
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #6 SOLUTIONS

(1) In our derivation of the low temperature phase of an ideal Bose condensate, we split
off the lowest energy state ε0 but treated the remainder as a continuum, taking µ = 0 in
all expressions relating to the overcondensate. Under what conditions is this justified? I.e.

why are we not obligated to separately consider the contributions from the first excited
state, etc.?

Solution :

In the condensed phase, there is an extensive population N0 of the lowest single particle

energy state, and the chemical potential takes the value µ = ε0 − k
B

T
g
0
N

0

, where g0 is the

degeneracy of the single particle ground state. Let ε1 be the energy of the first excited state
and g1 its degeneracy Then the number of bosons in the first excited state is

N1 =
g1

e(ε
1
−µ)/k

B
T − 1

≈ g1kB
T

ε1 − µ
,

assuming ε1 − µ ≪ k
B
T . Now

ε1 − µ = (ε0 − µ) + (ε1 − ε0) =
k

B
T

g0N0

+ (ε1 − ε0) .

So we need to ask about the energy difference ∆ε1 ≡ ε1 − ε0. If ∆ε1 ∝ V −r, assuming
0 < r < 1, then the number of particles in the first excited state will be subextensive, and
the corresponding density n1 = N1/V ∝ V r−1 will vanish in the thermodynamic limit. In
this case, we are justified in singling out only the single particle ground state as having
an extensive occupancy. For a ballistic dispersion and periodic boundary conditions, the
quantized single particle plane wave energies are given by

ε(lx, ly, lz) =
~

2

2m

{

(

2πlx
Lx

)2

+

(

2πly
Ly

)2

+

(

2πlz
Lz

)2
}

,

and thus ε1 ∝ V −2/3. Therefore r = 2
3 and the occupancy of the first excited state is

subextensive.

(2) Consider a three-dimensional Bose gas of particles which have two internal polariza-
tion states, labeled by σ = ±1. The single particle energies are given by

ε(p, σ) =
p2

2m
+ σ∆ ,

where ∆ > 0.

(a) Find the density of states per unit volume g(ε).

(b) Find an implicit expression for the condensation temperature Tc(n,∆). When ∆ →
∞, your expression should reduce to the familiar one derived in class.
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(c) When ∆ = ∞, the condensation temperature should agree with the familiar result
for three-dimensional Bose condensation. Assuming ∆ ≪ k

B
Tc(n,∆ = ∞), find

analytically the leading order difference Tc(n,∆) − Tc(n,∆ = ∞).

Solution :

(a) Let g0(ε) be the DOS per unit volume for the case ∆ = 0. Then

g0(ε) dε =
d3k

(2π)3
=

k2 dk

2π2
⇒ g0(ε) =

1

4π2

(

2m

~2

)1/2

ε1/2 Θ(ε) .

For finite ∆, the single particle energies are shifted uniformly by ±∆ for the σ = ±1 states,
hence

g(ε) = g0(ε + ∆) + g0(ε − ∆) .

(b) For Bose statistics, we have in the uncondensed phase,

n =

∞
∫

−∞

dε
g(ε)

e(ε−µ)/k
B

T − 1

= Li3/2

(

e(µ+∆)/k
B

T
)

λ−3
T + Li3/2

(

e(µ−∆)/k
B

T
)

λ−3
T .

In the condensed phase, µ = −∆ −O(N−1) is pinned just below the lowest single particle
energy, which occurs for k = p/~ = 0 and σ = −1. We then have

n = n0 + ζ(3/2)λ−3
T + Li3/2

(

e−2∆/k
B

T
)

λ−3
T .

To find the critical temperature, set n0 = 0 and µ = −∆:

n = ζ(3/2)λ−3
Tc

+ Li3/2

(

e−2∆/k
B

Tc

)

λ−3
Tc

.

This is a nonlinear and implicit equation for Tc(n,∆). When ∆ = ∞, we have

k
B
T∞

c (n) =
2π~

2

m

(

n

ζ(3/2)

)2/3

.

(c) For finite ∆, we still have the implicit nonlinear equation to solve, but in the limit
∆ ≫ k

B
Tc, we can expand Tc(∆) = T∞

c + ∆Tc(∆). We may then set Tc(n,∆) to T∞

c (n) in
the second term of our nonlinear implicit equation, move this term to the LHS, whence

ζ(3/2)λ−3
Tc

≈ n − Li3/2

(

e−2∆/k
B

T∞c
)

λ−3
T∞c

.

which is a simple algebraic equation for Tc(n,∆). The second term on the RHS is tiny since
∆ ≫ k

B
T∞

c . We then find

Tc(n,∆) = T∞

c (n)
{

1 − 3
2 e−2∆/k

B
T∞c (n) + O

(

e−4∆/k
B

T∞c (n)
)

}

.
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(3) For an ideal Fermi gas in three dimensions,

(a) Find an expression for the isothermal compressibility κT,N as a function of the tem-
perature T and fugacity z.

