = h^*(\theta)$ first order or second order?
- (f) Sketch, on the same plot, the behavior of $m_x(\theta, h)$ and $m_z(\theta, h)$ as functions of the field h for fixed θ . Do this for $\theta = 0$, $\theta = \frac{1}{2}$ $\frac{1}{2}$, and $\theta = 1$.

Solution :

(a) We have Tr $(\varrho \sigma^x) = m_x$ and Tr $(\varrho \sigma^z) = m_z$. The eigenvalues of ϱ are $\frac{1}{2}(1 \pm m)$, where $m = (m_x^2 + m_z^2)^{1/2}$. Thus,

$$
f(\theta, h, m_x, m_z) = -\frac{1}{2}m_x^2 - hm_z + \theta \left[\frac{1+m}{2} \ln \left(\frac{1+m}{2} \right) + \frac{1-m}{2} \ln \left(\frac{1-m}{2} \right) \right].
$$

(b) Differentiating with respect to m_x and m_z yields

$$
\frac{\partial f}{\partial m_x} = 0 = -m_x + \frac{\theta}{2} \ln \left(\frac{1+m}{1-m} \right) \cdot \frac{m_x}{m}
$$

$$
\frac{\partial f}{\partial m_z} = 0 = -h + \frac{\theta}{2} \ln \left(\frac{1+m}{1-m} \right) \cdot \frac{m_z}{m}.
$$

Note that we have used the result

$$
\frac{\partial m}{\partial m_\mu} = \frac{m_\mu}{m}
$$

where m_{α} is any component of the vector m .

(c) If we set $m_x = 0$, the first mean field equation is satisfied. We then have $m_z = m \operatorname{sgn}(h)$, and the second mean field equation yields $m_z = \tanh(h/\theta)$. Thus, in this phase we have

$$
m_x = 0 \qquad , \qquad m_z = \tanh(h/\theta) \; .
$$

(d) When $m_x \neq 0$, we divide the first mean field equation by m_x to obtain the result

$$
m = \frac{\theta}{2} \ln \left(\frac{1+m}{1-m} \right),\,
$$

which is equivalent to $m = \tanh(m/\theta)$. Plugging this into the second mean field equation, we find $m_z = h$. Thus, when $m_x \neq 0$,

$$
m_z = h \qquad , \qquad m_x = \sqrt{m^2 - h^2} \qquad , \qquad m = \tanh(m/\theta) \; .
$$

Note that the length of the magnetization vector, m , is purely a function of the temperature θ in this phase and thus does not change as h is varied when θ is kept fixed. What does change is the canting angle of m, which is $\alpha = \tan^{-1}(h/m)$ with respect to the \hat{z} axis.

(e) The two solutions coincide when $m = h$, hence

$$
h = \tanh(h/\theta) \qquad \Longrightarrow \qquad \theta^*(h) = \frac{2h}{\ln\left(\frac{1+h}{1-h}\right)} \, .
$$

Inverting the above transcendental equation yields $h^*(\theta)$. The component m_x , which serves as the order parameter for this system, vanishes smoothly at $\theta=\theta_{\rm c}(h).$ The transition is therefore second order.

(f) See Fig. 1.

Figure 1: Solution to the mean field equations for problem 2. Top panel: phase diagram. The region within the thick blue line is a canted phase, where $m_x \neq 0$ and $m_z = h > 0$; outside this region the moment is aligned along \hat{z} and $m_x = 0$ with $m_z = \tanh(h/\theta)$.