(b) Find an expression for the adiabatic compressibility κS,N as a function of the temper-
ature T and fugacity z.

(c) Find an expression for the ratio Cp,N/CV,N as a function of the temperature T and
fugacity z.

Solution :

Recall

N = V

∞
∫

−∞

dε g f

S = −k
B
V

∞
∫

−∞

dε g
{

f ln f + (1 − f) ln(1 − f)
}

p = −k
B
T

∞
∫

−∞

dε g ln(1 − f) ,

where g = g(ε) and f = f(ε−µ) in the above expressions. Note further that the differential
of the Fermi function is written in terms of dT and dµ as follows:

df = d

(

1

e(ε−µ)/k
B

T + 1

)

=

(

− ∂f

∂ε

)

·
{

(ε − µ)
dT

T
+ dµ

}

.

Thus, we have

V −1 dN = I1 d ln V + I2 dT + I3 dµ

V −1 dS = J1 d ln V + J2 dT + J3 dµ

dp = K1 dT + K2 dµ ,
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where

I1 =

∞
∫

−∞

dε g f J1 = −k
B

∞
∫

−∞

dε g
{

f ln f + (1 − f) ln(1 − f)
}

I2 =

∞
∫

−∞

dε g

(

− ∂f

∂ε

)(

ε − µ

k
B
T

)

J2 = k
B

∞
∫

−∞

dε g

(

− ∂f

∂ε

)(

ε − µ

k
B
T

)2

I3 =

∞
∫

−∞

dε g

(

− ∂f

∂ε

)

J3 = k
B

∞
∫

−∞

dε g

(

− ∂f

∂ε

)(

ε − µ

k
B
T

)

= k
B

I2

and

K1 = −k
B

∞
∫

−∞

dε g

{

ln(1 − f) +

(

− ∂f

∂ε

)

(ε − µ)

}

K2 = −k
B
T

∞
∫

−∞

dε
g

1 − f

(

− ∂f

∂ε

)

(a) Setting dT = dN = 0, we obtain dµ = −(I1/I3) d ln V , and therefore

κT,N = −
(

∂ ln V

∂p

)

T,N

=
I3

I1K2 − I3K1

.

(b) Setting dN = dS = 0, we obtain

dµ =
I1

I3

d ln V +
I2

I3

dT =
J1

J3

d ln V +
J2

J3

dT .

This can be used to express dT and dµ in terms of d ln V at fixed N and S. The final answer
is quite involved and I won’t reproduce it here. I regret asking this question!

(c) We set dN = 0 to write d ln V
∣

∣

N
in terms of dT and dµ, and set dp = 0 to write dµ

∣

∣

p
=

−(K1/K2) dT . Thus, we can write both dµ and d ln V in terms of dT and compute Cp,N .
For CV,N , set dN = d ln V = 0 to find dµ = −(I2/I3) dT and substitute into the equation
for dS. Again the final result is somewhat tedious.

(4) At low energies, the conduction electron states in graphene can be described as fourfold
degenerate fermions with dispersion ε(k) = ~v

F
|k|. Using the Sommerfeld expension,

(a) Find the density of single particle states g(ε).

(b) Find the chemical potential µ(T, n) up to terms of order T 4.
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(c) Find the energy density E(T, n) = E/V up to terms of order T 4.

Solution :

(a) The DOS per unit volume is

g(ε) = 4

∫

d2k

(2π)2
δ(ε − ~v

F
k) =

2ε

π(~v
F
)2

.

(b) The Sommerfeld expansion is

∞
∫

−∞

dε f(ε − µ) φ(ε) =

µ
∫

−∞

dε φ(ε) +
π2

6
(kT )2 φ′(µ) +

7π4

360
(k

B
T )4 φ′′′(µ) + . . . .

For the particle density, set φ(ε) = g(ε), in which case

n =
1

π

(

µ

~v
F

)2

+
π

3

(

k
B
T

~v
F

)2

.

The expansion terminates after the O(T 2) term. Solving for µ,

µ(T, n) = ~v
F
(πn)1/2

[

1 − π

3n

(

k
B
T

~v
F

)2
]1/2

= ~v
F
(πn)1/2

{

1 − π

6n

(

k
B
T

~v
F

)2

− π2

72n2

(

k
B
T

~v
F

)4

+ . . .

}

(c) For the energy density E , we take φ(ε) = ε g(ε), whence

E(T, n) =
2µ

3π

[

(

µ

~v
F

)2

+

(

πk
B
T

~v
F

)2
]

= 2
3

√
π ~v

F
n3/2

{

1 +
π

2n

(

k
B
T

~v
F

)2

− π2

8n2

(

k
B
T

~v
F

)4

+ . . .

}
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